A Global Steering Method for Nonholonomic Systems

Abstract : In this paper, we present an iterative steering algorithm for nonholonomic systems (also called driftless control-affine systems) and we prove its global convergence under the sole assumption that the Lie Algebraic Rank Condition (LARC) holds true everywhere. That algorithm is an extension of the one introduced in [21] for regular systems. The first novelty here consists in the explicit algebraic construction, starting from the original control system, of a lifted control system which is regular. The second contribution of the paper is an exact motion planning method for nilpotent systems, which makes use of sinusoidal control laws and which is a generalization of the algorithm described in [29] for chained-form systems.
Type de document :
Article dans une revue
Journal of Differential Equations, Elsevier, 2013, 254, pp.1903-1956. <10.1016/j.jde.2012.11.012>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00712792
Contributeur : Frédéric Jean <>
Soumis le : jeudi 28 juin 2012 - 10:43:35
Dernière modification le : jeudi 9 février 2017 - 15:12:36
Document(s) archivé(s) le : samedi 29 septembre 2012 - 02:21:59

Fichiers

chitour-jean-long.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yacine Chitour, Frédéric Jean, Ruixing Long. A Global Steering Method for Nonholonomic Systems. Journal of Differential Equations, Elsevier, 2013, 254, pp.1903-1956. <10.1016/j.jde.2012.11.012>. <hal-00712792>

Partager

Métriques

Consultations de
la notice

465

Téléchargements du document

1378