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This paper presents an asynchronous metamodel–assisted memetic algorithm
for the solution of CFD–based optimization problems. This algorithm is ap-
propriate for use on multiprocessor platforms and may solve computationally
expensive optimization problems in reduced wall–clock time, compared to con-
ventional evolutionary or memetic algorithms. It is, in fact, a hybridization
of non–generation–based (asynchronous) evolutionary algorithms, assisted by
surrogate evaluation models, a local search method and the Lamarckian learn-
ing process. For the objective functions gradient computation, in CFD applica-
tions, the adjoint method is used. Issues concerning the “smart” implementa-
tion of local search in multi–objective problems are discussed. In this respect,
an algorithmic scheme for reducing the number of calls to the adjoint equa-
tions to just one, irrespective of the number of objectives, is proposed. The
algorithm is applied to CFD–based shape optimization of the tubes of a heat
exchanger and of a turbomachinery cascade.
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Algorithm; Adjoint Method; Asynchronous Metamodel–Assisted
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EA Evolutionary Algorithm
IPE Inexact Pre–Evaluation
LS Local Search
MAEA Metamodel–Assisted EA
MAMA Metamodel–Assisted MA
MOO Multi–Objective Optimization
RBF Radial Basis Function (network)
SOO Single–Objective Optimization

1. Introduction

Engineering optimization problems can be solved using either stochastic or gradient–
based optimization methods. Evolutionary algorithms (EAs) are, by far, the most fre-
quently used global search methods. They may accommodate any analysis software as
a black–box tool and reach the optimal solution without being trapped into local op-
tima. Unfortunately, solving optimization problems associated with a computationally
demanding evaluation software, such as CFD codes, becomes expensive. To reach the
optimal solution(s), EAs may require a great number of objective function evaluations,
increasing thus the CPU cost. On the other hand, gradient–based methods are appropri-
ate for local search but can easily be trapped to local optima. They should be supported
by tools computing or approximating the gradient of the objective function.
One may overcome the weaknesses of stochastic and gradient–based methods through

their hybridization. In hybrid schemes, EAs are frequently used to explore the design
space whereas gradient–based methods undertake the refinement of promising individ-
uals. Hybrid methods can be devised in several ways, Poloni et al. (2000), Sefrioui and
Périaux (2000), Désidéri and Janka (2003), Duvigneau et al. (2006), Karakasis et al.
(2007), Kampolis and Giannakoglou (2009, 2011).
By definition, memetic algorithms (MAs), are hybrid optimization methods since they

combine global and local search (LS), Dawkin (1976), Hart (1994), Knowles and Corne
(2000), Ong and Keane (2004), Krasnogor and Smith (2005), Ong et al. (2006). In MAs,
two basic learning mechanisms, namely the Lamarckian and the Baldwinian ones, are
employed. In the former, any individual refined during the LS replaces both the genotype
and phenotype of the starting one in the population whereas, in the latter, only the
objective vector is allowed to be updated.
Unfortunately, even with hybrid methods, a computationally demanding evaluation

software makes the optimization task very expensive. In order to reduce its wall–clock
time, surrogate evaluation models (also known as metamodels) can be used. Metamodel–
Assisted EAs (MAEAs), in which the metamodels are trained separately from the evolu-
tion which is exclusively based on them, can be found in Bull (1999), Pierret and Van den
Braembussche (1999), but are beyond the scope of this paper. This paper is concerned
with EAs (MAs, in fact) assisted by on–line trained metamodels, in conformity with the
method presented in Karakasis and Giannakoglou (2006), Giannakoglou et al. (2001). In
each generation, the metamodels undertake the so–called inexact pre–evaluation (IPE)
of candidate solutions and pinpoint the most promising among them to undergo CFD–
based evaluation. MAs supported by the IPE technique, i.e. the metamodel–assisted MAs
(MAMAs), have been presented in the past by the same group, Georgopoulou and Gi-
annakoglou (2009); there, the metamodels were also differentiated to approximate the
gradient. Relevant works on MAMAs can be found in Zhou et al. (2007a,b).
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To reduce the ellapsed time of an optimization problem, population members within
each generation can be concurrently evaluated on different CPUs. This is the simplest
way to exploit parallelization in EAs. In the literature, the term “parallel EAs” (PEAs)
denotes much more than this, see Cantú-Paz (1998), Nowostawski and Poli (1999), Alba
and Tomassini (2002). PEAs are suited for either cluster or grid computing, Lim et al.
(2007), Melab et al. (2006), Liakopoulos et al. (2008), Luna et al. (2006). Note that the
evolution on a generation–by–generation basis limits the parallel efficiency of a PEA due
to the synchronization barrier at the end of each gereration. Thus, asynchronous EAs
(AEAs), Alba and Troya (2001), Asouti and Giannakoglou (2009), which maximize the
exploitation of the available computational resources, have been proposed instead.
In this paper, the combined use of the AEA introduced in Asouti and Giannakoglou

(2009) and, then, enhanced also by metamodels (AMAEA), Asouti et al. (2009), along
with a gradient–based method gives rise to a new asynchronous metamodel–assisted
memetic algorithm (AMAMA). In the proposed AMAMA (as in the existing AEA), the
population is arranged on a 2D structured mesh and divided into overlapping demes.
The selection of the new individual to undertake evaluation on an instantaneously idle
processor results from inter– and intra–deme processes. The use of metamodels is based
on the IPE technique, revisited to efficiently cooperate with the AEA. Over and above,
the AMAMA regularly performs LS, using gradient–based methods. LS includes the
computation of the gradient of the objective function with respect to the design variables,
the refinement of the individual using the steepest descent method and the re–evaluation
of the refined individual. To the authors knowledge, an asynchronous memetic algorithm
assisted by metamodels is presented for the first time in the relevant literature.
In CFD–based optimization problems, the gradient of the objective function can be

computed using the adjoint method. In general, the adjoint equations in discrete form can
be derived through either the continuous, Pironneau (1974), Jameson (1988), Anderson
and Venkatakrishnan (1997), Papadimitriou and Giannakoglou (2007, 2008, 2009), or the
discrete adjoint approach, Elliot and Peraire (1996), Giles and Pierce (1997), Duta et al.
(2002). In the former, the adjoint equations are derived as p.d.e.’s (similar to the state
equations governing the flow problem) and, then, discretized. In the latter, the discrete
adjoint equations result directly from the discretized state equations. In this paper, the
continuous adjoint formulation for incompressible flows with heat transfer is employed. In
order to further reduce the CPU cost in multi–objective optimization (MOO) problems, a
scheme according to which the adjoint equations are solved only once, instead of as many
times as the objectives, is proposed. Though, in the present paper, the derivatives of the
approximated SPEA2 utility function are computed as in Kampolis and Giannakoglou
(2008), an important novelty is that these are used as “frozen” weighting factors in the
aggregated objective function handled by the adjoint method and, as a consequence, a
single run of the adjoint method is required. Regarding CPU cost, this is an important
advantage.
The proposed method is demonstrated on single– and multi–objective CFD–based,

engineering problems. These include the two–objective shape optimization of the tubes
of a tube bank heat exchanger and the single–objective optimization (SOO) problem
of a turbomachinery cascade. For the turbulence flow case, closure is effected by the
Spalart–Allmaras turbulence model and the adjoint to both the mean–flow and turbu-
lence equations is computed, as in Zymaris et al. (2009). So, there is no need to make
the assumption that the variation in turbulence viscosity is neglected, which is a source
of inaccuracies. This is presented for the first time for incompressible flows with heat
transfer and constitutes the third originality of this paper. Statistics on the solution to
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function minimization are shown in the appendix for the sake of completness.

2. Flow Model–Objective Function

The CFD model used for the aero–thermodynamic evaluation of candidate solutions is
an in–house Navier–Stokes flow solver for incompressible flows based on the artificial
compressibility technique, Anderson et al. (1995), and a vertex–centered–finite volume
scheme. The Navier–Stokes equations for the 2D steady flow of an incompressible fluid
are symbolically written as

R~U
= 0 (1)

where ~U=[p, vi]
T is the vector of the mean flow state variables, with p the static pres-

sure and vi, i=1, 2 the velocity components. During numerical solution, a pseudo–time
derivative of ~U is added to the steady state residuals, given by

Rp = β2
∂vj
∂xj

(2)

Rvi
= vj

∂vi
∂xj

+
1

ρ

∂p

∂xi
+

∂

∂xj

[

(ν+νt)

(

∂vi
∂xj

+
∂vj
∂xi

)]

where β is the artificial compressibility coefficient, ρ is the constant density and xi, i = 1, 2
the Cartesian coordinates. ν and νt are the bulk and turbulent viscosity, respectively.
Based on the Spalart and Allmaras (1994) turbulence model, the viscosity coefficient is
given by νt= ν̃fv1

, where ν̃ is the solution variable in the corresponding state equation,
Rν̃=0, where

Rν̃ =
∂(viν̃)

∂xi
−

∂

∂xi

[(

ν+
ν̃

σ

)

∂ν̃

∂xi

]

−
cb2
σ

(

∂ν̃

∂xi

)2

− ν̃P (ν̃) + ν̃D (ν̃) (3)

The production P (ν̃) and destruction D(ν̃) terms are given by

P (ν̃) = cb1S̃, D(ν̃) = cw1fw(S̃)
ν̃

d2
(4)

Terms fv1
, fw, S̃, and constants cb1 , cb2 , cw1

and σ are all defined in Spalart and Allmaras
(1994). d is the distance of each grid node from the wall. Depending on the application,
the energy equation,

RT =
∂ (viT )

∂xi
− α

∂2T

∂x2i
= 0 (5)

where T is the temperature and α = k
ρcp

the thermal diffusivity, must also be satisfied.

This is solved in a segregated manner after iteratively solving the other state equations.
cp and k stand for the specific heat capacity and thermal conductivity, respectively.
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Depending on the application, the objective functions fi to be minimized are

f1 = −

∫

SI,O

1

ρ

(

p+
1

2
ρv2

)

vinidS

f2 = −

∫

SI,O

TdS (6)

and correspond to the volume–averaged total pressure losses and the temperature differ-
ence between the inlet (SI) to and the outlet (SO) from the flow domain, respectively. ni

correspond to the components of the normal to the boundary vector and v is the norm
of the velocity vector.
In the M objective problem, during the LS action, the objective function F is defined

by concatenating the M objectives fi into a single scalar function

F =

M
∑

i=1

ωifi (7)

where ω1, ω2 are weighting factors as it will become clear in section 5. Otherwise, F may
stand either for f1 or f2.

3. Gradient Computation–The Continuous Adjoint Method

In the continuous adjoint method, the augmented objective function Faug is defined
as the sum of the objective function F and the field (Ω) integral of the residual of

the state equations (R~U,ν̃,T
=0) multiplied by the adjoint variables (~V=(q, ui, ν̃a, Ta)),

Faug = F+
∫

Ω
~V R~U,ν̃,T

dΩ. Its variation with respect to the design variable array,~b ∈ RN ,

is expressed as follows, as in Papadimitriou and Giannakoglou (2007),

δFaug

δ~b
=

δF

δ~b
+

∫

Ω

q
δRp

δ~b
dΩ+

∫

Ω

ui
δRvi

δ~b
dΩ+

∫

Ω

ν̃a
δRν̃

δ~b
dΩ+

∫

Ω

Ta
δRT

δ~b
dΩ

+

∫

S

(qRp + uiRvi
+ ν̃aRν̃ + TaRT )

δxk

δ~b
nkdS (8)
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The development of the field integrals of Equation (8), based on the Gauss divergence
theorem, gives rise to

δFaug

δ~b
=

δF

δ~b
+

∫

Ω

δp

δ~b
RqdΩ+

∫

Ω

δvi

δ~b
Rui

dΩ+

∫

Ω

δν̃

δ~b
Rν̃a

dΩ+

∫

Ω

δT

δ~b
RTa

dΩ

+

∫

S

(ujnj +
∂F

∂p
)
∂p

∂~b
dS −

∫

S

ν
∂ui
∂xj

nj
∂vi
∂xk

δxk

δ~b
dS +

∫

S

BC1,i
δvi

δ~b
dS

+

∫

Ω

ν̃aν̃Cd(ν̃, ~v)
∂d

∂~b
dΩ−

∫

S

ν̃a
1

σ
(ν + ν̃)

∂

∂xj

(

∂ν̃

∂~b

)

njdS

−

∫

S

ν̃a
1

σ

∂ν̃

∂xj

∂ν̃

∂~b
njdS −

∫

S

2
cb2
σ

ν̃a
∂ν̃

∂xj

∂ν̃

∂~b
njdS +

∫

S

BC2

δν̃

δ~b
dS

+

∫

S

ν̃aν̃ejliejmq
CS
S

∂vq
∂xj

nl
∂vk

δ~b
dS +

∫

S

(ν̃aRν̃ + TaRT )
δxk

δ~b
nkdS

−

∫

S

αTa
δ

∂~b

(

∂T

∂xi
ni

)

dS +

∫

S

αTa
∂T

∂xi

δni

∂~b
dS −

∫

S

α
∂Ta

∂xj
nj

∂T

∂xk

δxk

δ~b
dS

+

∫

S

BC3

δT

δ~b
dS −

∫

S

ν
∂ν̃a
∂xj

nj
∂ν̃

∂xk

δxk

δ~b
dS (9)

where

Rq =
∂uj
∂xj

(10a)

Rui
=vj

(

∂ui
∂xj

+
∂uj
∂xi

)

+
∂

∂xj

[

(ν+νt)

(

∂ui
∂xj

+
∂uj
∂xi

)]

+ β2 ∂q

∂xi
+ ν̃

∂ν̃a
∂xi

+
∂

∂xl

(

ejliejmq
CS
S

∂vq
∂xm

ν̃ν̃a

)

+ T
∂Ta

∂xi
(10b)

Rν̃a
=vj

∂ν̃a
∂xj

+
∂

∂xj

[(

ν+
ν̃

σ

)

∂ν̃a
∂xj

]

−
1

σ

∂ν̃a
∂xj

∂ν̃

∂xj
− 2

cb2
σ

∂

∂xj

(

ν̃a
∂ν̃

∂xj

)

−ν̃aν̃ Cν̃(ν̃,~v)−
δνt
δν̃

∂ui
∂xj

(

∂vi
∂xj

+
∂vj
∂xi

)

− (−P+D) ν̃a (10c)

RTa
=vi

∂Ta

∂xi
+ α

∂2Ta

∂x2i
(10d)

BC1,i =uivjnj + (ν + νt)
∂ui
∂xj

nj + (ujvj + β2q + ν̃aν̃ + TTa)ni+

ν̃aν̃CS (ν̃)
1

S
ejliejmq

∂vq

∂~b
nl +

∂F

∂vi
(11a)

BC2 =
δνt
δν̃

ui

(

∂vi
∂xj

−
∂vj
∂xi

)

nj − ν̃avjnj +

(

ν +
ν̃

σ

)

∂ν̃a
∂xj

nj +
∂F

∂ν̃
(11b)

BC3 =Tavini + α
∂Ta

∂xi
ni +

∂F

∂T
(11c)
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and, based on Equation (7), for constant ω1 and ω2,

∂F

∂p
=− ω1vini,

∂F

∂vi
= −ω1(

1

2
v2ni + vivλnλ + pni) (12)

∂F

∂ν̃
= 0,

∂F

∂T
= −ω2 (13)

Terms CS , Cν̃ , Cd, S are all defined in Zymaris et al. (2009) and ejli stands for the
permutation symbol.
The adjoint field equations and their boundary conditions are derived by eliminating

field integrals depending on δp

δ~b
, δvi

δ~b
, δν̃

δ~b
, δT

δ~b
from Equation (9). The field adjoint to the

mean-flow, turbulence and energy equations are given by

Rq = 0, Rui
= 0, Rν̃a

= 0, RTa
= 0 (14)

The adjoint boundary conditions are defined in a similar way. For instance, at the inlet,

uini = ω1vini, uiti = 0 (15)

(where ti are components of the unit, tangent to the boundary vector) for the normal
and tangential velocities and zero Dirichlet conditions for ν̃a and Ta. Along the solid
walls, zero Dirichlet conditions are imposed to ui, ν̃a and Ta and zero Neumann to q.
The outlet conditions for q and ui are coupled based on the system of two equations
BC1,i = 0 (for i = 1 and 2), after arbitrarily zeroing one of these variables, Zymaris et al.
(2009). The ν̃a and Ta outlet conditions result from BC2 = 0 and BC3 = 0, respectively.
After having computed the adjoint fields, by numerically satisfying the adjoint equa-

tions and their boundary conditions, the variation of the Faug becomes independent of
variations in the state variables, leading to the expressions of the sensitivity derivatives
in terms of ~V . Based on Equation (8) to (15), the sensitivity derivatives of Faug, are
given by

δFaug

δ~b
=

δF

δ~b
−

∫

SW

ν
∂ui
∂xj

nj
∂vi
∂xk

δxk

δ~b
dS −

∫

SW

α
∂Ta

∂xj
nj

∂T

∂xk

δxk

δ~b
dS

−

∫

SW

ν
∂ν̃a
∂xj

nj
∂ν̃

∂xk

δxk

δ~b
dS +

∫

Ω

ν̃aν̃ Cd(ν̃,~v)
∂d

∂~b
dΩ (16)

The wall boundary (SW ) and field integrals in Equation (16) depend on the state and
adjoint variables.

4. Global Search Method : The Asynchronous MAEA (AMAEA)

As global search method, the asynchronous EA presented in Asouti and Giannakoglou
(2009) and, later, enhanced by metamodels (AMAEA, Asouti et al. (2009)) is used. In
this section, its basic features for the solution of MOO problems, with M functions to
be minimized, namely

min~f(~b) = min{f1(~b), ..., fM (~b)} (17)
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A2

A1

A5 A4

A3P

Figure 1.: Asynchronous EA: close–up view of part of the supporting mesh. The pole P ,
along with it’s five evaluation agents A1 to A5 for the deme marked with the continuous
line, are shown.

are presented. The comparison between two candidate solutions ~b1, ~b2 is based on dom-
inance criteria and the approximation of the Pareto front (for ranking individuals and
maintaining diversity) on the SPEA2 technique, Zitzler et al. (2001). Its SOO counterpart
can be extracted in a straightforward manner.
The basic features of the AEA are the topological structure of the population, its

division into demes and the specific way demes overlap and share individuals. Candidate
solutions to the problem are associated with nodes of a n1×n2 structured supporting
mesh which is periodic along its opposite sides. The mesh is subdivided into demes Dp

of six nodes each: a pole P , which acts as the front–end of each deme where the best
individual of the deme is stored, and five evaluation agents A1 to A5, Figure 1. Thus, on a
n1×n2 mesh (both n1 and n2 must be even), with a total number of Nmesh = n1n2 nodes,
the number of poles equals to Npoles = Nmesh/4 and the number of evaluation agents
equals to Nagents = 3Nmesh/4. The application of the evolution operators is restricted
within each deme. The demes interact through shared nodes. According to Figure 1, each
deme shares four of its five agents (all but A5) with its four neighbouring demes.
The optimization starts by randomly generating NCPU individuals at NCPU randomly

selected evaluation agents and assigning their evaluation to NCPU available processors.
Upon completion of the evaluation of any individual ~ba, the corresponding CPU (CPU~ba

)

becomes idle. Instantaneously, a new individual (new ~ba) to undergo evaluation is gen-
erated, through intra– and inter–deme operations. An intra–deme operation, based on
dominance criteria, decides whether the just evaluated individual must displace or not
the corresponding pole(s) (~bp).
Then, the next agent to undergo evaluation is selected from the deme with the max-

imum priority through an inter–deme operation. The priority metric is defined as the
product of age– and cost–based priorities, i.e. Prp = Pragep Prcostp , see Asouti and Gian-
nakoglou (2009) for more details. The age Ak of an agent is the difference between the
serial number of the last evaluation carried out for this agent and the serial number of the
current evaluation. The age of any pole is the average age of its agents. The age–based
priority is set equal to the pole’s age divided by the maximum age of all poles. In MOO
problems, the cost–based priority Prcostp is defined using strength– and density–based
criteria (SPEA2) and is non–dimensionalized by the difference between its maximum
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and minimum values. The agent with the maximum age Ak, within the deme (Dn
p ) with

the maximum priority, is the one selected to generate the new ~ba. All design variables are
real coded and the new ~ba is formed by superimposing the weighted difference between
two agents of Dn

p to the individual currently associated with the pole (~bp), as

~ba = ~bp + ωr(~bk1
−~bk2

), with k1, k2 ∈ Dn
p & k1 6= k2 (18)

where ωr ∈ [0, 1]. A non–uniform mutation scheme with a small user–defined probability

is, finally, applied to ~ba. The mutated individual is, then, sent for evaluation to CPU~ba
.

Due to its asynchronous operation, this algorithm is suitable for multiprocessor systems
with NCPU ≤ Nagents (even heterogeneous) processors.
The efficiency of an AEA can substantially be improved if metamodels (trained on an

appropriate subset of the previously evaluated individuals) are employed. This gives rise
to the so–called AMAEA. Metamodels, i.e. on–line trained radial basis function (RBF,
Haykin (1999)) networks are used for the IPE of candidate solutions, as mentioned in
the intoduction. Inspired by MAEAs, in Asouti et al. (2009), the use of metamodels was
embedded in the asynchronous EA. Metamodels are activated only after completing and
archiving a user–defined minimum number of exact evaluations. From this point on, for
each vacant CPU, instead of generating a single individual, NIPE trial ones are generated
by the evolution operators applied within Dn

p . For each one of them, a local metamodel
is trained on a small number of data selected from the archive of previously evaluated
individuals (DB). The training patterns are selected from the DB based on the minimum
distance (in the design space) from the trial individual and approximate (“inexact”, IPE)

fitness values are computed (
~̂
f) for all of them. The “best” among the NIPE individuals,

according to the metamodel, is the one to be re–evaluated by the problem–specific (CFD)
tool.

5. The Proposed Asynchronous MAMA (AMAMA)

As already explained, the proposed AMAMA is based on the AMAEA described above,
with the additional implementation of LS. Individuals to undergo LS are selected based
on dominance criteria applied to a set formed by the just evaluated individual (~ba, ~f(~ba))
and the current front of non–dominated individuals (Pa). Whenever a new individual
enters Pa (i.e. becomes non–dominated), this is automatically selected to undergo LS.
Returning from LS, this may displace the current individual according to the Lamarckian
learning rules. LS requires the computation of the gradient of the objective function with
respect to the design variables (d~f/d~b), the refinement–update of ~ba by means of the
steepest descent method and, finally, the re–evaluation of the updated individual with the
problem–specific (CFD) evaluation tool providing ~f(~ba). The refinement is constrained by
the user–defined upper and lower bounds of all design variables. Apart from the randomly
generated individuals during the starting phase of the method, any other individual may
be selected to undergo LS. So, practically, any number of processors may simultaneously
undergo LS. LS does not affect the implementation of metamodels.
In SOO problems, the gradient of the objective function, defines the direction of the

refinement of ~ba. In MOO problems, the SPEA2 utility function φ = φ(f1, f2, ..., fM )
defines the descent direction in the objective space. A φ value is assigned to each indi-
vidual by taking a subset of the currently available individuals along with the individual
under consideration. In the proposed method, LS aims at improving the current front of
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non–dominated solutions with respect to all objectives or, differently stated, that the di-
rection of LS is ”perpendicular” to this front. To determine the direction of improvement,
∇φ = ∂φ

∂~ba
must be computed and used.

To this end, two basic issues should be addressed. The first one is related to the
computation of ∇φ, i.e. how to overcome the difficulty in computating ∂φ

∂~ba
, given that φ

is a non–differentiable function of fi, i=1,M . The second one deals with the reduction
of the gradient computation cost.
A remedy to the fist problem has already been presented in Kampolis and Giannakoglou

(2008), where an exact differentiation of an approximation of the non–differentiable Heav-
iside function is employed. This approximation is used in this paper as well. Based on
this, an approximate ∂φ

∂fi
value (to be precise, this is the exact derivative of a function

approximation) is assigned to each individual undergoing LS. By assuming that ωi=
∂φ
∂fi

and by the chain rule

∇φ =

M
∑

i=1

∂φ

∂fi

∂fi

∂~ba
=

M
∑

i=1

ωi
∂fi

∂~ba
(19)

It is obvious that if the adjoint method was utilized to compute the gradient ∂fi

∂~ba
for M

objectives, M calls to the adjoint solver would be necessary. Irrespective of the value
of N , a single gradient computation with the adjoint method costs approximately as
much as the solution of the flow equations. Thus, computing M gradients, updating
the current individual using steepest descent and, finally, re–evaluating the updated
individual altogether cost as if the flow equations were solved M+1 times.
In order to reduce this cost, by taking into consideration Equations (19) and (7), it is

proposed to concatenate the M objectives into a scalar function F where the weighting
factors are the gradients of the SPEA2 utility function φ. By doing so, a single solution of
the adjoint equations, with ”frozen” ωi values (equations as in section 3) and φ instead of
F is sufficient. This leads to reduced computational cost, equal only to two “equivalent”
flow solutions (1+1) regardless of the values of M , since the adjoint equations are solved
only once.

6. Applications

The proposed AMAMA was applied to two design–optimization problems, namely: (a)
the two–objective tube shape optimization of a tube bank heat exchanger and (b) the
SOO of a turbomachinery cascade. The first engineering case was studied using all vari-
ants of the asynchronous algorithm, namely AEA, AMAEA, AMA and AMAMA and
each run was repeated 5 times, with different random number generator (RNG) seeds.
The second case (SOO) is used to compare the AMAEA and AMAMA. An additional
comparison of AMAEA and AMAMA, on mathematical functions (non–expensive runs
which were repeated several times to get an average performance), is shown in Appendix
A.
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T=353 K 

T=293 K 

w=2c 4c

c

Figure 2.: Schematic representation of a tube bank heat exchanger. The black line confines
the computational domain. Upstream and downstream extensions are not in scale.

Figure 3.: Design of a tube heat exchanger. Parameterization of the upper side of the
tube shape (symmetry). The design variables correspond to the coordinates of the Bézier
control points which are marked with a vertical and/or horizontal straight line segment.

6.1. Design of a tube heat exchanger

This case is concerned with the two–objective shape optimization of the tubes of a stag-
gered tube bank heat exchanger, for minimum volume–averaged total pressure losses, f1,
and maximum heat exchange, f2, as in Equation 6, Hilbert et al. (2006). Heat exchangers
containing banks of tubes in crossflow are widely used in industrial and power engineer-
ing applications. This 2D study is physically consistent with the flow over the mid–span
plane of heat exchangers with the tube length in the longitudinal direction being much
larger than its width, Zdravistch et al. (1995). The heat exchanger and the boundaries
of the 2D computational domain are shown in Figure 2. Due to the periodicity, the com-
putational domain contains only four tubes. The outlet boundary is extended several
chord–lengths downstream the last tubes, not shown in Figure 2. The fluid enters the
domain with Tinlet = 293K and the flow Reynolds number based on the distance w is
equal to Re=140. High temperature fluid flows inside the tubes, ensuring constant wall
temperature Twall=353K.
The tube shape is symmetric along the horizontal axis and is parameterized using

Bézier–Bernstein polynomials, with 8 control points on each side. 4 of them are allowed
to vary in both directions, while the second and the seventh vary only in the normal to
chord direction, resulting to 10 design variables in total, as presented in Figure 3. All tube
cross sections are identical and located in pre–defined positions. The computational grids
are formed by generating structured–like layers of triangles (i.e. quadrilaterals split into
triangles) around each tube and, then, by filling in the remaining domain with triangular
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Figure 4.: Design of a tube heat exchanger. Evolution of the mean hypervolume indicator
(IH) of AEA, AMAEA, AMA and AMAMA. The hypervolume indicator IH indicates
the area dominated by the front of the non–dominated individuals; higher IH values
correspond to fronts closer to the Pareto front.

elements using the advancing front technique. This results to grids of ∼ 85000 nodes and
∼ 170000 triangular elements on the average.
This case was studied using all variants of the asynchronous algorithm, namely AEA,

AMAEA, AMA and AMAMA with a 10×10 supporting mesh on 40 CPUs. Regarding
the metamodel–based variants, NIPE = 7 trial individuals were pre–evaluated before
proceeding to the CFD–based evaluation and this occured only after having the first
50 entries recorded in the DB. With all variants, 5 runs with different RNG seeds were
carried out. The same 5 RNG seed values were used but, as explained elsewhere in the
paper, this guarantees nothing more that the starting populations were all the same. The
evolution of the average (over the 5 runs) mean hypervolume indicator (IH) is shown
in Figure 4. It is obvious that AMAMA outperforms all other variants. From the same
figure, the gain from using memetic algorithm, with or even without the extra assistance
by the metamodels, can be seen.
For a selected AMAMA run, Figure 5 presents the computed front of non–dominated

solutions at the cost of 400 CFD evaluations; in Figure 6 three designs (tube shapes),
selected from this front, are shown. Out of the 400 evaluations of the AMAMA, 180
correspond to evaluations of the objective functions and 110 to LS actions, i.e. 110
gradient computations (solutions of adjoint equations) and 110 re–evaluations of the
objective functions (solutions of state equations). 73 out of the 110 LS attempts led to
an improved solution that entered the front of non–dominated solutions by the time they
returned. 71.6% of the non–dominated individuals of the final front (i.e. 43 out of 60)
resulted directly from LS, which confirms the important contribution of the LS in the
algorithm. A close–up view of the computational grid around one of the four tubes, that
corresponds to one among the computed optimal solutions of Figure 6, is shown in Figure
7.
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 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 32  33  34  35  36  37  38
f 1

f2

Final front
Refined by LS

Figure 5.: Design of a tube heat exchanger. Front of non–dominated individuals at the
cost of 400 evaluations. Front members resulted from a LS action are marked with an
empty square. f1 and f2 stand for the volume–averaged total pressure losses and the
exchanged heat, respectively, as in Equation 6.

(a) f1=1.99, f2=37.9 (b) f1=1.46, f2=36.2 (c) f1=0.82, f2=32.4

Figure 6.: Design of a tube heat exchanger. Three tube shapes corresponding
to three non-dominated solutions, selected from Figure 5: (a) is a tube shape
yielding maximum heat exchange with high total pressure losses, (c) is the
other way round. (a) and (c) practically correspond to the edges of the Pareto
front in Figure 5. Finally, (b) is a solution in the middle of the front.

6.2. Design of a turbomachinery cascade airfoil

The second engineering case is concerned with the design of a turbomachinery cascade
airfoil for minimum volume–averaged total pressure losses, f1, as in Equation 6. The
cascade has fixed stagger angle equal to 35o and fixed pitch-to-chord ratio equal to 0.6.
It was designed for inlet flow angle a1=52o and Reynolds number based on chord Rec=
9 × 105. The airfoil shape was parameterized using the Bézier–Bernstein polynomials
with 8 control points on each side. 6 of them were allowed to vary, summing up to
12 + 12 = 24 design variables. Figure 3, associated with the previous case, can also be
used to describe the parameterization of the cascade airfoil. Geometrical constraints on
the airfoil thickness t were imposed as follows

t(0.25c) ≥ 0.05c, t(0.50c) ≥ 0.045c, t(0.85c) ≥ 0.017c

where c is the chord length. In addition, the minimum flow turning angle was constrained
to a1 − a2 ≥ 22o.
This case was studied using AMAEA and AMAMA on 20 and 40 CPUs, both with a
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Figure 7.: A close–up view of the computational grid around one of the four tubes that
corresponds to solution (b) of Figure 6.

10×10 supporting mesh. The metamodel is activated after 50 evaluations with NIPE=8
trial individuals. Figure 8 compares the convergence histories of AMAEA and AMAMA
and marks all current best solutions resulted from LS, on 20 CPUs and 40 CPUs. It is
obvious that AMAMA performs constantly better than AMAEA during the evolution
irrespective of the number of CPUs.
Statistics about the performance of LS on 20 and 40 CPUs can be found in Table 1. On

20 CPUs, the 300 equivalent evaluations of the AMAMA comprise 266 evaluations of the
objective function and 17 LS actions i.e. 17 gradient computations and 17 re–evaluations.
All of the LS actions undertaken were successful, in the sense that the outcome of each
LS was better than the individual undergoing LS. However, it is more important to
investigate whether the outcomes of LS actions become the best–so–far individual by
the time they return or other processors have likely returned better individuals in the
meantime. Based on the statistics of Table 1, 42% of the individuals undergoing LS on 20
CPUs became the best–so–far individual by the time they returned. The corresponding
percentage on 40 CPUs was 55%.
According to Table 1 and Figure 8, as the number of CPUs increases, less LS actions are

performed and this affects the best objective function value achieved within the affordable
CPU cost. This confirms similar findings in the SOO mathematical case (Ackley function;
see Appendix A), where (due to its low CPU cost) each run was repeated 30 times with
different RNG seeds on various multiprocessor systems. According to these studies, there
is a maximum number of processors above which the LS actions cease to be effective.
The optimum design obtained by AMAMA on 20 CPUs and a close–up view of the

computational grid in the vicinity of the leading edge area of the optimum design are
shown in Figure 9.
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Figure 8.: Design of a turbomachinery cascade. Convergence history of AMAEA and
AMAMA on 20 CPUs (left) and 40 CPUs (right) and LS refinements (square symbols)
compared all successive bests (x symbols) during the evolution on 20 CPUs (left) and 40
CPUs (right). f1 represents the volume–averaged total pressure losses as in Equation 6.

Table 1.: Design of a turbomachinery cascade. Statistics regarding the performance of
LS on 20 CPUs and 40 CPUs.

20 CPUs 40 CPUs

Equivalent Evaluations 300 300
Number of LS actions 17 11
Improved LS actions 17 11
Bests refined by LS 7/17 6/11

Figure 9.: Design of a turbomachinery cascade. The optimum design obtained by
AMAMA on 20 CPUs (left) and a close–up view of the computational grid close to
the leading edge area of the optimum design (right).

7. Conclusions

This paper extended a well performing asynchronous evolutionary algorithm (AEA),
devised in the past for use without (Asouti and Giannakoglou (2009)) or with (Asouti
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et al. (2009)) assistance by surrogate evaluation models (metamodels). The new extension
includes:

• the additional implementation of local search (LS) for the most promising individuals,
which transformed the AEA to an asynchronous memetic algorithm (AMA),

• the use of metamodels during the global search task, which upgraded the AMA to an
asynchronous metamodels-assisted MA (AMAMA) and

• a ”smart” formulation of the LS process based on a single call to the adjoint method
computing the gradient of the objective function, which additionally reduces the wall
clock time of the optimization in problems with more than one objectives.

Regarding the latter, this paper proposed a way to handle a scalar (rather than a
vector) objective function during LS. The scalar function to be minimized is the synthesis
of the MOO objective functions, multiplied by appropriate coefficients which ensure
that steepest descent will provide non-dominated solutions by moving ”normal” to the
front of current non-dominated solutions. The gradient of the non-differentiable SPEA2
function used to quantify the quality of current solutions based on dominance criteria was
computed by approximating this function with a continuous one and, then, differentiating
the latter, as originally proposed by in Kampolis and Giannakoglou (2008). In contrast
to this previous work, instead of solving as many adjoint equations as the objectives,
computing their gradients and combining them to find the gradient of the LS scalar
function, a low-cost scheme was proposed, which sets up this scalar function (with frozen
coefficients) and then solves a single adjoint equation to compute its gradient.
A by-product of the proposed method was the formulation and programming of the

continuous adjoint method for incompressible fluid flows with heat transfer. Though the
energy equation is fully decoupled from the momentum and mass conservation equations,
their adjoint equations are fully coupled.
The solution of the presented case studies was carried out on multiprocessor plat-

forms, where the asynchronous search method (EA or MA) presents the advantage of
reducing (almost eliminating) the idle times of CPUs. This was achieved by ”immedi-
ately” assigning a new evaluation on any CPU that becomes idle after completing a
previous evaluation and by eliminating the synchronization barrier (end-of-generation)
of synchronous EAs or MAs. Based on the studied cases, the memetic algorithm, with
or without the extra use of metamodels, performs better than both AEA and AMAEA.
Based on the findings of (Asouti and Giannakoglou (2009)) and (Asouti et al. (2009)),
we may conclude that the later outperforms (synchronous) EAs and MAEAs.

Appendix A. Mathematical Benchmarks

Two mathematical benchmarks, the Ackley and ZDT3 functions, were also used to com-
pare the AMAEA and AMAMA. Due to their low CPU cost, each run was repeated 30
times, with different RNG seeds and the average performance of these runs is plotted.
For the needs of the AMAMA, the derivatives of the objective function(s) are computed
analytically but this computation is assumed to cost as much as the computation of the
objective function(s), i.e. as if the adjoint method was used.
The minimization of the Ackley function with N = 20 optimization variables is pre-

sented first. The average behaviour of 30 runs with stopping criterion of 3000 evalua-
tions each is of concern. 5, 20 and 40 CPUs were used, by performing 90 runs in total.
In all cases, a 8×8 supporting mesh was used and the metamodels, in both AMAEA
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Figure A1.: Minimization of the Ackley function. The mean convergence histories of
AMAEA and AMAMA on 5, 20 and 40 CPUs.

and AMAMA, employed after collecting the first 100 entries in the DB, by generating
NIPE = 3 trial individuals for each new individual. The mean convergence histories of
the 30 runs of AMAEA and AMAMA on 5, 20 and 40 CPUs are presented in Figure A1.
Table A1 summarizes the mean, minimum and maximum values as well as the standard

deviation of the objective function of all the aforementioned computations; the t0 values
from the t–tests between AMAMA–AMAEA are also shown. Irrespective of the number of
CPUs, from the t–tests performed between AMAMA–AMAEA, it is clear that AMAMA
performs better than AMAEA. In particular, the t0 values from the comparison between
AMAMA and AMAEA for 5 (t0 = 6.367), 20 (t0 = 9.828) and 40 CPUs (t0 = 15.465)
ensure that AMAMA is significantly better than AMAEA.
Table A1 shows also the mean number of LS actions performed by the AMAMA.

As the number of CPUs increases, less LS actions are performed and this affects the
mean objective function value achieved within the affordable CPU cost (Table A1). One
may comment on the outcome of runs on various multiprocessor systems, according to
which the AMAMA performance worsens above a certain number of CPUs. Since the
refinement of any individual has a CPU cost of approximately two evaluations, 2(NCPU−
1) evaluations on the average are expected to end in the meantime, assuming that no
other CPU simultaneously undergoes LS. By increasing NCPU , it is more likely that
among the ∼ 2(NCPU − 1) individuals evolved and evaluated in the meantime, at least
one dominates the outcome of LS. Should this be the case, this LS action, unfortunately,
becomes ineffective and this reflects on the results illustrated in Figure A1.
The second mathematical benchmark considered is the two-objective minimization of
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Table A1.: Minimization of the Ackley function. Comparison of AMAEA and AMAMA
on 5, 20 and 40 CPUs.

5 CPUs 20 CPUs 40 CPUs
AMAEA AMAMA AMAEA AMAMA AMAEA AMAMA

fmean 2.037 0.933 3.481 1.175 4.067 1.662
fmin 0.167 0.019 1.992 0.055 2.567 0.686
fmax 4.204 2.013 6.679 2.498 5.309 2.510
s 0.663 0.680 1.032 0.766 0.683 0.509
t0 6.367 9.828 15.465
LS 107.4 97.6 61.2
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Figure A2.: Minimization of the ZDT3 function. Comparison of the (exact) Pareto front
with the fronts of non–dominated individuals that correspond to the run with highest
hypervolume indicator (IH) values, among the 30 runs computed using AMAEA and
AMAMA at the cost of 2000 (left) and 3000 (right) evaluations. After 3000 evaluations,
the AMAMA front can hardly be distinguished from the exact front.

the ZDT3 function, Zitzler et al. (2002), with N = 30 optimization variables. For this
case, a 6×6 supporting mesh, 20 CPUs and a stopping criterion of 3000 evaluations
were used. As before, 30 AMAEA and AMAMA runs with different RNG seeds were
performed. For both, the use of metamodel was initiated after collecting 500 entries in
the DB, with NIPE=4 trial individuals. Figure A2 presents the fronts of non–dominated
individuals for AMAEA and AMAMA after 2000 and 3000 evaluations. These correspond
to the best run, according to the hypervolume indicator (IH), among the 30 runs with
different RNG seeds. After 2000 evaluations, the front computed by the AMAMA is
significantly better than that of AMAEA and lies, practically, on the exact Pareto front.
After 3000 evaluations, the AMAMA front is enriched with more members and can hardly
be distinguished from the (exact) Pareto front whereas the AMAEA has not yet reached
the exact Pareto front.
These findings are also justified by the hypervolume indicator, which was computed

with an arbitrary reference point, (f1, f2)=(1, 5). The mean value and standard deviation
of IH of the 30 runs are shown in Table A2, along with the t0 value from the t–test between
AMAMA–AMAEA. Once more, it is absolutely clear that the AMAMA performs better
than the AMAEA.
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Table A2.: Minimization of the ZDT3 function. Comparison of the mean value and stan-
dard deviation of the hypervolume indicator IH of the 30 runs along with the t0 value
from the t–test between AMAMA vs. AMAEA.

AMAEA AMAMA Exact Front

IH 4.760 4.790 4.803
s 0.023 0.074 -
t0 2.210
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Cantú-Paz, E., 1998. A survey of parallel genetic algorithms. Calculateurs Paralleles,
Reseaux et Systemes Repartis, 10, 141–171.

Dawkin, R., 1976. The Selfish Gene. Oxford University Press.
Désidéri, J. and Janka, A., 2003. Hierarchical Parametrization for Multilevel Evolutionary

Shape Optimization with Application to Aerodynamics. In: EUROGEN 2003, Evolu-
tionary Methods for Design, Optimisation and Control with Applications to Industrial
Problems, Barcelona (Spain).

Duta, M., Giles, M., and Campobasso, M., 2002. The harmonic adjoint approach to un-
steady turbomachinery design. International Journal for Numerical Methods in Fluids,
40 (3-4), 323–332.

Duvigneau, R., Chaigne, B., and Désidéri, J., Multi-level parameterization for shape op-
timization in aerodynamics and electromagnetics using a particle swarm optimization
algorithm. , 2006. , Research Report RR-6003, INRIA.

Elliot, J. and Peraire, J., 1996. Aerodynamic design using unstructured meshes. In: 27th
Fluid Dynamics Conference AIAA-1996-1941, New Orleans, LA, USA.

Georgopoulou, C. and Giannakoglou, K., 2009. A Multi-Objective Metamodel-Assisted

Page 20 of 40

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 11, 2011 11:10 Engineering Optimization amama

20 REFERENCES

Memetic Algorithm with Strength-based Local Refinement. Engineering Optimization,
41 (10), 909–923.

Giannakoglou, K., Giotis, A., and Karakasis, M., 2001. Low-cost genetic optimization
based on inexact pre-evaluations and the sensitivity analysis of design parameters.
Inverse Problems in Engineering, 9, 389–412.

Giles, M. and Pierce, N., 1997. Adjoint equations in CFD: duality, boundary conditions
and solution behaviour. In: 13th AIAA Computational Fluid Dynamics Conference
AIAA-1997-1850, nowmass Village, CO, USA.

Hart, W., 1994. Adaptive Global Optimization with Local Search. San Diego, USA: PhD
thesis, University of California.

Haykin, S., 1999. Neural networks: A comprehensive foundation. New Jersey, USA: Pren-
tice Hall.

Hilbert, R., et al., 2006. A multi–objective shape optimization of a heat exchanger using
parallel genetic algorithms. Interational Journal of Heat and Mass Transfer, 49, 2567–
2577.

Jameson, A., 1988. Aerodynamic design via control theory. Journal of Scientific Com-
puting, 3, 233–260.

Kampolis, I. and Giannakoglou, K., 2008. A multilevel approach to single- and mul-
tiobjective aerodynamic optimization. Computer Methods in Applied Mechanics and
Engineering, 197 (33-40), 2963–2975.

Kampolis, I. and Giannakoglou, K., 2009. Distributed Evolutionary Algorithms with
Hierarchical Evaluation, Engineering Optimization. Engineering Optimization, 41 (11),
1037–1049.

Kampolis, I. and Giannakoglou, K., 2011. Synergetic use of different evaluation, param-
eterization and search tools within a multilevel optimization platform. Applied Soft
Computing, 11, 645–651.

Karakasis, M. and Giannakoglou, K., 2006. On the use of metamodel-assisted, multi-
objective evolutionary algorithms. Engineering Optimization, 38 (8), 941–957.

Karakasis, M., Koubogiannis, D., and Giannakoglou, K., 2007. Hierarchical distributed
evolutionary algorithms in shape optimization. International Journal for Numerical
Methods in Fluids, 53 (3), 455–469.

Knowles, J. and Corne, D., 2000. M-PAES: A memetic algorithm for multiobjective
optimization. In: 2000 Congress on Evolutionary Computation – CEC ’00, September,
San Diego, CA. NewYor, 325–332.

Krasnogor, N. and Smith, J., 2005. A tutorial for competent memetic algorithms: model,
taxonomy, and design issues. IEEE Transactions on Evolutionary Computation, 9 (5),
474–488.

Liakopoulos, P., Kampolis, I., and Giannakoglou, K., 2008. Grid-enabled, hierarchical
distributed metamodel-assisted evolutionary algorithms for aerodynamic shape opti-
mization. Future Generation Computer Systems, 24 (7), 701–708.

Lim, D., et al., 2007. Efficient Hierarchical Parallel Genetic Algorithms using Grid com-
puting. Future Generation Computer Systems, 23 (4), 658–670.

Luna, F., Nebro, A., and Alba, E., 2006. Observations in using Grid-enabled technologies
for solving multi-objective optimization problems. Parallel Computing, 32 (5–6), 377–
393.

Melab, N., Cahon, S., and Talbi, E., 2006. Grid computing for parallel bioinspired algo-
rithms. Journal of Parallel and Distributed Computing, 66 (8), 1052–1061.

Nowostawski, M. and Poli, R., 1999. Parallel genetic algorithm taxonomy. In: Third Inter-
national Conference on Knowledge-based Intelligent Information Engineering Systems

Page 21 of 40

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

February 11, 2011 11:10 Engineering Optimization amama

REFERENCES 21

KES’99.
Ong, Y. and Keane, A., 2004. Meta-Lamarckian learning in memetic algorithms. IEEE

Transactions on Evolutionary Computation, 8 (2), 99–110.
Ong, Y., et al., 2006. Classification of adaptive memetic algorithms: a comparative study.

IEEE Transactions on Systems, Man, and Cybernetics - Part B, 36 (1), 141–152.
Papadimitriou, D. and Giannakoglou, K., 2007. A continuous adjoint method with ob-

jective function derivatives based on boundary integrals for inviscid and viscous flows.
Computers & Fluids, 36 (2), 325–341.

Papadimitriou, D. and Giannakoglou, K., 2008. Aerodynamic shape optimization using
adjoint and direct approaches. Archives of Computational Methods in Engineering, 15
(4), 447–488.

Papadimitriou, D. and Giannakoglou, K., 2009. The continuous direct-adjoint approach
for second order sensitivities in viscous aerodynamic inverse design problems. Com-
puters & Fluids, 38 (8), 1539–1548.

Pierret, S. and Van den Braembussche, R., 1999. Turbomachinery Blade Design using a
Navier-Stokes Solver and Artificial Neural Network. Journal of Turbomachinery, 121
(2), 326–332.

Pironneau, O., 1974. On optimum design in fluid mechanics. Journal of Fluid Mechanics,
64, 97–110.

Poloni, C., et al., 2000. Hybridization of a multi-objective genetic algorithm, a neural
network and a classical optimizer for a complex design problem in fluid dynamics.
Computer Methods in Applied Mechanics and Engineering, 186 (2-4), 403–420.

Sefrioui, M. and Périaux, J., 2000. A hierarchical genetic algorithm using multiple models
for optimization. In: M. Schoenauer, K. Deb and et al., eds. Proceedings of the 6th
international conference on parallel problem solving from nature (PPSN VI). Lecture
Notes in Computer Science., Vol. 1917 Paris: Springer-Verlag, 879–888.

Spalart, P. and Allmaras, S., 1994. A one–equation turbulence model for aerodynamic
flows. La Recherche Aérospatiale, 1, 5–21.
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