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Abstract

Variations in inter-patient prostate shape, and size
and imaging artifacts in magnetic resonance images
(MRI) hinders automatic accurate prostate segmenta-
tion. In this paper we propose a graph cut based energy
minimization of the posterior probabilities obtained in a
supervised learning schema for automatic 3D segmen-
tation of the prostate in MRI. A probabilistic classifi-
cation of the prostate voxels is achieved with a proba-
bilistic atlas and a random forest based learning frame-
work. The posterior probabilities are combined to ob-
tain the likelihood of a voxel being prostate. Finally, 3D
graph cut based energy minimization in the stochastic
space provides segmentation of the prostate. The pro-
posed method achieves a mean Dice similarity coeffi-
cient (DSC) value of 0.91±0.04 and 95% mean Haus-
dorff distance (HD) of 4.69±2.62 voxels when vali-
dated with 15 prostate volumes of a public dataset in a
leave-one-patient-out validation framework. The model
achieves statistically significant t-test p-value<0.0001
in mean DSC and mean HD values compared to some
of the works in literature.

1. Introduction

Prostate segmentation in MRI facilitates volume es-
timation, multi-modal image registration, surgical plan-
ing and image guided prostate biopsies. Manual seg-
mentation of the prostate in MRI is time consuming and
suffers from inter and intra-observer variabilities. How-
ever, inter-patient prostate shape, size, deformation and
intensity variations along with imaging artifacts chal-
lenge 3D automatic segmentation of the prostate. Atlas
based prostate segmentation have achieved good seg-
mentation accuracies when validated with large number
of MRI datasets [6, 7]. Motivated by these approaches
we propose a probabilistic classification of the prostate
voxels achieved by the fusion of the posterior proba-

bilities determined with a probabilistic atlas and a su-
pervised learning framework of random forest. Finally,
graph cut based energy minimization [1] of the poste-
rior probabilities produces the 3D segmentation of the
prostate. The proposed method is robust to inter-patient
shape, size and intensity variabilities. The key contribu-
tions of this work are: (1) Fusion of the posteriors from
random forest and probabilistic atlas to achieve proba-
bilistic classification of the prostate. (2) Use of graph
cut in the stochastic domain to achieve segmentation of
the prostate.

We have validated our method with 15 prostate
datasets of a public database [8] in a leave-one-patient-
out validation framework. The performance of our
method is compared with some of the works in the lit-
erature [3, 5, 2] that have used the same datasets.The
remaining paper is organized in the following manner.
Section 2 provides a description of the proposed seg-
mentation framework, followed by the results and dis-
cussions in Section 3. Finally, the paper concludes in
Section 4.

2. Proposed Segmentation Framework

The proposed method is developed on three major
components: 2.1) Probabilistic atlas based segmenta-
tion, 2.2) Random forest based probabilistic classifica-
tion of the voxels being prostate, and 2.3) Graph cut
based energy minimization of the combined probabili-
ties. The schema of our proposed method is illustrated
in Fig. 1.

2.1 Probabilistic Atlas

Recently Martin et al. [7] and Dowling et al. [2]
have used demon registration to build atlases that have
achieved promising results for prostate segmentation.
Following a similar approach, we propose the proba-
bilistic atlas-based segmentation of the prostate using
demons registration [9]. Demons registration computes
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Figure 1. Schematic representation of our approach. Posteriors from shape restricted random forest classification and probabilistic atlas
based segmentation are combined (

∑
). Graph cut based energy minimization of the combined probabilities provides the segmentation. The

green contour/volume is created from the ground truth and redcontour/volume is created from obtained segmentation.

the voxel velocities or transformation field between the
moving and reference volumes. The displacement field
is computed on a regular grid with one displacement
vector per voxel. The demons energy is computed from
the difference of voxel intensities between the moving
and reference volumes. The minimization of the en-
ergy gradient provides the corresponding update (U ) of
a given transformation field (S). Edge forces of both
the moving and reference volumes improve the regis-
tration convergence and stability. IfM andF represent
the moving and reference volumes respectively, then the
voxel velocityu at voxelp with m andf as the respec-
tive voxel intensities is given by Eq. (1) and the demons
energyE(u) is given by Eq. (2).

u =
(m− f)∇f

|∇f |2 + α(m− f)2
+

(m− f)∇m

|∇m|2 + α(m− f)2
(1)

E(u) = ‖F −M ◦ (S + U)‖2 +
σ2
i

σ2
x

‖U‖2 . (2)

where∇f and∇m are the respective intensity gradi-
ents andα is a normalization factor that adjusts the
force strength,σ2

i andσ2

x are the constants for inten-
sity and transformation uncertainties respectively. The
process of atlas construction begins with alignment of
N manually segmented training datasets to a common
reference. One amongN training datasets is manually
selected by an expert to reduce bias andN − 1 datasets
are registered to the reference dataset. The registration
is done in two stages, intensity based affine registration

of N−1 datasets to the reference dataset is followed by
the non-rigid demons registration. The mean volume
is computed by averaging all patient volumes aligned
to the reference volume. The probability map is ob-
tained by averaging the deformed patient volume labels.
Given a new patient dataset, the atlas is first registered
to the dataset using affine and demons based registra-
tion. Once registered, the transformation of the atlas
probability map determines the probabilistic segmenta-
tion of the new patient dataset given byPat. Following
[6, 5] we manually select the volume-of-interest encom-
passing the prostate, the bladder and the rectum to re-
duce the computational time.

2.2 Random Forest Based Classification

MRI intensities of the prostate and the background
regions are difficult to differentiate. Also the inter-
patient intensities inside the prostate region may vary
significantly depending on the acquisition parameters
and imaging artifacts. Such intensity variations may af-
fect graph cut based energy minimization framework.
Therefore, to reduce the intensity variations and signif-
icantly differentiate between the prostate and the back-
ground regions we propose to substitute intensities with
posterior probabilities of a voxel being prostate. Our
probabilistic classification problem is addressed in a su-
pervised learning schema of random decision forest [4].



The training phase begins with the normalization of
intensities of the training volumes of interest and with
their rigid alignment to minimize the pose and intensity
variations. The data for training consists of a collec-
tion of 3 × 3 × 3 neighborhood of voxels, centered at
V = (X,F ), with X = (x, y, z) denoting the position
of the voxel associated with a feature vectorF . The
feature vectorF consists of the mean and standard de-
viation of the3× 3× 3 voxel neighborhood. Each tree
t in a decision forest ofT trees receives the full data set
V along with the label and selects a test to splitV into
two subsets to maximize information gain where, a test
is a feature response threshold. The left and the right
child nodes receive their respective subsets ofV and the
process is repeated at each child node to grow the tree.
The growth is terminated if either the information gain
is minimum or the tree has grown to a maximum speci-
fied depth. Each decision tree in the forest is unique as
each tree node selects a random subset of features and
threshold.

During testing, the manually selected volume of in-
terest of the test dataset encompassing the prostate,
the bladder and the rectum with normalized intensi-
ties is rigid aligned to the pre-registered training data.
Each voxel of the test dataset is propagated through all
the trees by successive application of the relevant bi-
nary test to determine the probability of belonging to
classc. When reaching a leaf nodelt in all tree with
t ∈ [1..., T ], posterior probabilities (Pt(c|V )) are gath-
ered in order to compute the final posterior probability
of the voxel defined byP (c|V ) = 1

T

∑T

t=1
Pt(c|V ).

Geremia et al. [4] imposed spatial restriction on the
classified voxels by incorporating spatial information of
the voxels obtained from the atlas. Similarly, to im-
pose probabilistic implicit shape and spatial prior to the
decision forest classification, we obtain a probabilistic
shape and spatial prior modelPsp of the prostate by
averaging the intensity-based affine registration of the
ground truth obtained from the training datasets.Psp is
aligned with the center of the volume obtained from de-
cision forest classification and the shape and spatial pri-
ors are imposed on the random forest classification by
obtaining the likelihood value of a voxel being prostate
asPlk = P (c|V )× Psp.

Probabilistic segmentation of the prostate obtained
using a probabilistic atlas (Pat) is fused with the likeli-
hood valuesPlk to achieve the final probabilistic classi-
fication of the prostate byPfn = log (Pat) + log (Plk).
Log likelihood minimizes the effect of error incorpo-
rated either from the demon registration or from the ran-
dom forest classification.

Figure 2. Sr(S) andTa(T ) terminals are identified auto-
matically from posterior probabilities. Graph cut based energy
minimization in 3D provides the segmentation.

2.3 Graph Cut Based Energy Minimization

Our segmentation problem may be formulated as
Maximum A Posteriori estimation of a Markov random
field and could be solved in a graph cut energy mini-
mization framework [1]. The graphG = 〈V x, ǫ〉 is de-
fined as set of voxelsV x and a set of edgesǫ connect-
ing neighboring voxels where the objective is to com-
pute the best cut that minimizes the sum of the costs
of the edges. Close neighboring voxels have higher
edge costs. Two specially designated terminal nodes
Sr (source) andTa (sink) that represent the prostate
and the background have to be manually selected by the
user. However, we use soft classification of the prostate
to automatically determineSr andTa. Typically, the
neighboring voxels are interconnected by edges in a
regular grid like structure. The objective of graph cut
based energy minimization is to completely separate the
terminalsSr andTa, thereby segmenting the prostate
from the background. In our model, we build the graph
with soft classification of the voxels and use graph cut
over the soft classification to achieve the final 3D seg-
mentation of the prostate. Our model could be formal-
ized as; leta be a voxel andB be the set of all voxels
andxa be 0 or 1 depending ona belonging to the back-
ground or the prostate. LetEa be the individual voxel
matching cost fora; Ea,c vary inversely with the dif-
ference of intensities of voxelsa andc. Then the cost
function is given as,

E =
∑

a∈B

E
a(xa) +

∑

(a,c)∈ǫ

E
a,c(xa, xc) (3)

whereǫ is the set edges of neighboring voxels. The
first term represents the cost information related to data,
while the second term represents a smoothness related
cost. EnergyE is minimized by max-flow/min-cut
based graph cut [1]. Graph cut based energy minimiza-
tion is illustrated in Fig. 2.

3. Experimental Results and Discussions

We have validated the accuracy and robustness of our
approach with the 15 MRI public dataset of MICCAI
prostate challenge [8] in a leave-one-patient-out vali-
dation strategy. During validation, probabilistic atlas
and decision forest are build with 14 training datasets
as discussed in sections 2.1 and 2.2. The number of
trees were fixed to 100, tree depth to 30 and the lower



Figure 3. Subset of segmentation results of 2 datasets. The green contour/volume is created from the ground truth and red contour/volume
is created from obtained segmentation.

Table 1. Prostate segmentation quantitative results
Method DSC HD
Gubern-Merida [5] 0.79 7.11 mm
Dowling [2] 0.73±0.11 -
Gao [3] 0.82±0.05 10.22±4.03
Our Method 0.91±0.04 4.69±2.62

bound of information gain to10−7 in decision forest as
these parameters produced promising results with test
images. The features of random forest were limited to
mean and standard deviation of voxels. During testing,
the probabilistic atlas is registered to the test dataset
and the probabilistic labels are transformed to achieve a
probabilistic segmentation of the prostate. Next a prob-
abilistic classification of the voxels are achieved with
shape restricted decision forest and atlas-based segmen-
tation probabilities as discussed in 2.2. We have used
the popular prostate segmentation evaluation metrics
like Dice similarity coefficient (DSC), and 95% Haus-
dorff distance (HD) to evaluate our method. To have
an overall quantitative estimate of our performance we
have compared our method with the results published
in the MICCAI prostate challenge 2009 [5, 2] and with
the work of Gao et al. [3] in Table 1. Please note
that [2] used a probabilistic atlas for their segmentation
achiving a DSC value of 0.73; however, our stochas-
tic framework which combines the probabilities from
decision forest and probabilistic atlas produces better
results (DSC 0.91). In fact, statistically significant im-
provement in DSC and HD of student P test t-value<

0.0001 has been achieved compared to [2, 3]. Moreover
[3] used shape and local region based statistics of mean
and standard deviation of the voxels to propagate their
levelsets to achieve a deterministic segmentation of the
prostate. We use similar features but employ a stochas-
tic approach and use a MAP-MRF approach to compen-
sate mis-classifications and achieve better results. Qual-
itative results of our method are presented in Fig. 3.

4 Conclusions

A novel schema of graph cut based energy min-
imization in a stochastic domain obtained with atlas
based segmentation and shape constrained decision for-
est with the goal of segmenting the prostate in MRI
has been proposed. Our method is robust to signifi-
cant shape, size and contrast variations in MRI com-
pared to some existing work in the literature. The pro-
posed method has shown promising results however the
algorithm should be validated with more datasets and
optimal feature selection may improve the probabilistic
classification of the random forest.
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