Density estimation of a biomedical variable subject to measurement error using an auxiliary set of replicate observations.

Abstract : Correcting for measurement error when estimating the density of a routinely collected biomedical variable is an important issue when describing reference values for both healthy and pathological states. The present work addresses the problem of estimating the density of a biomedical variable observed with measurement error without any a priori knowledge on the error density. Assuming the availability of a sample of replicate observations, either internal or external, which is generally easily obtained in clinical settings, we propose an estimator based on the non-parametric deconvolution theory with an adaptive procedure for cutoff selection, the replicates being used for an estimation of the error density. We illustrate this approach in two applicative examples: (i) the systolic blood pressure distribution density, using the Framingham Study data set, and (ii) the distribution of the timing of onset of pregnancy within the female cycle, using ultrasound measurements in the first trimester of pregnancy. Copyright © 2012 John Wiley & Sons, Ltd.
Type de document :
Article dans une revue
Statistics in Medicine, Wiley-Blackwell, 2012, epub ahead of print. 〈10.1002/sim.5392〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00710894
Contributeur : Adeline Samson <>
Soumis le : jeudi 21 juin 2012 - 18:28:45
Dernière modification le : jeudi 31 mai 2018 - 09:12:01

Lien texte intégral

Identifiants

Collections

Citation

J. J. Stirnemann, F. Comte, A. Samson. Density estimation of a biomedical variable subject to measurement error using an auxiliary set of replicate observations.. Statistics in Medicine, Wiley-Blackwell, 2012, epub ahead of print. 〈10.1002/sim.5392〉. 〈hal-00710894〉

Partager

Métriques

Consultations de la notice

48