Geodesic Analysis on the Gaussian RKHS hypersphere

Abstract : Using kernels to embed non linear data into high dimensional spaces where linear analysis is possible has become utterly classical. In the case of the Gaussian kernel however, data are distributed on a hypersphere in the corresponding Reproducing Kernel Hilbert Space (RKHS). Inspired by previous works in non-linear tatistics, this article investigates the use of dedicated tools to take into account this particular geometry. Within this geometrical interpretation of the kernel theory, Riemannian distances are preferred over Euclidean distances. It is shown that this amounts to consider a new kernel and its corresponding RKHS. Experiments on real publicly available datasets show the possible benefits of the method on clustering tasks, notably through the definition of a new variant of kernel k-means on the hypersphere. Classification problems are also considered in a classwise setting. In both cases, the results show improvements over standard techniques.
Type de document :
Communication dans un congrès
ECML-PKDD 2012, 2012, United Kingdom. 2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00710683
Contributeur : Thomas Burger <>
Soumis le : jeudi 21 juin 2012 - 14:48:21
Dernière modification le : vendredi 13 janvier 2017 - 14:17:27

Identifiants

  • HAL Id : hal-00710683, version 1

Collections

Citation

Nicolas Courty, Thomas Burger, Pierre-François Marteau. Geodesic Analysis on the Gaussian RKHS hypersphere. ECML-PKDD 2012, 2012, United Kingdom. 2012. <hal-00710683>

Partager

Métriques

Consultations de la notice

360