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Abstract

The potential realization of a gravitational wave (GW) astronomy in
next years is a great challenge for the scientific community. By giving a
significant amount of new information, GWs will be a cornerstone for a
better understanding of the universe and of the gravitational physics.

In this paper the author shows that the GW astronomy will permit to
solve a captivating issue-of gravitation as it will be the definitive test for
the famous “Einstein frame versus Jordan frame” controversy.

In fact, we show that the motion of the test masses, i.e. the beam
splitter and the mirror in the case of an interferometer, which is due to
the scalar component of a GW, is different in the two frames. Thus, if a
consistent GW astronomy will be realized, an eventual detection of signals
of scalar GWs will permit to discriminate among the two frames. In this
way, a direct evidence from observations will solve in an ultimate way
the famous and long history of the “Einstein frame versus Jordan frame”
controversy.

1 _ Inmtroduction

The scientific community hopes in a first direct detection of GWs in next years
[1]. The realization of a GW astronomy, by giving a significant amount of new
information, will be a cornerstone for a better understanding of the universe
and of the gravitational physics. In fact, the discovery of GW emission by the
compact binary system PSR1913+16, composed by two neutron stars [2], has
been, for physicists working in this field, the ultimate thrust allowing to reach



the extremely sophisticated technology needed for investigating in this field of
research.

In a recent research [3], the author showed that the GW astronomy will be
the definitive test for general relativity, or, alternatively, a strong endorsement
for extended theories of gravity. In this paper the analysis is improved by
showing that, in addition, the GW astronomy will permit to solve a captivating
issue of gravitation as it will be the ultimate test for the famous “Einstein frame
versus Jordan frame” controversy.

In fact, the author shows that the motion of test masses, i.e. the beam split-
ter and the mirror in the case of an interferometer, in the field of a scalar GW
is different in the two frames. Then, if a consistent GW astronomy will be real-
ized, an eventual detection of signals of scalar GWs will permit to discriminate
among the two frames.

In this way, a direct evidence from observations will solve in an ultimate
way the famous and long history of the “Einstein frame versus Jordan frame”
controversy.

The controversy on conformal frames started from early investigations [4],
till recent analyses [5, 6], with lots of effort of famous physicists, see [6, 7, 8]
for example. In the generalization of the Jordan-Fierz-Brans-Dicke theory of
gravitation [9, 10, 11], which is known as scalar-tensor gravity [6, 12, 13, 14],
the gravitational interaction is mediated by a scalar field together with the
usual metric tensor. Scalar-tensor gravity is present in various frameworks of
theoretical physics, like dilaton gravity in superstring and supergravity theories
[15], like description of braneworld models' [16], like conformal equivalents to
modified f(R) gravity [17], or in attempts to realize inflation [18, 19, 20] and to
obtain dark energy [21, 22]. Scalar-tensor gravity arises from the conviction of
lots of scientists that every modern theoretical attempt to unify gravity with
the remaining interactions requires the introduction of scalar fields [12]. An
ultimate endorsement for the viability of scalar-tensor gravity could arrive from
detection of GWs, see [3] for details.

The “Einstein frame versus Jordan frame” controversy started because some
authors claimed that scalar-tensor gravity is unreliable in the Jordan frame,
leading to the problem of negative kinetic energies [23, 24, 25]. On the other
hand, the Einstein frame version of scalar-tensor gravity, which is obtained by
the conformal rescaling of the metric [26, 27, 28, 29]

Jab = PYGab (1)
and a nonlinear scalar field redefinition [26, 28]
-~ _1d s _ = 1
dp=3F = ¢=¢o+3Inz, (2)
has a positive definite energy [27]. In this paper Latin indices are used for

4-dimensional quantities, Greek indices for 3-dimensional ones and the author
works with G =1, ¢ = 1 and h = 1 (natural units). k in Egs. (2) is defined like

k=,/ % and such a notation has not to be confused with other notations in



the literature (in various books and papers k represents the spatial curvature of
Universe, see [30] for example). ¢ is the fundamental scalar field of scalar-tensor
gravity [6, 12, 13, 14], w is the Brans-Dicke parameter [11], ¢ is the “conformal
scalar field” [26] and ¢ and @ are constants that represent the “zero values”
of ¢ and .

In general, analyses in the Einstein frame are simpler concerning the field
equations, but the connection with particle physics is more difficult than in the
Jordan frame. Thus, there are authors who use the Einstein frame as a mathe-
matical artifice to solve the field equations and then return in the Jordan frame
to compare with astrophysics observations [17, 22]. Other authors claim that
the two conformal frames are equivalent [28]. Others again are not interested in
the problem [5]. Different positions of various authors have been discussed in
[27] and, at the present time, the debate remains open [5, 6, 17, 22, 28, 29]. The
controversy on conformal frames could appear a purely technical one. Actually,
it is very important as the physical predictions of a classical theory of gravity,
or of a dark energy cosmological scenario, are deeply affected by the choice of
the conformal frame. Thus, the fundamental question is: which is the physical
frame of observations? Using of conformal transformations to perform analy-
ses in the Einstein frame abounds in the literature, with divergence of opinions
between different authors [5, 6, 17, 22, 23, 24, 25,28, 29]. The motion in the
Einstein frame is not geodesic [26], a key point.which strongly endorses devia-
tions from equivalence principle and non-metric gravity theories in the Einstein
frame [6, 26, 31, 32]. Thus, some authors ¢laim that physics must be different
in the two different frames, see [31, 32]-for example. Another important point
concerns doubts on the physical equivalence in respect to the Cauchy problem
(33, 34].

2 A review of some important issues

2.1 Gravitational  waves in scalar-tensor gravity: deriva-
tion in the Jordan frame

In order to better understand the results of this paper it is useful to sketch the
derivation of GWs in scalar-tensor gravity and in the Jordan frame [39)].

The most general action of scalar-tensor theories of gravity in four dimen-
sions.and in the Jordan frame is given by [33, 306]

S= [ deVTGHOR 30" b = V(D) + Linaien): (3)
Choosing
p=1(0) wip) = W) =V(6() (4)



w mn
S = /d4$\/ —g[goR - %g PmPin — W(‘P) + ‘C(matter)]a (5)

which is a generalization of the Jordan-Fierz-Brans-Dicke theory [9, 10, 11].
By varying the action (5) with respect to ¢, and to the scalar field ¢ the
field equations are obtained [33, 36]

Gmn = _%Tmn + waéf) (Psmpim — %gmngabw;a%b)‘f'

(6)
+%(Sﬁ;mn — gmnlp) + ﬁgmnW@)

with associated a Klein - Gordon equation for the scalar field

1

W(—MG‘T oW () + oW () + dW_(@gmn%m%. o

O =
P dg

In the above equations T, is the ordinary stress-energy tensor of the matter
and G is a dimensional, strictly positive, constant. The Newton constant is
replaced by the effective coupling

1
Gepr = s (8)

which is, in general, different from G. General relativity is obtained when
the scalar field coupling is
1
p = const. = —3 9)
To study GWs, the linearized theory in vacuum (T, = 0) with a little
perturbation of the background has to be analysed [30, 36]. The background

is assumed given by the Minkowskian background plus ¢ = ¢y and ¢q is also
assumed to be a minimum for W [36]

1
W~ 504&02 = W' ~ adep. (10)
Putting

Imn = Numn + hmn
(11)
© = o + 0¢p.

and, to first order in h,,, and dy, if one calls mes , Rmn and R the
linearized quantity which correspond to Ry.nns » Rmn and R, the linearized
field equations are obtained [36]

(12)
06 = m20,



where

_ %)

Yo

(13)
m? = 2%?3'

The case in which it is w = const. and W = 0 in Egs. (6) and (7) has been
analysed in [36] with a treatment which generalized the “canonical” linearization
of general relativity [30].

For a sake of completeness, let us complete the linearization process by
following [36].

The linearized field equations become

(14)
Ob =0
Let us put
ﬁmn = hmn - %nmn + nmnq)
- - (15)
h=n""hpn, = —h+49,
with A = ™" h,,,, where the inverse transform is the same
himn = an 4 %nmn + Dimn ®
(16)

h = 0"k = —h + 4®.

By putting the first of Egs. (16) in the first of the field equations (14) we
get

O = O (0%han) = 0n (0 han) + 1mnd” (0" has). (17)
Now, let us consider the gauge transform (Lorenz condition)
an - B;nn = an - 8(m€n) + nmnaa€a
h — h' = h+20%, (18)
- P =0
with the condition e, = ™ hyp,, for the parameter e#. We obtain
aHB;nn =0, (19)

and, omitting the ’, the field equations can be rewritten like

Dhn = 0 (20)



0% = 0; (21)
solutions of Egs. (20) and (21) are plan waves:

B = Amn (K ) exp(ik®z,) + c.c. (22)

o = a(?) exp(ik®x,) + c.c. (23)

Thus, Egs. (20) and (22) are the equation and the solution for the ten-
sor waves exactly like in general relativity [30], while Eqgs. (21) and (23) are
respectively the equation and the solution for the scalar massless mode [36].

The solutions (22) and (23) take the conditions

kkq =0
(24)
™ A = 0,

which arises respectively from the field equations and fromEq. (19).

The first of Egs. (24) shows that perturbations have the speed of light, the
second the transverse effect of the field.

Fixed the Lorenz gauge, another transformation with. (e = 0 can be made;
let us take

Le™ =0
\ (25)
m.o__ h
5‘me ) + q),
which is permitted because O® = 0 = (Oh. We obtain

i.e. Ay is a transverse plane wave too. The gauge transformations [36]

Ue™ =0
(27)
Ome™ =0,
enable the conditions
O R, = 0
_ (28)
h = 2.
Considering a wave propagating in the positive z direction
E™ = (k,0,0k), (29)

the second of Eqgs. (24) implies



AOV = _A31/
Ay = —Aus (30)

Ago = —Aszo + Ass.

Now, let us see the freedom degrees of A,,,. We were started with 10
components (A,,, is a symmetric tensor); 3 components have been lost for the
transverse condition, more, the condition (26) reduces the components to 6. One
can take Agg, A11, Aso, Asy, Asz1, Ass like independent components; another
gauge freedom can be used to put to zero three more components (i.e. only
three of €™ can be chosen, the fourth component depends from the others by
Ome™ =0).

Then, by taking

€m = €m(?) exp(ik®z,) + c.c.

(31)
k™€ =0,
the transform law for A,,, is (see Egs. (18) and/(22))
A, — Al = A — 2ik(mn). (32)
Thus, the six components of interest are
Agg — "Aoo+ 2ikég
A = A
Ay — Ago
33
Ay, — A (33)
A32 — A32 — ikés.

The physical components of A,,, are the gauge-invariants A1, Ase and Aa;.
One can choose €, to put equal to zero the others.
The scalarfield is obtained by Eq. (26):

h=h= hi1 + hog = +2®. (34)

In this way, the total perturbation of a GW propagating in the z— direction
in this gauge is

huo(t+2) = BT (¢ + 2)elh) + X (t+ 2)el) + @(t + 2)els). (35)

The term h™*(t + z)e,(j,) + hX(t + z)e,(ff,) describes the two standard (i.e.
tensor) polarizations of GWs which arises from general relativity in the TT

gauge [30], while the term ®(¢ + z)e,(ﬁ,) is the extension of the TT gauge to the
scalar-tensor case [36]. The correspondent line element results [36]



ds* = —dt* +dz* + (1 +h' + ®)da? + (1 — h* + ®)dy? + 2h™dxdy.  (36)

This is the case of massless GWs in scalar-tensor gravity.

By removing the assumptions w = const. and W = 0 in Eqgs. (6) and (7)
the analysis can be realized for the case of massive GWs.

In that case, again Rynrs and Eqgs. (12) are invariants for gauge transfor-
mations [35]

Rmn — h;nn = hmn — a(men)

(37)
d— P =d;
then
. h
honn = hn — §nmn + Nmn® (38)

can be defined, and, by considering the transform for the parameter e*

Uen, = 8mﬁmna (39)

a gauge similar to the Lorenz one of electromagnetic waves can be chosen in
this case too

O™ hoim = 0. (40)
Thus, the field equations read like

Ohpn = 0 (41)
0% = m?®. (42)

Solutions of Egs. (41).and (42) are plan waves again

hinn = Amn(T) exp(ip®z,) + c.c. (43)
O = a(7)exp(iqiz,) + c.c. (44)
where now
k= (w,7) w=p=|7|
(45)

qa = (Wmassa ?) Wmass — \/ m? +P2

Again, in Eqgs. (41) and (43) the equation and the solution for the tensor
waves exactly like in general relativity [30] have been obtained, while Eqs. (42)
and (44) are respectively the equation and the solution for the scalar mode
which now is massive [35].



The fact that the dispersion law for the modes of the scalar massive field ®
is not linear has to be emphasized. The velocity of every tensor mode hy,, is
the light speed ¢, but the dispersion law (the second of Eq. (45)) for the modes
of ® is that of a massive field which can be discussed like a wave-packet [35].
Also, the group-velocity of a wave-packet of ® centred in 7 is [35]

.
e R (46)

Wmass

which is exactly the velocity of a massive particle with mass m and momen-
tum .
From the second of Egs. (45) and Eq. (46) it is simple to obtain:
02— m2
vg = R8s (47)

Wmass

If one wants a constant speed of the wave-packet, it has to be [35]

m = (1 - U%)wmass- (48)

Again, the analysis can remain in the Lorenz gauge with transformations of
the type Oe, = 0; this gauge gives a condition of transverse effect for the tensor
part of the field: k™ A,,,, = 0, but it does not give the transverse effect for the
total field hy,y,. From Eq. (38) we get

. h
At this point, in the massless case we could put

Ue™ =0
] (50)
Ome™ = -2 + o,

which gives the total transverse effect of the field. But in the massive case
this is impossible. In fact, by applying the D’ Alembertian operator to the
second of Egs. (50) and by using the field equations (41) and (42) one obtains

Oe™ = +m?®, (51)

which is in contrast with the first of Egs. (50). In the same way, it is possible
to show that it does not exist any linear relation between the tensor field Ay,
and-the scalar field ® [35]. Thus, a gauge in which A, is purely spatial cannot
be chosen (i.e. we cannot choose hpo = 0, see eq. (49)). But the traceless
condition to the field h,,, can be enabled [35]

Oe™ =0
(52)



These equations imply

O™ B = 0. (53)

To enable the conditions 8,,h™" and h = 0 transformations like

Oe™ =0
(54)
Ome™ =0

can be used and, taking 7" in the z direction, a gauge in which only Ay,
Ago, and Ay = Agy are different to zero can be chosen. The condition h =.0
gives A1; = —Ags. Now, by putting these equations in Eq. (49) we obtain

B (£, 2) = B (t — 2)elH) + BX(t — 2)el) + ®(t — vaz)ma- (55)

Again, the term h™(t — z)eﬁiﬂ? + h*(t - z)esffrz describes the two standard
(i.e. tensor) polarizations of GWs which arise from general relativity [30], while
the term ®(t — vG2)Nmn is the scalar massive field arising from scalar-tensor
gravity. In this case the associated line element results

ds® = —(14+®)dt? + (1 + ®)dz? + (1 +hT 4+ ®)da?4(l —h ™ + ®)dy? + 2h* dxdy.
(56)

2.2 Quadrupole, dipole and monopole modes

We emphasize that in this Subsection we closely follow the papers [40, 41].

In the framework of GWs, the more important difference between general
relativity and scalar-tensor gravity is the existence, in the latter, of dipole and
monopole radiation [40]. In general relativity, for slowly moving systems, the
leading multipole contribution to gravitational radiation is the quadrupole one,
with the result that the dominant radiation-reaction effects are at order (%)5,
where v is the orbital velocity. The rate, due to quadrupole radiation in general

relativity, at which a binary system loses energy is given by [40]

dE 8 2m4(

(E)quadrupole = —1—577 7“_4 1202 — 117'“2). (57)

7 and m are the reduced mass parameter and total mass, respectively, given
byn:% ,and m =mq +mo .

r, v, and 7 represent the orbital separation, relative orbital velocity, and
radial velocity, respectively.

In scalar-tensor gravity, Eq. (57) is modified by corrections to the coefficients
of O(%), where w is the Brans-Dicke parameter (scalar-tensor gravity also pre-
dicts monopole radiation, but in binary systems it contributes only to these
O(2) corrections) [40]. The important modification in scalar-tensor gravity is
the additional energy loss caused by dipole modes. By analogy with electro-
dynamics, dipole radiation is a (v/c)? effect, potentially much stronger than

10



quadrupole radiation. However, in scalar-tensor gravity, the gravitational “di-
pole moment” is governed by the difference s; — so between the bodies, where
s; is a measure of the self-gravitational binding energy per unit rest mass of
each body [40]. s; represents the “sensitivity” of the total mass of the body
to variations in the background value of the Newton constant, which, in this
theory, is a function of the scalar field [40]:

G is the effective Newtonian constant at the star and the subscript IV denotes
holding baryon number fixed.

Defining S = s1 — s,, to first order in % the energy loss caused by dipole
radiation is given by [40]

dFE 2 ,m? ]
(E)di;ﬂole = _57727,_4(12”2 - 117“2). (59)

In scalar-tensor gravity, the sensitivity of a black hole is‘always spg = 0.5
[40], while the sensitivity of a neutron star varies with the equation of state and
mass. For example, syg ~ 0.12 for a neutron star of mass order 1.4Mg, being
Mg the solar mass [40].

Binary black-hole systems are not at all promising for studying dipole modes
because spy1 —spge = 0, a consequence of the no-hair theorems for black holes
[40]. In fact, black holes radiate away any scalar field, so that a binary black
hole system in scalar-tensor gravity behaves as if general relativity. Similarly,
binary neutron star systems are also'not effective testing grounds for dipole
radiation [40]. This is because neutron star masses tend to cluster around the
Chandrasekhar limit of 1.4Mg, and the sensitivity of neutron stars is not a
strong function of mass for a given equation of state. Thus, in systems like the
binary pulsar, dipole radiation is naturally suppressed by symmetry, and the
bound achievable cannot compete with those from the solar system [40]. Hence
the most promising systems are mixed: BH-NS, BH-WD, or NS-WD.

The emission of monopole radiation from scalar-tensor gravity is very im-
portant in the collapse of quasi-spherical astrophysical objects because in this
case the energy emitted by quadrupole modes can be neglected [30, 41]. The
authors of [41] have shown that, in the formation of a neutron star, monopole
waves interact with the detectors as well as quadrupole ones. In that case, the
field<dependent coupling strength between matter and the scalar field has been
assumed to be a linear function. In the notation of this paper such a coupling

strength is given by £~ = ‘Qfﬁfl in Eq. (2). Then [41]
k™ = a0 + fo(e — vo) (60)
and the amplitude of the scalar polarization results [41]
ag
P ox — 61
= (61)

where d is the distance of the collapsing neutron star expressed in meters.

11



2.3 Conformal invariance of the + and x polarizations

It is also important to reviewing that the quadrupole modes, i.e. + and X, are
conformal invariants [39].
In standard general relativity the GW-equations in the TT gauge are [30]

Ohg =0, (62)

where O = (—g)~1/20,(—g)'/?g* 9, is the usual D’Alembert operator. Clearly,
matter perturbations do not appear in (62) since scalar and tensor perturbations
do not couple with tensor perturbations in Einstein equations. The task is now
to derive the analogous of Egs. (62) considering the action of scalar-tensor
gravity (5). Matter contributions will be discarded as GWs are analysed in the
linearized theory in vacuum. By following [38], a conformal analysis-helps in
this goal. In fact, by considering the conformal transformation (1), we obtain
the conformal equivalent Hilbert-Einstein action

1

A= | day/—g[R+ L(lng, (In).0)], (63)

in the Einstein frame, where L(lny, (Iny).,) is. the conformal scalar field
contribution derived from [38]

- . 1 .
Rap = Rap +2((In )0 (In ) ;6 — gap(In ¢);a(In ‘P)’d - igab(ln @)’d;d) (64)

and
R=¢p2+ (R—60(ng) — 6(Inp).q(ln ©)). (65)

In any case, the L(In ¢, (Ing).q)-term does not affect the GWs-tensor equa-
tions, thus it will not be considered any longer [38].

By starting from the action (63) and deriving the Einstein-like conformal
equations, the GWs equations are

Ohg =0, (66)
expressedin the conformal metric §qp. As scalar perturbation does not couple
to the temsor part of gravitational waves, it is [38]
h = 3°*0g3s = ¢ 29" dgps = hS, (67)
which means that A3 is a conformal invariant.
As a consequence, the plane wave amplitude hf = h(t)eg exp(ikgz®), where
(e

ej is the polarization tensor, are the same in both the Jordan and Einstein
frame. The D’Alembert operator transforms as [38]

=20+ 2(n) d,) (68)

and this means that the background is changing while the tensor wave am-
plitude is fixed.

12



3 Geodesic deviation

The following analysis concerns potential observable effects due by GWs in
order to discriminate the physical frame. For this goal, let us use the geodesic
deviation equation, which governs GWs signals in the gauge of the local observer.
This gauge is the locally inertial coordinate system of a laboratory environment
on Earth, where GWs experiments are performed [30, 35, 36]. The geodesic
deviation equation in the Jordan frame is [30]

D2¢d 5 gdzxt dx?

— = — &, 69
ds2 abc ds ds E ( )

where £% is the separation vector between two test masses [30], i.e.
4 =T — T, (70)

% is the covariant derivative and s the affine parameter alonga geodesic [30].

In the Einstein frame the Riemann tensor rescales as [26]

Rabcd = Rabcd - 26?[1 Vb] VC(ln \/5) +
+2gdegc[a Vo] Ve(ln \/5) -2 Via (ln \/5)55] Ve (ln \/5) + (71)

+2 V[a (ln \/E)gb]cgde Ve (ln \/E) + 2gc[a5bd]gef Ve (ln \/E) \Y4i (ln \/5)

Eq. (71) has to be put into eq.”(69). Using the contraction properties of o7,
the symmetry properties and recalling the normalization condition [26, 30]

dz* dx*
b gs as (72)
a bit of algebra gives
D4 - dxcdab D, .
P i +k£(3 ?) (73)

Thus; an extra term of the geodesic deviation equations, which is not present
in the Jordan frame, see Eq. (69), is present in the Einstein frame, i.e. the term
k2(0%3).

4 = Using gravitational waves to discriminate

The line element (36) for the scalar component of massless scalar GWs reduces
to

ds® = —dt? +dz? + [1 + ®(t — 2)][d2? + dy?], (74)

13



for a wave propagating in the z direction. In the same way the line element
(56) for the scalar component of massive scalar GWs reduces to

ds® = [1 + O(t — vg2)|(—dt? + dz* + da* + dy?). (75)

The cases of massive scalar-tensor gravity and f(R) theories are totally equiva-
lent [3, 35, 36, 37, 38]. This is not surprising as it is well known that there is a
more general conformal equivalence between scalar-tensor gravity and f(R) the-
ories [3, 35, 36, 37, 38]. In fact, f(R) theories can be conformally reformulated
in the Einstein frame by choosing the conformal rescaling in a slight different
way, i.e. e2? = |f/(R)| [17, 38].

In the Jordan frame the motion of test masses, which is due to scalar GWs,
in the gauge of the local observer is well known [35, 36]. GWs manifest them-self
by exerting tidal forces on the test-masses, i.e. the mirror and the beam-splitter
in the case of an interferometer [35, 36]. By putting the beam-splitter in the
origin of the coordinate system, the components of the separation vector are
the coordinates of the mirror. At first order in ® and h™ the total motion of
the mirrors due to GWs in massless scalar-tensor gravity in the Jordan frame
is (scalar mode plus quadrupole modes) [35, 36]

San(t) = %mMoth(t) + %xMofD(t) (76)

and

Syaa (6) = — 3yl Q)+ 5210 (1), (71)

where xp70 and ypso are the initial (unperturbed) coordinates of the mirror.
In the case of massive scalar-tensor gravity and of f(R) theories the total
motion of the mirror due to GWs is (scalar mode plus quadrupole modes) [35, 36]

(5$M(t) = %$M0h+(t) + %J)M()‘I)(t)
5yM(t) = —%yMoh—’_(t) + %yM()fI)(t) (78)

Szm(t) = —dm2zp09(t),
where [35, 306] )
P(t) = (1), (79)
Note: the most general definition is (¢t — vgz) + a(t — vgz) + b, but one
assumes only small variations of the positions of the test masses, thus a = b =0
[35, 36]. Then, in the case of massive GWs a longitudinal component is present
because of the presence of a small mass m [35, 36]. As the interpretation of @

is in terms of a wave-packet, solution of the the Klein - Gordon equation (42),
it is also

Yt —vgz) = —%@(t —VG7). (80)
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Now, let us see what happens in the Einstein frame. Egs. (2) and (1) can be
used to express the linearized rescaled scalar field and the linearized conformal
transformation. At first order in @ it is

~ 14 1
3 L

—0p=-"=_0 1
0p Foo R (81)

gab = (1 + k(i))gab- (82)

When the scalar GW passes, it produces an oscillating (linearized) curvature
tensor [35, 36], plus an addictive component due to the quantity k%(adgb) in
Eq. (73). In the gauge of the local observer all the correction due to Christoffell-
symbols vanish [30]. The gauge of the local observer is a coordinate system that,
at first order in the metric perturbation, moves with the beam splitter-and with
its proper reference frame [30]. At first order, the coordinate time #'is the same
as the proper time in this locally inertial gauge [30]. Hence, putting again the
beam-splitter in the origin of the coordinate system, from Egs.(2), (73) and
(81) the time evolution of the coordinates of the mirror in the presence of the
scalar GWs, is

d2£L'(1)\t/I (92&) LI,ﬁ
dt? Oro0zg M

In the Einstein frame, using Eq. (82), the line element (74) for massless
GWs rescales like

= Ryl +k (83)

ds® = (1 + k®)[—dt? + d2%) + (1 + 2k®)][dz? + dy?). (84)

As it is well known that the linearized Riemann tensor is gauge invariant

[30], the components Roﬁ(‘j‘x@ can be computed directly in the gauge of Eq.
(84). From [30] it is:

- 1
Rambn = E{amabhan + 8naa,hmb - 8aabhmn - 8manhab}- (85)

In the case of eq. (84) one gets (only the non-zero elements will be explicitly
written down)

R(l)lo = R%zo = —kd. (86)

Then, from Eq. (83), the time evolution of the coordinates of the mirror in
the gauge of the local observer is

i‘M = —kj‘i)l‘M
v = —kPynr (87)
éM = —kj‘i)ZM,

i.e., for j = 3 a third equation is present. Thus, a longitudinal oscillation,
which does not exist in the Jordan frame for massless scalar GWs, is present in
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the Einstein frame. By using the perturbation method [30, 35, 36] the solutions

are: _
(5:[,']\/[ (t) = xMok@(t)

Synr (t) = yarok®(t) (88)

&zM(t) = ZMoki)(t)

In this way, the longitudinal oscillation makes the total oscillations of the
mirror of the interferometer perfectly isotropic in the Einstein frame. The third
longitudinal oscillation exists as the theory is non-metric in the Einstein frame.

For a sake of completeness, let us add to Egs. (88) the motion of the mirrors
due to the ordinary quadrupole modes [39]. As we have shown in Subseetion
2.3 that the quadrupole modes are conformal invariants, in the Einstein frame
the motion of the mirrors due to quadrupole modes remains unchanged. Hence,
we get the total motion:

5$M(t) = %:L‘Moth + xMoké)(t)
Syn(t) = —3ymoh™ + yrrok®(t) (89)

(521\/[@) = ZMoki)(t)

~ Now, let us discuss the massive case. Using again eq. (82), at first order in
@, in the Einstein frame Eq. (75) rescales as

ds? = (1 4 2k®)(=dt? + d=* + da® + dy?). (90)

Taking into account Eq. (42) that, under the transformation (81) remains
unaltered, i.e. 0® = m?®, and by considering that, from Eqgs. (80) and (81) it
is

-1
Eq. (85) gives

Rbio = R2yy = —k®, R = kmap. (92)

To ebtain the time evolution of the coordinates of the mirror, one has to
consider the extra term in Eq. (83) too. In this case, as the scalar field depends
from t — vgz, at the end it is

i‘M = k‘il‘M
i = kdyn (93)

Epm = k(v%@ — sz.ZLJ)zM,
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Recalling that m = /(1 — vZ)w [35, 36] and using Egs. (80) and (91) the
perturbation method gives the solutions

(5$M(t) = k(EMoi)(t)
Sy (t) = kyaro®(t) (94)

(521\/[@) = kZMoi)(t),

which are exactly the same of the massless case (88). In fact, even if the
non-metric longitudinal motion is different with respect to the massless case,
in the massive case there is also a metric longitudinal motion. Thus, the sum
of the non-metric longitudinal motion and of the metric longitudinal motion
in the massive case results equal to the total non-metric longitudinal motion
in the massless case. In the massless case the longitudinal motion is totally
non-metric. However, even if the motion of the mirror is the same for massless
and massive scalar GWs in the Einstein frame, in principle, careful analyses
of coincidences between various detectors could permit to.discriminate between
massless and massive cases because in the massless case the speed of the GW
is exactly the speed of light, while in the massive case the speed of the GW is
the group velocity vg, lower than the speed of light.

Again, let us add to Egs. (94) the motion of the mirrors due to the ordinary
quadrupole modes [39]. We obtain the total-motion

dxp(t) = %xMoth + kl‘Mo(i(t)
§yM(t) = —%yMOth + k‘yMoé)(t) (95)

5ZM(t) = kZMoi)(t)

Now, let us explain'why we are claiming that the GW astronomy will be
the definitive test for the “Finstein frame versus Jordan frame” controversy.
In principle, if advanced projects on the detection of GWs will improve their
sensitivity allowing to perform a GW astronomy, one will only have to look which
is the motion of the mirror in respect to the beam splitter of an interferometer
in the locally inertial coordinate system in order to understand which is the
physical frame of observations. If such a motion will be governed by Eqgs. (76)
and(77) for massless scalar waves or by Eqs. (78) for massive scalar waves,
one will conclude that the physical frame of observations is the Jordan frame.
If the motion of the mirror is governed by Egs. (89) for massless scalar GWs
which are equal to Egs. (95) for massive scalar GWs one will conclude that the
physical frame of observations is the Einstein frame.

On the other hand, such signals will be quite weak. Thus, in order for the
analysis to be useful in practice, we have to provide a specific application of
the proposed method [39]. In particular, we have to compare the trajectories
in both of the frames and determine the experimental sensitivity required to
distinguish them. We have also to compare with the sensitivities of ongoing and
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future experiments [39]. To make this, we consider an astrophysical event which
produces GWs and which can, in principle, help to simplify the problem. In
Subsection 2.2 we discussed two potential sources of potential detectable scalar
radiation:

1. mixed binary systems like BH-NS, BH-WD, or NS-WD;
2. the gravitational collapse of quasi-spherical astrophysical objects.

The second source looks propitious because in such a case the energy emitted
by quadrupole modes can be neglected [41] (in the sense that the monopole
modes largely exceed the quadrupole ones. In fact, if the collapse is completely
spherical, the quadrupole modes are totally removed [30]). In that case, only
the motion of the test masses due to the scalar component has to be analysed.
Hence, the motion of the test masses in the Jordan frame is given by

San(t) = %WO@@) (96)
and
Syni(t) = %xMofb(t), (97)

for massless GWs and by
5$M(t) = %xMOCIJ(t)

0ZM (t) = —%mQZj\[()w(t),

for massive GWs, while Eqs. (88) for massless GWs and Eqs. (94) for
massive GWs govern the motion of the test masses in the Einstein frame. Thus,
the problem is simpler. The authors of [41] analysed the interesting case of the
formation of a neutron star through a gravitational collapse. In that case, they
found that a collapse occurring closer than 10 kpc from us (half of our Galaxy)
needs a sensitivity of 3 x 10723 VHz at 800 Hz (which is the characteristic
frequency of such events) to potential detect the strain which is generated by
the scalar component in the arms of LIGO.

At the present time, the sensitivity of LIGO at about 800 Hz is 10722 vHz
while the sensitivity of the Enhanced LIGO Goal is predicted to be 8x10~22 /H z
at 800 Hz [1]. Then, for a potential realization of the test proposed in this pa-
per, we have to hope in Advanced LIGO Baseline High Frequency and/or in
Advanced LIGO Baseline Broadband. In fact, the sensitivity of these two ad-
vanced configuration is predicted to be 6 * 10723 \/Hz at 800 Hz [1]. If such a
sensitivity will be really achieved, it will be possible to distinguish the different
trajectories of the mirror in the two frames.
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For a sake of completeness [39], we recall that in the case of standard general
relativity the scalar mode is not present. In that case, the motion of test masses
is governed by [30]

1

oxp(t) = §$A10h+(t) (99)
and
Syni(t) = —%xMoth(t). (100)

In the case of scalar-tensor gravity, it will be very important to understand
if a longitudinal component will be present. Such a longitudinal component will
be fundamental in order to discriminate between the two frames. If it will be
absent and the motion of the mirror will be governed by the transverse eqs: (96)
and (97) we will conclude that we are in presence of massless scalar GWs and
the physical frame is the Jordan frame. On the other hand, if it will be present
we have two possibility. If it will be perfectly isotropic with respect the two
transverse oscillations, i.e. the motion of the mirror will be governed by Egs.
(88) or Egs. (94), we will conclude that the physical frame is the Einstein frame.
If it will not be perfectly isotropic with respect the two transverse oscillations,
i.e. the motion of the mirror will be governed by Egs.  (98), we will conclude
that we are in presence of massive scalar GWs and the physical frame is the
Jordan frame.

Let us resume the situation by including a‘Table with 5 rows and 3 columns
[39]. In the first column we include the 5 models to be distinuished (general rel-
ativity, massless-Jordan, massive-Jordan, massless-Einstein, massive-Einstein),
in the second column we include the corresponding motion of the mirror and in
the third column the polarizations and the corresponding symmetry properties
of the trajectories [39].

0T (t) = %$M0h+ (t)

oynm(t) = —%$M0h+(t) + %foo@(t)

gene?all transverse motion, only h™ polarization
relativity 1 r
5ya(t) = —aaroh* (1
— I + I
massless- 0 (t) = g2aoh™ () + 3200 ®(1) transverse motion, A polarization and
Jordan ® polarization

massive-Jordan

(51‘1\4(1‘,) = %xM0h+(t) + %xMQ(I)(t)
Syn () = —3xp0h™(t) + 3yaro®(t)

52:]\4(15) = —%mQZM(ﬂ/J(t)

transverse and longitudinal motion, h*
polarization and ® polarization,
no-isotropy between transverse and
longitudinal motion due to the scalar
component

massless-
Einstein

(5%1\4(15) = %(E]woth + k(E]wo(I)(t)
Synm(t) = —3ymoh™ + kyaro®(t)

(5ZM(t) = k‘ZMoi)(t)

transverse and longitudinal motion, h*
polarization and ® polarization, the
oscillations due to the scalar
component are perfectly isotropic
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massive-
Einstein

(5%1\4(15) = %(E]woth + k(E]wo(I)(t)

Sym(t) = —1ynoh™ + kyaro®(t)

transverse and longitudinal motion, h™
polarization and ® polarization, the
oscillations due to the scalar
component are perfectly isotropic

(5ZM(t) = k‘ZMoi)(t)

Clearly, this is a simple analysis which could be improved by the realiza-
tion of a consistent GW astronomy that, by using coincidences between various
detectors and by further improving the sensitivity of the detectors, could, in
principle, enable a better analysis of the signals that we have discussed.

5 Conclusion remarks

Resuming, in this paper we have shown that the GW astronomy will permit
to solve a captivating issue of gravitation, i.e. it will be the definitive test
for the famous “Einstein frame versus Jordan frame” controversy. In fact, the
author has shown that the motion of test masses in the field of a scalar GW is
different in the two frames, thus, if a consistent GW-astronomy will be realized,
an eventual detection of scalar GWs will permit to discriminate among the two
frames.

In this way, direct evidences from observations will solve in an ultimate
way the famous and long history of the “Einstein frame versus Jordan frame”
controversy.
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