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Abstract

In this paper, we introduce a new Random Forest (RF) induction algo-
rithm called Dynamic Random Forest (DRF) which is based on an adaptative
tree induction procedure. The main idea is to guide the tree induction so that
each tree will complement as much as possible the existing trees in the ensem-
ble. This is done here through a resampling of the training data, inspired by
boosting algorithms, and combined with other randomization processes used
in traditional RF methods. The DRF algorithm shows a significant improve-
ment in terms of accuracy compared to the standard static RF induction
algorithm.

Keywords: Random Forests, Ensemble of Classifiers, Random Feature
Selection, Dynamic Induction.

1. Introduction

The Random Forest (RF) algorithms form a family of classification meth-
ods that rely on the combination of several decision trees. The particularity
of such Ensembles of Classifiers (EoC) is that their tree-based components
are grown from a certain amount of randomness. Based on this idea, RF
is defined as a generic principle of randomized ensembles of decision trees.
Although this idea has already been exploited during the 90’s ([1, 2, 3, 4]),
the formal definition and the use of the term “Random Forest“, have been
introduced in 2001 in a founding paper written by Leo Breiman ([5]). The
definition is as following:

Definition 1. A random forest is a classifier consisting of a collection of tree-
structured classifiers {h(x,Θk), k = 1, ..., L} where {Θk} are independent and
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identically distributed random vectors and each tree h(x,Θk) casts a unit vote
for the most popular class at input x.

The reference RF algorithm, called Breiman’s RF in the following, has
been introduced by Breiman in [5]. It uses two randomization principles:
bagging [1] and Random Feature Selection (RFS). This latter principle in-
troduces randomization in the choice of the splitting test designed for each
node of the tree. This choice is usually based on an impurity measure that
is used as a criterion to determine the best feature for the partition of the
current node into several child nodes. RFS randomly selects for each node a
subset of features that will be withdrawn for this choice.

RF have shown to be particularly competitive with state-of-the-art learn-
ing methods, such as boosting which is known to be one of the most efficient
learning principles ([5, 6]). Since their introduction in 2001, RF have been
studied in many ways. For example, some works have proposed to further
randomize the tree growing procedure, in comparison with Breiman’s RF.
One of the most successful methods is the Extra-trees algorithm ([7]) that
relies on the Random Feature Selection technique, but with a random choice
of the cut point associated to the feature selected for the splitting test. An-
other example is the PERT algorithm ([8]) that sets the cut point midway
between two training instances randomly sampled. Other research works
have proposed RF induction techniques based on manipulations of the de-
scription space. The Rotation Forest method ([9]) for example, combines
several randomization techniques to build a sub-problem dataset which is
projected into a new feature space through a Principal Component Analysis
(PCA). Finally, efforts have been also brought on new combination operators,
by weighting for example the tree votes for each new data point according to
an estimation of the ability of each tree to correctly classify similar instances
([10, 11, 12]).

Despite these efforts and even if better performance have sometimes been
reported, all these methods have the first drawback that the number of trees
has to be set a priori, ideally to a very high value in order to obtain reason-
ably good performance. A second drawback is that some trees may decrease
the forest performance as shown in two recent studies ([13, 14]), since trees
are arbitrarily (independently) added to the forest. We believe that RF
would certainly benefit from adopting a slightly different approach for the
forest induction by the way each tree is added to the ensemble. While all RF
algorithms add trees independently from one another, we highlight in this
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paper the interest of a dynamic induction of the forest where trees are grown
by taking into account the sub-forest already built. In that way, only reliable
trees are intended to be grown in the forest. Thus, the main contribution of
this paper is to offer a new dynamic RF induction algorithm, called Dynamic
Random Forest (DRF), that compares favorably to the reference algorithm,
i.e. Breiman’s RF.

The rest of the paper is organized as follows. In section 2 we motivate
the interest of designing a dynamic RF induction algorithm and detail our
choices for implementing a first variant of DRF. Then, section 3 presents an
evaluation of this algorithm and a comparison with Breiman’s RF. In section
4, we discuss general pros and cons of DRF over Breiman’s RF. Finally,
conclusions and suggestions for future work directions are drawn in the last
section.

2. Dynamic Random Forest

As stated in definition 1, a classical RF induction procedure grows trees
independently from one another. Hence, each new tree is arbitrarily added
to the forest. One can therefore wonder if all those trees contribute to the
performance improvement. In [14], we have shown that using classical RF
induction algorithms, some trees make the ensemble performance decrease,
and that a well selected subset of trees can outperform the initial forest.
Figure 1 illustrates this statement by showing the evolution of error rates
obtained with a sequential tree selection process called SFS (Sequential For-
ward Search [15]) applied on an existing 300-trees forest built with Breiman’s
RF. This selection technique starts with an empty set and iteratively adds
a classifier according to a given criterion (e.g. the error rate obtained on a
validation dataset). At each iteration of the SFS process, each classifier in
the pool of candidate classifiers is evaluated and the one that optimizes the
performance of the ensemble is kept. The results presented in [14] (part of
them illustrated on figure 1 for some datasets) show that there always exists
at least one sub-forest that significantly outperforms the initial one, some-
times with ten times less trees. The performance of the RF could therefore
be improved by removing from the ensemble well selected trees. The idea
with DRF is to avoid the induction of trees that could make the forest per-
formance decrease, by forcing the algorithm to grow only trees that would
suit to the ensemble already grown.
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Figure 1: 10-fold cross-validation average error rates (in %) obtained during the SFS
selection process on 6 datasets test (excerpt from experimental results given in [14]). The
blue curves represent the error rates obtained with SFS according to the number of trees
selected in the 300-trees forest the error rate of which is represented by the red dashed
line. The straight green line on the x-axis indicates the range of sub-forests that obtained
a statistically significant performance improvement compared to the 300-trees forest and
according to a McNemar.

We show in this paper that the RF induction could benefit from adopting
a dynamic approach, that is to say by making the tree induction depen-
dent of the ensemble under construction. For that purpose, it is necessary
to guide the tree induction by bringing to the process some ”information”
from the sub-forest already built. To do so, the idea behind the Dynamic
Random Forest (DRF) algorithm is to perform a resampling of the train-
ing data that is halfway between bagging and boosting : proceed first to a
random sampling with replacement of N instances, where N stands for the
initial number of training instances (bagging), and then reweight the data
(some kind of boosting). The reason for this choice is to keep using the two
efficient randomization processes (i.e. bagging and Random Feature Selec-
tion) of Breiman’s RF, and to improve RF accuracy by using the adaptative
resampling principle of boosting.
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Hence, what is performed in DRF is a weighting of each randomly selected
training instance according to the predictions given by all the trees already
added to the forest. Therefore, to determine the contribution of each training
instance for the induction of the next tree, it is necessary to evaluate the
ability of the current forest to predict its class. Thus, one possible measure
can be a ratio of trees in the existing forest that have predicted the true class.
This ratio is defined by:

c(x, y) =
1

| hoob |
×

∑

hi∈hoob

I(hi(x) = y) (1)

Where I(.) is the indicator function; x is an input data point and y its true
class; hi(x) is an equivalent notation for h(x,Θi), which represents the i-th
classifier output; and hoob stands for the set of out-of-bag trees of x, i.e. the
trees for which x is an out-of-bag instance. We recall that the out-of-bag
instances are obtained with the bagging principle as follows: each tree is
grown from a subset of training instances called a bootstrap sample, formed
by random draws (with replacement) from the initial training dataset; the
complementary subset of instances that have not been used for growing the
tree, called out-of-bag instances, can easily be used as estimates of general-
ization capacities of the ensemble ([5]). The objective of computing c(x, y)
by taking into account only the trees for which x belongs to the out-of-bag
subset is to limit the risk of overfitting ([16]).

The lower the value of c(x, y), the more the next tree will have to focus
on the instance x, since it means that it was incorrectly classified by a large
number of trees in the current forest. Consequently, the weighting function
that will attribute a weight to x has to decrease with respect to c(x, y). For
our experiments, we used the following function:

W (c(x, y)) = 1− c(x, y) (2)

We will give in the next section results with this linear function W (c(x, y))
but other functions could be used to obtain the same effect (see [17]).

The DRF process is detailed in Algorithm 1. The same weight (initially
equal to 1

N
) is assigned to all the training instances during the initialisation

step. Thus, the first tree is induced in a traditional way, i.e. by taking into
account each instance identically during the tree induction process. Then,
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after the first tree has been built, weights are modified so that they are
increased for instances wrongly classified by this first tree, and decreased for
well classified instances. The second tree is consequently trained from the
”re-weighted” training instances, selected in the new bootstrap sample. At
the third iteration, these weights are re-calculated thanks to the predictions of
the first two trees: maximum weights are given to instances wrongly classified
by both the first and the second trees, and minimum weights are given to
instances well classified by those two trees. The third tree is trained on the
re-weighted data and so on. Note that the weight of a given input data point
x is modified at each iteration, only if at least one out-of-bag tree is available
for it. In Algorithm 1, this is checked via the OoBTrees function, which is
defined for accessing to the ensemble of out-of-bag trees of a given x.

As shown in Algorithm 1, DRF are built with trees grown using a Random
Tree induction algorithm. Rather than using Breiman’s algorithm in which
the number of randomly selected features, K, is a parameter of the algorithm
that is constant and a priori fixed, we use the Random Tree induction al-
gorithm proposed in [18]. In this induction algorithm, the Random Feature
Selection technique is still used since it appears to be efficient as shown in
[5, 6, 17, 18] but the number of features is randomly selected at each node
according to the mean intrinsic information brought by each feature. Hence,
given a bootstrap sample made up of randomly sampled training instances
from the initial training set, the Random Tree induction procedure is the
following one :

• Measure the information gain value of each feature;

• Compute the ratio p of features that exhibit the lowest information
gains;

• For each internal node of the tree:

– if p is superior to a given threshold then pick a random value of
K according to the uniform distribution between 1 and M , where
M is the number of features.

– else, pick a random value of K according to N (
√
M,M/50).

– randomly select K features.

– choose the splitting rule according to an impurity measure com-
puted on class counts.
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Algorithm 1 Dynamic Random Forest

Require: T the training set (xi, yi)
Require: N the number of training instances in T
Require: M the number of features
Require: L the number of trees in the forest to be built
Require: W (c(x, y)) a weighting function inversely proportional to c(x, y)

(see eq. 1)
Ensure: forest the ensemble of trees that compose the forest

1: for all xi ∈ T do

2: D1(xi)← 1
N

3: end for

4: for l from 1 to L do

5: Tl ← a bootstrap sample, made with randomly sampled (with replace-
ment) training instances from T , according to a uniform distribution

6: Tl ← Tl weighted with Dl

7: tree← RandomTree(Tl)

8: forest← forest
⋃
tree

9: Z ← 0
10: for all xi ∈ T do

11: if OoBTrees(xi) 6= ∅ then
12: Dl+1(xi)← W (c(xi, yi))

13: else

14: Dl+1(xi)← Dl(xi)

15: end if

16: Z ← Z +Dl+1(xi)

17: end for

18: for all xi ∈ T do

19: Dl+1(xi)← Dl+1(xi)

Z

20: end for

21: end for

22: return forest

Note that in the last step of Random Tree induction procedure, the
class counts are weighted by W (c(x, y)). These counts initially consider that
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training instances are equally important and thus are all associated to equal
weights. By modifying these weights, we modify the way each instance will be
taken into account in these class counts. The choice of the splitting test will
consequently be modified as for the whole tree structure and thus the result-
ing model. For further explanations of K setting, please refer to Forest-RK
proposed by the authors in [18].

As one can see in Algorithm 1, DRF procedure is inspired by boosting.
Nevertheless, two differences should be highlighted. The first one is the use
of randomization in the resampling process, i.e. performing bagging before
boosting. More importantly, the second one concerns the way the weights are
adapted: they are not updated according to the last induced tree only, but
are entirely re-evaluated according to the whole forest at each iteration. The
reason is that, unlike to boosting, we do not want the trees to be more and
more specialized in previous prediction errors of the ensemble, but we want
each tree to fit as well as possible the forest under construction. Boosting
algorithms typically multiply the previous weights at each iteration by an
update term that depends on the prediction errors of the last tree ([19]) :
the weights progressively evolve to force the new trees to be more special-
ized in the classification of training instances particularly difficult to predict.
This weighting strategy has the advantage to focus quickly on the wrongly
classified instances, but has the drawback at the same time to lose the in-
fluence of the early trees and to make the ensemble more sensitive to noisy
instances or outliers ([4]). On the contrary the key point of DRF as men-
tioned before is to keep a compromise between compensating previous errors
and reinforcing correct predictions. Therefore, it is important to re-evaluate
the weights according to the whole forest and not only to update them with
the predictions of the last tree. This makes the evolution of the training
sample weights slower and smoother than in boosting, thus rendering DRF
less sensitive to noisy datasets.

All the choices described in this section define one procedure for the RF
induction principle named Dynamic Random Forest. It actually establishes
one example of how RF dynamic induction can be performed. However, as
we will discuss in the conclusion, it is obvious that several other choices might
work to induce accurate RF. Nevertheless, we will show in the following of this
paper that this first algorithm of DRF is accurate and allows to significantly
improve the traditional static RF induction.
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3. Evaluation

To evaluate the DRF algorithm described in the previous section, we have
compared it to the two following static RF induction methods: Breiman’s
reference method and a modified version called Forest-RK [18] that compares
favorably with Breiman’s RF. This section presents our experimental protocol
to do it so, and discusses the results obtained.

3.1. Experimental Protocol

In this evaluation, we have focused on two goals:

1. Evaluate and compare the overall performance of the forests induced
with both dynamic and static induction algorithms;

2. Monitor the error rate evolution to analyze the DRF behavior according
to the number of trees, in comparison with static-induced RF results.

3.1.1. Datasets

For those experiments, 20 datasets have been selected. They are de-
scribed in Table 1. The first 17 datasets in this table have been selected
from the UCI repository ([20]), because they deal with different machine
learning issues in terms of number of classes, number of features and number
of samples. Three additional datasets on different handwritten digit recog-
nition problems have been used: (i) the well-known MNIST database ([21])
with a 85 multiresolution density feature set (1 + 2× 2+ 4× 4+ 8× 8) built
from greyscale mean values as explained in [22]; (ii) Digits and (iii) DigReject
both described in [23], on which a 330-feature set has been extracted, made
from three state-of-the-art descriptors, i.e. a 117-statistical/structural fea-
ture set [24], a 128-feature set extracted from the chaincode (contour-based)
([25]), and the same 85-feature set as for MNIST ([22])

3.1.2. Protocol

Each training subset has been used for building 3 different forests, with
the following algorithms: Breiman’s RF with K =

√
M , Forest-RK and

DRF. For each forest, the test error rates have been monitored each time
a new tree was added to the ensemble. For that purpose, each dataset has
been randomly split in two subsets, with two thirds of the data dedicated to
train the forest, and the other third to test it. This splitting procedure has
been repeated 10 times so that for each dataset, 10 different random training
subsets are at our disposal. We denote these subsets Ti = (Tri

, Tsi
), with
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Datasets # instances # features # classes

Diabetes 768 8 2
Gamma 19020 10 2
Isolet 7797 616 26
Letter 20000 16 26
Madelon 2600 500 2
Mfeat-factors 2000 216 10
Mfeat-fourier 2000 76 10
Mfeat-karhunen 2000 64 10
Mfeat-zernike 2000 47 10
Musk 6597 166 2
OptDigits 5620 64 10
Page-blocks 5473 10 5
Pendigits 10992 16 10
Segment 2310 19 7
Spambase 4610 57 2
Vehicle 946 18 4
Waveform 5000 40 3
Digits 38142 330 10
DigReject 14733 330 2
Mnist 60000 85 10

Table 1: Description of the datasets

i = [1..10] and where Tri
stands for the training subset and Tsi

for the test
subset. For each Tri

, we have grown 3 forests (Breiman’s RF, Forest-RK and
DRF), made of 500 trees. Thus for each dataset, 3 × 10 = 30 forests of 500
trees have been built.

Usually, fixing the number of trees to 100 is considered to be reasonable
for reaching the generalization error convergence with traditional RF algo-
rithms ([5, 26, 14]). In our expeiments, we set this number to 500 since we
could not predict a priori the test error convergence speed according to the
number of trees for this kind of dynamic induction process and could not
even predict if it actually converges. Indeed the proof of the generalization
error convergence given by Breiman in [5] is based on the hypothesis that the
random vectors which define the randomization principle (see definition 1)
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are independent and identically distributed. But for the dynamic induction
process these conditions are no longer verified, and the convergence is not
proved anymore (this aspect is further discussed in section 4). Consequently,
it was interesting to let the RF induction algorithm grow a large number
of trees, in order to observe and compare convergence speed of the different
algorithms tested.

Algorithm 2 sums up the whole experimental protocol. The next subsec-
tion presents and discusses the obtained results.

Algorithm 2 Experimental protocol

Require: L the number of trees in each forest
Require: N the number of training instances
Require: M the number of features
Ensure: ǫBRF [10] a 1D table for storing error rates of RF induced with

Breiman’s algorithm using K =
√
M .

Ensure: ǫRK [10][L] a 2D table for storing error rates of RF induced with
Forest-RK.

Ensure: ǫDRF [10][L] a 2D table for storing error rates of RF induced with
DRF.

1: for i ∈ [1..10] do
2: Randomly draw without replacement 2

3
×N samples from the original

dataset to form the training subset Tri
. The remaining samples form

the testing subset Tsi
. The couple (Tri

, Tsi
) is noted Ti.

3: hBRF [i]← BreimanForest(Tri
,
√
M,L)

4: ǫBRF [i]← error rate of hBRF [i] on Tsi

5: h0
RK

[i]← ∅, h0
DRF

[i]← ∅
6: for l ∈ [1..L] do
7: hl

RK
[i]← hl−1

RK
[i]

⋃
RandomTree(Tri

)
8: ǫRK [i][l]← error rate of hl

RK
[i] on Tsi

9: T l

ri
← weighted Tri

, as in algorithm 1.

10: hl

DRF
[i]← hl−1

DRF
[i]

⋃
RandomTree(T l

ri
)

11: ǫDRF [i][l]← error rate of hl

DRF
[i] on Tsi

12: end for

13: end for
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3.2. Results

Table 2 presents the average test error rates of the final forests made of
500 trees obtained with each of the 3 algorithms used.

Datasets BRF F-RK DRF Datasets BRF F-RK DRF

Diabetes 25.25 24.86 24.59 Mfeat-zer 21.55 21.50 21.05

Digits 2.28 2.21 2.10 MNIST 4.97 4.95 4.61

DigReject 7.27 7.31 6.56 Musk 2.62 2.53 2.41

Gamma 11.99 12.09 11.74 OptDigits 1.65 1.60 1.51

Isolet 5.35 5.38 4.96 Page-blo 2.70 2.71 2.64

Letter 3.94 4.02 3.31 Pendigits 0.91 0.92 0.87

Madelon 32.78 19.22 22.66 Segment 2.33 2.41 2.02

Mfeat-fac 3.37 3.46 2.89 Spambase 4.88 5.03 4.04

Mfeat-fou 17.61 17.06 16.83 Vehicle 25.60 25.50 25.07

Mfeat-kar 3.36 3.39 3.23 Waveform 14.48 14.48 14.35

Table 2: Average error rates (in %) of the RF made of 500 trees, for the 3 RF induction
algorithms. Lowest error rates have been marked in bold for each dataset.

One can observe that the DRF algorithm exhibits lower error rates than
Breiman’s RF and Forest-RK for 19 of the 20 datasets. One can however
mention an atypical result for one of the 20 datasets: madelon. This phe-
nomenom can be explained by the way this database has been built. This
artificial dataset was originally built for a feature selection challenge ([27])
and contains data points grouped in 32 clusters, placed on the vertices of
a five dimensional hypercube and randomly labeled +1 or -1; from these
points, 20 informative features were extracted, while the 480 others are not
discriminative at all. We think that this particularity of the feature space
could explain the atypical results obtained with DRF and more generally with
RF methods, since their performance depend on the intrinsic discriminative
power of features chosen in the splitting test. For that reason, RF sometimes
fail to filter irrelevant features, as explained for example in [7]. Despite this
particular case, those results prove that DRF outperforms Forest-RK and
the classical Breiman algorithm for all but one dataset.

The results presented so far where about the ”final” random forests made
of 500 trees. But one of the main objectives with the design of our dynamic
algorithm is to obtain a performance improvement while trees are added to
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the forest, faster and in a more straightforward way than with static RF
induction. For studying the error variation during the forest construction,
we represent in figure 2 the evolution of the test error rates according to the
number of trees added throughout the RF induction processes, i.e. from the
first tree up to the ensemble of 500 trees for both Forest-RK and DRF.

Figure 2: Evolution of the test error rates (in %) according to the number of trees added
to the forest. Black curves represent the error rates obtained with Forest-RK and blue
curves represent the error rates obtained with DRF

For all the datasets, one can observe that curves have similar trends for
both algorithms, even when the convergence is not obvious, as it is the case for
the smallest datasets vehicle and diabetes. Besides, for all the other datasets,
i.e. those where a convergence seems to be obtained, one can further note
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that the convergence is reached for the same number of trees. Hence, one can
consider that DRF and Forest-RK have the same convergence properties.

Now, one can observe that for all but one dataset (madelon), the DRF
error curve is always under the Forest-RK curve. This can be explained by
a faster decrease of the DRF curves within the first iterations, i.e. from 1 to
about 200 trees.

On can also remark from figure 2 that for most of the datasets, DRF error
rates progressively reach an horizontal asymptote in the same way as Forest-
RK. This has a practical interest since it means that designing a stopping
criterion based on performance will be possible for the DRF induction. This
stopping criterion has not been included yet in the DRF process, but it is
an important mechanism to design. Besides, it is one of our priority future
works. For example, it is possible to use the out-of-bag estimates to foresee
the amount of trees above which no more improvement is obtained with new
trees, as it is done in [28]. In that way, the number of trees in the final forest
could not be fixed a priori as a parameter but could be determined by the
out-of-bag error rate evolution.

4. Discussion

The preceding section has shown that Dynamic Random Forest outper-
forms static algorithms like Breiman’s one and Forest-RK thanks to adapta-
tive resampling. However one can wonder if the main advantages of Random
Forest algorithms are still kept with DRF methods. In particular, it is well
known that RF are fast both in training and decision but also that they do
not overfit. In the following, we discuss these issues in the case of DRF.
Moreover RF are frequently used to evaluate variable importance and prox-
imities for feature selection issues. We show that DRF can be used also for
that purpose.

4.1. Overfitting and computation time

One of the main losses of DRF, in comparison with Breiman’s RF, is
that two of its main mathematical properties are not proved anymore. In-
deed, the proof of the convergence of RF and the computation of the bound
of the generalization error defined in [5] depend on the pre-required condi-
tion that trees are grown independently. In the DRF process, it is not the
case and consequently those properties are not proved anymore. Without
the pre-required condition of independency of trees, it is no more obvious
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to mathematically demonstrate that the generalization error convergence is
always reached while trees are added to the ensemble, as it is proved with
Breiman’s RF. This is an important difference with Breiman’s RF since, as a
consequence, DRF are not proved to avoid overfitting while trees are added
to the ensemble. Moreover, these new trees incorporate knowledge to better
fit some training instances. Even if the criterion is computed on Out-of-Bag
(OoB) error, which is considered to be a good estimate of the generalization
error ([16]), one can wonder if the risk of overfitting is not nevertheless in-
creased. DRF is inspired by boosting by resampling, for which overfitting
has been largely discussed during the past fifteen years ([29, 30]). Formal
definition of boosting implies that it is strongly sensitive to overfitting, since
it is based on making each new component classifier better fit the training
instances. However, one of the main suprising results with boosting is that
it rarely overfits in practice. This is supposed to be due to the averaging
of component classifier outputs ([30, 31]). The only overfitting situations
that have been observed in our experiments occur on the datasets for which
the ratio between the number of samples and the number of features is very
small (diabetes and vehicle). This phenomenon is also frequently observed
with boosting, as shown in [32]. Except these few overfitting situations, we
believe that, as for boosting, DRF should rarely overfit. Moreover, although
it would certainly need further investigations, we think that overfitting could
be prevented with DRF thanks to a stopping criterion based on OoB error
estimates : as OoB error rates are shown to give a reasonably good estima-
tion of generalization error ([16]), it can be used to stop the induction of the
forest, avoiding it to be based on the training error rate evolution.

As far as computation time is concerned, RF is also known to be very fast
in learning and in prediction. It is an important property since it is often used
in applications for which computation times are critical (like for example in
applications on video tracking [33, 34]). In both Breiman’s and DRF forests,
time to predict a given input data point is proportional to the number of trees.
As far as the learning stage is concerned, it is obvious that DRF takes longer
to learn a single tree than in Breiman’s RF, since additional computations
are required for the weighting calculation. However, once the weights are
computed, the tree growing in DRF is the same as a traditional random tree
growing. Thus, the additional time for learning a DRF is proportional to
its number of trees. As mentioned previously, one of the main advantage of
DRF over Breiman’s RF is to grow an accurate RF classifier with less trees.
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Consequently, for reaching comparable accuracies with a RF, DRF will need
to grow fewer trees than Breiman’s RF.

4.2. Variable importance and proximities

RF methods have became popular during the last years because of their
efficiency, but also thanks to the powerful tools they offer ([5, 10, 7]). Most
of those tools are also available in DRF. For example, RF can be used to
compute a variable importance measure, often set up for feature selection
purposes ([35, 36, 37]). This measure is obtained once the whole forest has
been grown, by first measuring the OoB error, and by then permuting values
of the variable of interest in OoB instances and re-measuring the OoB error.
The difference between the two values gives an evaluation of the variable
importance. This process is completely preserved in DRF, since the only
difference with Breiman’s RF is in the learning process. Once built, DRF
still allows to compute variable importance, without the dynamic process
affecting the results.

In the same way, proximities evaluation matrix is a popular tool of Breiman’s
RF that can be used with DRF. It allows to give a N ∗N matrix (N being
the number of training instances) in which the element in line k and column l
gives an evaluation of the similarity between instances k and l. It can also be
used to compute the proximity of a new input point x to each of the training
instances used to grow the forest ([10]). It is obtained via implicit distances
between data points underlined by the tree partitioning. This mechanism is
still enabled with DRF, since, even if the dynamic resampling of DRF affects
the tree growing, the resulting structure is still a correct partitioning of the
input space. Thus, nodes (and particularly leaves) of the trees still underline
proximities between instances belonging to them.

5. Conclusions

In this paper, a new method has been proposed for inducing Random
Forest (RF) classifiers, named Dynamic Random Forest (DRF). It is based
on a sequential procedure that builds an ensemble of random trees by making
each of them dependent on the previous ones. This dynamic aspect of the
DRF algorithm is inspired by the adaptative resampling process of boost-
ing. The DRF algorithm exploits the same idea and combines it with the
randomization processes used in ”classical” RF induction algorithms.
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The evaluation of a first variant of DRF has been led by comparing it to
the Breiman reference algorithm, and a modified version named Forest-RK.
Firstly, it shows that the DRF algorithm outperforms the static RF induction
algorithms in 95% of the cases on the databases used in these experiments.
Secondly, it shows that the DRF process allows to decrease the test error
rate in a faster and more straightforward way than in static algorithms.

This later statement is supposed to be due to the adaptative resampling
which makes the tree induction take into account the joint objectives of
preserving the prediction confidence for well classified instances and of com-
pensating prediction errors made by existing trees. The guidance method
which has been chosen for that purpose has been inspired by boosting and
seems quite natural to be used for this task. Nevertheless, one can imagine
several other processes to have a tree induction be guided by the chosen cri-
terion. For example, one can imagine applying the global idea of boosting
to the features instead of or in complement to the training instances, in or-
der to bias the choice of the splitting test. Our future works will concern
the implementation of such a feature boosting-like process and a stopping
criterion.
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[29] R. Meir, G. Rätsch, An introduction to boosting and leveraging, Ad-
vanced lectures on machine learning (2003) 118–183.

[30] D. Mease, A. Wyner, Evidence contrary to the statistical view of boost-
ing.

[31] L. Breiman, Arcing classifiers, The Annals of Statistics 26 (3) (1998)
801–849.

[32] L. Wolf, I. Martin, Robust boosting for learning from few examples, in:
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR, 2005, pp. 359–364.

[33] A. Wang, G. Wan, Z. Cheng, S. Li, An incremental extremely random
forest classifier for online learning and tracking (2009) 1433–1436.

[34] J. Gall, A. Yao, N. Razavi, L. V. Gool, V. Lempitsky, Hough forests for
object detection, tracking, and action recognition, IEEE Transactions
on Pattern Analysis and Machine Intelligence 33 (11) (2011) 2188–2202.

[35] C. Strobl, A. L. Boulesteix, A. Zeileis, T. Hothorn, Bias in random for-
est variable importance measures: Illustrations, sources and a solution,
BMC Bioinformatics 8 (25) (2007) .

[36] A. Verikas, A. Gelzinis, M. Bacauskiene, Mining data with random
forests: A survey and results of new tests, Pattern Recognition 44 (2)
(2011) 330–349.

[37] K. K. Nicodemus, On the stability and ranking of predictors from ran-
dom forest variable importance measures, Briefings in Bioinformatics
12 (4) (2011) 369–373.

20


