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Abstract

This paper addresses the problem of self-synchronizing dynamical systems in a
so-called master-slave configuration. The study is motivated by potential cryp-
tographic applications. It is shown that the notion of flatness is central for
guaranteeing a finite-time self-synchronization and that the concept of trans-
mission zero plays also an important role. Next, the finite-time synchronization
is relaxed to give rise to a so-called statistical self-synchronization, a mode of
operation which makes sense in classical cryptography which operates over finite
fields. The fact that switched linear systems are of great interest in this context
is motivated.

Keywords: switched systems; synchronization; communication; flatness;
invertibility

1. Introduction

Synchronization of dynamical systems is an important purpose in many fields
like biology, mechanics, communications. Synchronization means coordinated
behavior of different interconnected entities involved in an overall system. Many
different definitions and related configurations, in terms of coupling, can be in-
vestigated. An exhaustive and interesting overview can be found in [2]. A special
kind of synchronization is the self-synchronization. By self-synchronization, it is
meant a coordinated behaviour which is achieved without any external control.

The configuration under consideration in this paper is a master-slave con-
figuration with unidirectional coupling. It is borrowed from the field of com-
munications and more specifically secure transmissions. In this context, cryp-
tography plays a central role. It is the discipline which is mainly intended
to protect information and to guarantee confidential exchanges through public
channels. Since the 90’s, many “scrambling” methods resorting to synchronized
chaotic dynamical systems have been proposed. In the works [4, 10, 9, 1], it is
highlighted the connection between cryptography and the use of synchronized
dynamical systems in a master-slave configuration exhibiting complex dynam-
ics. The exhogenous input of the master dynamical system is the information to
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be encrypted. The master plays the role of the cipher. The slave is a dynamical
system which plays the role of the decipher. The coupling is achieved through
the output of the cipher which acts as the cryptogram. In all the “scrambling”
methods, synchronization between the master and the slave is guaranteed with-
out any external control. In other words, self-synchronization is achieved by
means of the output coupling. That corresponds to some classical communi-
cation setups for which insertion of synchronization flags in the transmitted
packets is forbidden for throughput purposes.

As it turns out, most of the “scrambling” methods resort to observer-based
approaches for ensuring the synchronization and in general, asymptotical syn-
chronization is achieved. It is clear that the asymptotical convergence may
appear when operating over the field of real numbers as it is the case for chaotic
systems. On the other hand, it makes no longer sense when operating over finite
fields as it is precisely the case in classical cryptography. In [10], it has been
shown that a finite-time synchronization can be achieved whenever the dynami-
cal system playing the role of the cipher is flat. In this case, the communication
scheme is structurally equivalent to a so-called classical self-synchronizing stream
cipher. As a result, resorting to flat dynamical systems not only makes sense
from a cryptographic point of view but would provide a new approach for the
design of self-synchronizing stream ciphers. However, this study was reduced to
analysis.

The aim of the present work is to provide a constructive approach for the
design of dynamical systems having the self-synchronization property. Discrete-
time switched linear systems are specifically addressed because they correspond
to the so-called Maiorana McFarland construction which has proved to produce
functions that have many interesting cryptographic properties (see [3]). Then,
the finite-time convergence will be relaxed to give rise to the so-called statisti-
cal self-synchronizing stream ciphers. Such ciphers still make sense in classical
cryptography but has only been touched on so far. Hence, the constructions
proposed in this paper can be considered as a first step towards a complete
framework for designing new classes of self-synchronizing stream ciphers. Let
us point out that we mainly focus on the structural considerations of the ciphers
while disregarding the security aspects which would be here out of the scope
and are discussed in companion papers.

The outline of this paper is the following. In Section 2, strict necessary back-
ground on cryptography is provided. The role of self-synchronization in this
context is emphasized and a formal definition of finite-time self-synchronization
is given. In Section 3, the design of admissible master-slave configurations, de-
scribed by piecewise linear systems, achieving finite-time self-synchronization is
detailed. A constructive approach for guaranteeing the self-synchronization is
suggested. It is mainly based on the notion of nilpotent semigroups. A connec-
tion between the issue of guaranteeing self-synchronization and the concept of
flatness is brought out. Further considerations for the design are developed in
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Section 4 where it is shown that the concept of transmission zero of a dynam-
ical system plays an important role as well. Section 5 extends finite-time self-
synchronization to statistical self-synchronization by releasing some constraints.
Finally, Section 6 is devoted to illustrative examples.

Notation: 1n stands for the identity matrix of dimension n, 0 stands for the
zero matrix of appropriate dimension regarding the situation. We denote by
{z}k2

k1
the sequence {zk1

, . . . , zk2
} when the initial and final times k1 and k2 are

defined, otherwise the sequence is merely denoted by {z}.

2. Cryptography and synchronization

2.1. Background on cryptography

e(ke, u) d(kd, y)
y

u

key source

transmitter

ke

û

key source

receiver

kd

eavesdropper

Figure 1: General encryption mechanism

A general encryption mechanism, also called cryptosystem or cipher, is de-
picted in Figure 1. We are given an alphabet A that is, a finite set of elements
named symbols. On the transmitter part, a plaintext (also called information or
message) {u} ∈ U (U is called the message space) consisting of a string of sym-
bols uk ∈ A is encrypted according to an encryption function e which depends
on the key ke ∈ K (K is called the key space). The resulting ciphertext {y} ∈ C
(C is called the ciphertext space), a string of symbols yk ∈ B, B being a set usu-
ally identical to A, is conveyed through a public channel to the receiver. At the
receiver side, the ciphertext yk is decrypted according to a decryption function
d which depends on the key kd ∈ K. For a prescribed ke, the function e must
be invertible. Cryptography distinguishes asymmetric and symmetric ciphers.
Asymmetric cryptography is largely based upon computationally very demand-
ing mathematical problems, for instance, integer factorization into primes. It is
not discussed in this paper.

In symmetric encryption, both keys are identical that is, kd = ke. That
explains the terminology “symmetric”. This kind of encryption obeys a master-
slave configuration. The transmitter, that is the master, is called in this context
the cipher. It delivers a complex sequence (theoretically indistinguishable from
a uniformly random one) used to conceal information. The information to be
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kept secret is, in some sense, “mixed” with the complex sequence so that the
resulting sequence (called the cryptogram) conveyed to the receiver, cannot be
understood by any unauthorized party. For proper information recovery, the
receiver, that is the slave, called in this context the decipher, must deliver the
same complex sequence synchronized with the cipher.

For stream ciphers depicted in Figure 2, the keys ke and kd are replaced by
time-varying sequences called running keys or key-streams. They are denoted
by {x} (with samples xk) at the transmitter part and by {x̂} (with samples
x̂k) at the receiver part. As a result, stream ciphers require key-stream gen-
erators at both ends. The key-streams {x} and {x̂} must be synchronized to
guarantee the equality xk = x̂k and thereby to match the symmetry principle.
The secret keys ke and kd are some suitable selected parameters of the respec-
tive key-stream generators, the selection being based on security considerations.
As mentioned in the introduction, some applications require that the synchro-

e(xk, uk) d(x̂k, yk)
yk

uk

key-stream
generator(ke)

transmitter

xk

ûk

key-stream
generator(kd)

receiver

x̂k

eavesdropper

Figure 2: Stream cipher

nization is guaranteed without any external control that is, self-synchronization
must be achieved. In such a case, the stream ciphers must have a special archi-
tecture and they are called Self-Synchronizing Stream-Ciphers, SSSC for short.
An overview about this class of ciphers can be found in [6, 9].

2.2. Self-synchronization and ciphering

Self-Synchronizing Stream Ciphers admit at the transmitter and receiver
ends the respective equations:

{
xk = gke(yk−K , . . . , yk−1)
yk = e(xk, uk)

(1)

{
x̂k = gkd(yk−K , . . . , yk−1)
ûk = d(x̂k, yk)

(2)

where gke and gkd are the functions that generate the key-streams {x} and {x̂}.
Both functions depend on the last K past values of yk.
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The ciphertext yk is worked out through an encryption function e which
must be invertible for any prescribed xk. The decryption is performed through
a function d depending on the ciphertext yk and on the running key x̂k of the
receiver. Such a function must obey the rule:

ûk = d(x̂k, yk) = uk if x̂k = xk (3)

According to (3), the synchronization of the key-streams {x} and {x̂} generated
respectively at the transmitter and receiver sides is a condition for proper de-
cryption. Since the function gke is identical at the transmitter and receiver sides
and share the same arguments, namely the past ciphertexts yk−i (i = 1, . . . ,K),
it is clear that the generators synchronize automatically after a finite transient
time of length K. This kind of self-synchronization is called finite-time self-
synchronization. A more formal definition will be given a little bit later.

Actually, the model (1)–(2) of an SSSC is a conceptual model, called canon-
ical representation, that corresponds to different architectures. In particular, it
admits an equivalent recursive form involving a K–dimensional internal state
zk = (yk−K , . . . , yk−1). Its i

th coordinate is denoted by (zk)i. The equations of
the recursive form read

{
(zk+1)i = (zk)i−1 if i > 0, yk if i = 0
yk = e(gke(zk), uk)

(4)

{
(ẑk+1)i = (ẑk)i−1 if i > 0, yk if i = 0
ûk = d(gkd(ẑk), yk)

(5)

The state updating transformation of the canonical recursive form (4)–(5) is
a mere shift fed with the previous ciphertexts.

It turns out that resorting to dynamical systems instead of implementing
directly the canonical form (1)–(2) or its equivalent recursive form (4)–(5) would
broaden the possibilities of design of stream ciphers. More formally, we should
propose a setup with two parts as shown in Figure 3. The first part (playing
the role of the cipher) consists of a dynamical system C, with input uk (playing
the role of the plaintext), output yk (playing the role of the cipher) and state
vector xk (playing the role of the key-stream).

C

{
xk+1 = f(xk, uk)
yk = h(xk, uk)

(6)

The output yk ensures a unidirectional coupling with the second part, the dy-
namical system D (playing the role of the decipher) with state vector x̂k. The
quantity yk acts as an input for D.

D

{
x̂k+1 = f̂(x̂k, yk)

ûk = ĥ(x̂k, yk)
(7)
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C D

uk yk ûk

Figure 3: Dynamical system-based cryptosystems

The symbol ûk is the output of D. In a cryptographic context this is the
recovered information, it must be equal to uk whenever xk = x̂k. The recursive
form (4)–(5) is actually a special case of the set-up (6)–(7). However, not all the
dynamical systems can be candidate. They must have the self-synchronization
property which obeys the following definition:

Definition 1 (Finite-time self-synchronization). The unidirectional coupled sys-
tem C–D is finite-time self-synchronizing if, for all admissible input sequences,

∃K ∈ N, ∀x0, x̂0, ∀k ≥ K, xk = x̂k (8)

More generally, a delay r ∈ N can be allowed. If so, (8) turns into

∃K ∈ N, ∀x0, x̂0, ∀k ≥ K, xk = x̂k+r (9)

Finally, the issue to be investigated is the following. How to design a master-
slave setup C–D so that

• self-synchronization (8) (possibly (9)) can be guaranteed?

• proper input recovery ûk = uk is ensured whenever self-synchronization is
achieved?

It is the purpose of the next sections. We concentrate on the special class of
switched linear systems. Indeed, when symmetric cryptography is sought, the
functions to be considered are often the Boolean ones, that is, for some positive
integers n andm the functions f : Fn

2 −→ F
m
2 where F2 denotes the two-element

field. And yet, it turns out that switched linear systems correspond to the Maio-
rana McFarland construction which has proved to provide functions that have
many interesting cryptographic properties like the highest nonlinearity, high
correlation immunity and good propagation characteristics [3]. Nevertheless, in
digital transmissions, it can be interesting to consider other finite-fields than
F2 in general, we denote a finite field by F. The cardinality is no longer exclu-
sively 2 but is pq with p a prime and q a positive integer. When q = 1, all the
operations, namely, addition, subtraction, multiplication and inversion are still
defined like in the field of real numbers except that the results are computed
modulo p.

3. Finite-time self-synchronization and switched systems

The equations of the setup read at the transmitter part

C

{
xk+1 = Aσ(k)xk +Bσ(k)uk

yk = Cσ(k)xk +Dσ(k)uk
(10)
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and at the receiver part

D

{
x̂k+1 = A′

σ(k)x̂k +B′

σ(k)yk
ûk = C ′

σ(k)x̂k +D′

σ(k)yk
(11)

with uk, ûk ∈ F, yk ∈ F and xk, x̂k ∈ F
n.

The switching function σ is defined as

σ : k ∈ N 7→ j = σ(k) ∈ {1, . . . , J} = J

At a given time k, the index j corresponds to the mode of the system given
by the switching function σ. The number of modes is denoted by J . All the
matrices, namely Aσ(k) ∈ F

n×n, Bσ(k) ∈ F
n×1, Cσ(k) ∈ F

1×n and Dσ(k) ∈ F

belong to the respective finite sets {Aj , j ∈ J }, {Bj , j ∈ J }, {Cj , j ∈ J }
and {Dj , j ∈ J }. The switching function must depend on the output yk. The
motivation of such a dependence lies in that the switching rule must also be
self-synchronizing. Thus, it must depend on shared variables and so on the
output yk or a finite sequence of delayed outputs. It is worth pointing out that
the writing σ(k) is thereby somehow abusive. We denote by {v} the sequence
of modes {v} = {σ(k), σ(k+1), . . .} and the ith element is denoted by vi. If the
sequence {v} has a finite length K, it is an element of the set denoted by JK .
In the following, we derive conditions for guaranteeing self-synchronization of the
master-slave setup (10)–(11) and propose constructive approaches for achieving
finite-time self-synchronization.

3.1. General conditions

Theorem 1. The setup (10)–(11) is finite-time self-synchronizing whenever the
three following conditions are fulfilled:

• ∀j ∈ J , D′

j 6= 0 (12)

• ∃K ∈ N, ∀x0, x̂0, ∀{v} ∈ JK ,

K−1∏

i=0

A′

vi
= 0 (13)

• Given the pairs {A′

j , D
′

j} fulfilling (12) and (13) and arbitrary pairs
{B′

j , C
′

j} of D, the system C reads



xk+1 = (A′

σ(k) −B′

σ(k)(D
′

σ(k))
−1C ′

σ(k))xk

+B′

σ(k)(D
′

σ(k))
−1uk

yk = −(D′

σ(k))
−1C ′

σ(k)xk + (D′

σ(k))
−1uk

(14)

Proof. The input uk can be derived from the output equation of (14) and reads

uk = D′

σ(k)yk + C ′

σ(k)xk (15)
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Thus, from (11) and (15), one gets

ûk − uk = C ′

σ(k)x̂k +D′

σ(k)yk −D′

σ(k)yk − C ′

σ(k)xk

= C ′

σ(k)(x̂k − xk)

Let the reconstruction error be ǫk = x̂k − xk. Then, from (11), (14) and (15),

ǫk+1 = A′

σ(k)x̂k +B′

σ(k)yk
−(A′

σ(k) −B′

σ(k)(D
′

σ(k))
−1C ′

σ(k))xk

−B′

σ(k)(D
′

σ(k))
−1uk

= A′

σ(k)ǫk −B′

σ(k)(yk − (D′

σ(k))
−1uk)

−B′

σ(k)(D
′

σ(k))
−1uk +B′

σ(k)yk
= A′

σ(k)ǫk

(16)

After iterating (16) K times and taking into account (13), one gets ǫk = 0 or
equivalently xk = x̂k for any k ≥ K. Hence, according to Definition 1, the
set-up (10)–(11) is finite-time self-synchronizing. That completes the proof.

Remark 1. Condition (13) means that regardless of the order of multiplication
of the matrices A′

j, and so for any mode sequences, the product is zero after a
finite number K of iterations. K is the delay of synchronization.

Remark 2. The condition D′

j 6= 0 for any j ∈ J means that the relative degree
of the systems (11) is zero. Such an assumption is mandatory so that (11)
makes sense in the context of cryptography. Indeed, the deciphering must be a
function of the state vector and the cryptogram (here the output of (10))

Remark 3. The system (10) with the state space realization (14) is a right
inverse for the system (11). Indeed, for any identical initial conditions x0 = x̂0

and for any identical mode sequence {v}, the system (14) drives (11) such that
∀k ≥ 0, ûk = uk.

The purpose of the next paragraph is to provide a constructive solution for
the selection of appropriate matrices A′

j which must fulfill (13) in Theorem 1.
It is based on the notion of nilpotent semigroups.

3.2. Nilpotent semigroups approach for finite-time self-synchronization

Let us first recall two definitions:

Definition 2 (Semigroup). A semigroup S is a set together with an associative
internal law. It is said to be finite if S has a finite number of elements.

Definition 3 (Nilpotent semigroup). A semigroup S is said to be nilpotent if
any product of a finite number t ∈ N

∗ of its elements (possibly the same ele-
ment) is always 0. The smallest integer t is called the class of nilpotency of S.
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Proposition 1. In order for (13) to be fulfilled, the set of dynamical matrices
{A′

j , j ∈ J } must generate a nilpotent semigroup. The delay of synchronization
K equals the class of nilpotency of this semigroup.

A theorem, useful for the construction of semigroups with a given class of
nilpotency is stated in the book [12] (Theorem 2.1.7) and recalled below.

Theorem 2 (Levitsky’s theorem). Any semigroup of nilpotent matrices can be
triangularized.

In other words, all the matrices of a same nilpotent semigroup can be rewrit-
ten as upper triangular matrices up to a common linear transform (common
basis). Since they are nilpotent their diagonal is zero.

Remark 4. The product of t nilpotent matrices which commute pairwise is 0
but the product of t nilpotent matrices is not, in general, nilpotent. Indeed, we

observe that

(
0 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 0

)
.

Theorem 2 provides a generalization of this special case, should each matrix be
nilpotent is only a necessary condition.

Hence, based on Levitsky’s theorem, the construction of the family {A′

j , j ∈
J } which fulfills (13) follows three successive steps

Constructive Approach 1.

• choose an invertible matrix T ∈ F
n×n

• choose a set of J upper triangular matrices Ā′

j with zero on the diagonal

• for all j ∈ J , compute A′

j = T−1Ā′

jT

The matrix T may clearly be the identity matrix.

Remark 5. Because of Levitzky’s theorem, the consideration of a semigroup of
n–dimensional matrices is equivalent to the consideration of the corresponding
set of upper triangular matrices. And yet, for triangular matrices, it is clear that
the class of nilpotency is at most n. As a result, the delay of synchronization K
is upper bounded by n.

3.3. Connection between flat systems and the self-synchronizing canonical form

Flatness is an important concept in control theory. It was introduced by
Fliess in [7] and a deep study can be found in the book [14]. In this section, we
show that the constructive approach proposed for designing a finite-time self-
synchronizing master-slave system amounts to designing a flat system C with
flat output yk and that the resulting SSSC can be written in the canonical form
(1)–(2).
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Definition 4 (Flat dynamical system [17]). A system with input uk and state
vector xk is said to be flat if there is a set of independent variables yk, referred to
as flat output, such that all the system variables can be expressed as a function
of the flat output and a finite number of its backward and/or forward iterates.
In particular, there exist two functions F and G such that

{
xk = F(yk+k1

, . . . , yk+k2
)

uk = G(yk+k′

1
, . . . , yk+k′

2
)

(17)

where k1, k2, k
′

1, k
′

2 ∈ Z.

Proposition 2. The system C resulting from the conditions (12)-(13)-(14) is
flat with flat output yk.

Proof. The state of the switched system (11) can be written, at time k +K

x̂k+K =
∏K−1

i=0 A′

σ(k+K−1−i)x̂k

+
∑K−1

i=0

[∏K−1
j=i+1 A

′

σ(k+K−j)

]
B′

σ(k+i)yk+i

Therefore, if (13) holds, any state at time k ≥ 0 reads:

x̂k+K =

K−1∑

i=0




K−1∏

j=i+1

A′

σ(k+K−j)


B′

σ(k+i)yk+i (18)

And yet, according to the proof of Theorem 1, ǫk = 0 or equivalently xk = x̂k

for any k ≥ K. Hence, after a shift of K, one obtains

x̂k = xk =

K−1∑

i=0




K−1∏

j=i+1

A′

σ(k−j)


B′

σ(k−K+i)yk−K+i (19)

which gives the function F .
On the other hand, the input uk reads like (15). Substituting the expression (19)
of xk into (15) gives the function G. That completes the proof.

Hence, under the flatness condition, the systems (10)–(11) can be equiva-
lently rewritten into the canonical form (1)–(2) and read

{
xk =

∑K−1
i=0

[∏K−1
j=i+1 A

′

σ(k−j)

]
B′

σ(k−K+i)yk−K+i

yk = Cσ(k)xk +Dσ(k)uk

(20)

{
x̂k =

∑K−1
i=0

[∏K−1
j=i+1 A

′

σ(k−j)

]
B′

σ(k−K+i)yk−K+i

ûk = C ′

σ(k)x̂k +D′

σ(k)yk
(21)

It is worth pointing out that, from a computational point of view, the recursive
form (10)–(11) that is, the use of dynamical systems, is more relevant than
(20)–(21).
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4. Transmission zeros and surjectivity

For cryptographic purposes (basically a consideration regarding the entropy
of sequences), it is relevant that the maps xk 7→ Ajxk, j ∈ J are surjective. In
other words, the following rank condition must be guaranteed:

∀j ∈ J , rank(Aj) = n (22)

The problem lies in that, according to Theorem 1, the matrices (Aj , Bj , Cj , Dj)
of the system C are not designed directly but are derived from (A′

j , B
′

j , C
′

j , D
′

j)
of D. Hence, we must find out a condition on the matrices (A′

j , B
′

j , C
′

j , D
′

j)
so that (22) is ensured. It turns out that the notion of transmission zeros is
relevant to this end.

A definition of transmission zeros can be found for example in [13]. It is
recalled below and particularized for a SISO system.

Definition 5. Let us consider a SISO linear system with state space realization
(A,B,C,D). The transmission zeros are the complex numbers {si} which fulfill

rank

[
A− si1n B

C D

]
< n+ 1 (23)

where it is recalled that 1n stands for the identity matrix of dimension n.
The matrix involved in (23) is often called the Rosenbrock matrix.

Before proceeding further, let us introduce a few additional notations. Con-
sider the invertible matrix T and the corresponding matrices A′

j = T−1Ā′

jT

derived from Ā′

j for j ∈ J as explained in Section 3.2 devoted to the Construc-
tive Approach 1.

Let us write the upper triangular matrix Ā′

j as

Ā′

j =




0 a1j
0 a2j A∗

j

...
. . .

0 0 an−1
j

· · · 0




(24)

where A∗

j denotes the coefficients above the n − 1 diagonal entries amj (m =
1, . . . , n− 1) located above the zero diagonal. Let have

TB′

j = [b1j · · · b
n
j ]

T (25)

bmj stands for the mth component of the column vector TB′

j .

C ′

jT
−1 = [c1j · · · c

n
j ] (26)
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cmj stands for the mth component of the row vector C ′

jT
−1.

Proposition 3. The surjectivity of each map xk 7→ Ajxk (j ∈ J }) of C is
guaranteed whenever

c1jb
n
j

n−1∏

m=1

amj 6= 0 (27)

Proof. According to Remark 3, (10) is a right inverse for (11). Furthermore, let
us recall that (see Remark 2) the relative degree of (10) and (11) is zero. We
conclude that each realization (A′

j , B
′

j , C
′

j , D
′

j) (j ∈ J ) of D has n transmission
zeros si and the si’s are nothing but the n eigenvalues λi of Aj of (10). They
are the roots of

Ψj(s) = det R = 0 with R =

[
A′

j − s1n B′

j

C ′

j D′

j

]
(28)

where Ψj(s) is a polynomial, its constant monomial is Ψj(0) and corresponds to
the product of the roots of Ψj(s) and so corresponds to the product

∏n

i=1 λi of
the eigenvalues of Aj of C. Hence, surjectivity of xk 7→ Ajxk j ∈ J is guaranteed
whenever Ψj(0) 6= 0. The following equalities apply

Ψj(0) = det

[
A′

j B′

j

C ′

j D′

j

]
= det

[
T−1Ā′

jT B′

j

C ′

j D′

j

]

= det

([
T−1 0

0 1

] [
Ā′

j TB′

j

C ′

jT
−1 D′

j

] [
T 0

0 1

])

= det

[
Ā′

j TB′

j

C ′

jT
−1 D′

j

]
(29)

Consider a partitioned matrix with four sub-blocks E, F , G, H of compatible
dimensions. We recall a result concerning its determinant.

det

[
E F
G H

]
= det(H) · det(E − FH−1G)

Hence, taking into account the special structure (24) of Ā′

j , (25) and (26), basic
manipulations yield

Ψj(0) = det

[
Ā′

j TB′

j

C ′

jT
−1 D′

j

]
= c1jb

n
j

n−1∏

m=1

amj (30)

That completes the proof.

5. Statistical self-synchronization

So far, we have proposed a construction which guarantees self-synchronization
with a finite delay K. This assumption limits the complexity of the ciphering

12



which can be represented as a memoryless function. This requirement is not
mandatory in practice, and it is acceptable that the synchronization delay is
not a constant value but a random variable with a probability law that reaches
one as time reaches infinity. In this case, self-synchronization is said to be
statistical [15]. Statistical self-synchronization is more general than the finite-
time one. Its interest lies in a broader choice of candidate dynamical systems.
The resulting flexibility is important in view of matching additional constraints,
besides the self-synchronization, in particular regarding the security of the com-
munication setup. It could be interesting to relax the finite-time synchronization
constraint so that the synchronization probability follows a probability law that
ensures synchronization for a large enough random sequence {y}. To this end,
we propose, as an extension, to introduce the statistical self-synchronization.

Definition 6 (Statistical self-synchronization). The unidirectional coupled sys-
tem C–D is statistically self-synchronizing if

∀x0, x̂0, lim
k→+∞

Pr[xk = x̂k] = 1 (31)

where Pr[·] stands for the probability, xk and x̂k being considered as random
variables.
Let us stress that over the field of real numbers, we could have relaxed the
finite-time synchronization constraint by allowing asymptotical synchronization
with prescribed exponential decay rate. Over finite fields as it is the case here,
asymptotical synchronization does no longer make sense.

5.1. General conditions

We give an equivalent theorem to Theorem 1 that corresponds to this situ-
ation. Note that the only difference with Theorem 1 concerns (13) which turns
into (33).

Theorem 3. The set-up (10)–(11) is statistically self-synchronizing whenever
the three following conditions are fulfilled:

• ∀j ∈ J , D′

j 6= 0 (32)

• ∃K ∈ N, ∀x0, x̂0, ∃{v} ∈ JK ,

K−1∏

i=0

A′

vi
= 0 (33)

• Given the pairs {A′

j , D
′

j} fulfilling (32) and (33) and arbitrary pairs
{C ′

j , D
′

j} of D, the system C reads



xk+1 =
(
A′

σ(k) −B′

σ(k)(D
′

σ(k))
−1C ′

σ(k)

)
xk

+B′

σ(k)(D
′

σ(k))
−1uk

yk = −(D′

σ(k))
−1C ′

σ(k)xk + (D′

σ(k))
−1uk

(34)

13



Proof. The proof follows the same development than the one of Theorem 1 till
Equation (16). Equation (33) means that there exists a finite sequence of length
K so that the product of K matrices A′

j is zero. Considering that any finite
sequence has the probability one to appear in an infinite sequence (provided that
any symbols has a non null probability of occurrence), satisfying (33) implies
satisfying Equation (31) of Definition 6.

Likewise the finite-time self-synchronization case, it should be interesting to
check for constructive conditions, equivalent to (33), but with additionally the
ability of controlling the probability of the synchronization delay while designing
the system. Again, it turns out that we can resort to nilpotent semigroups.

5.2. Nilpotent semigroups for statistical self-synchronization

The proposed construction considers ℓ distinct nilpotent semigroups Si, i ∈
{1, . . . , ℓ} of square n dimensional matrices each generated by a set of matrices
Ni. The cardinality of the set Ni (i ∈ {1, . . . , ℓ}) is denoted by Ji. The con-
struction of the family {A′

j , j ∈ J } which fulfills (33) obeys the three following
steps

Constructive Approach 2.

• for each nilpotent semigroup Si (i ∈ {1, . . . , ℓ}) to be built, choose a dis-
tinct invertible matrix Ti ∈ F

n×n

• for i ∈ {1, . . . , ℓ}, choose a set of Ji upper triangular matrices Ā′

j′ j′ ∈
{1, . . . , Ji} with zeros on the diagonal

• for i ∈ {1, . . . , ℓ}, for j′ ∈ {1, . . . , Ji}, compute A′

j = T−1
i Ā′

j′Ti with
j = (i− 1)ℓ+ j′. These matrices are the elements of the set Ni.

Let ti be the class of nilpotency of Si. The synchronization of C–D is en-
sured if the switching rule σ selects ti successive modes in the same nilpotent
semigroup Si.

Remark 6. It is worth emphasizing that finite-time synchronization is a special
case of statistical self-synchronization which corresponds to ℓ = 1, J1 = J .

5.3. Synchronization probability

When considering statistical self-synchronization, a question of interest is
the shape of the synchronization probability function. Such a system is viable
only if, for sequences of reasonable length, the synchronization probability is
close to one. From the cryptographic point of view, it is also important that the
synchronization does not occur too quickly. Such a system would be vulnerable
to brute-force attacks that is, exhaustive search of the secret key.

The parameters that can be used to control the synchronization delay while
designing the system are essentially, the dimension n of the system, the num-
ber ℓ of nilpotent semigroups Si, the number of generators Ji and the class of
nilpotency ti of Si. Section 6.2 illustrates such a purpose.
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6. Illustrative examples

6.1. Finite-time self-synchronization

This section gives an example that illustrates the construction of a finite-time
self-synchronizing setup. We propose to design a finite-time self-synchronizing
system of dimension n = 3 and with J = 3 modes. The matrices are defined
over the finite field F = Z/7Z. Hence, their entries belong to the set of integers
{0, . . . , 6} and the operations of additions and multiplications are performed
modulo 7.

The design consists in a selection of matrices A′

j , B
′

j , C
′

j , D
′

j which must
fulfill the conditions of Theorem 1, the condition (13) being replaced by the
Constructive Approach 1 provided in Section 3.2. The condition (27) on surjec-
tivity is also incorporated into the constraints. Now let us detail the design.

First, for simplicity, we choose D′

j = 1 for any j ∈ J = {1, 2, 3} (condition
(12)).
Secondly, following the Constructive Approach 1, it is chosen a set of three 3–
dimensional matrices Ā′

j in the form of strict upper triangular matrices and with
non zero entries located above the diagonal for the surjectivity (Condition (27)).

Ā′

1 =



0 3 2
0 0 1
0 0 0


 Ā′

2 =



0 2 1
0 0 2
0 0 0


 Ā′

3 =



0 1 3
0 0 2
0 0 0




Then, let us choose an invertible matrix T

T =



4 0 5
1 5 2
5 5 5




Its inverse over F = Z/7Z reads

T−1 =



4 2 5
6 1 2
4 4 3




Applying the change of basis A′

j = T−1Ā′

jT , we get that

A′

1 =



5 5 4
6 1 3
2 1 0


A′

2 =



6 3 0
3 2 1
5 2 6


A′

3 =



0 2 4
1 4 0
6 1 3




Next, we choose arbitrary matrices B′

j and C ′

j except the fact that the first

entry c1j of C ′

jT
−1 and last entry bnj of TB′

j are not zero to fulfil the surjectivity
condition (27).

B′

1 =



0
0
1


 , B′

2 =



1
2
5


 , B′

3 =



3
6
1



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Figure 4: Time evolution of {u} and {û} of the setup C-D

C ′

1 =
(
2 1 3

)
, C ′

2 =
(
6 2 1

)
, C ′

3 =
(
3 1 1

)

Finally, we derive the equations (14) of the right inverse system C. The matrices
read

A1 =



6 5 4
6 1 3
0 0 4


 , A2 =



0 1 6
5 5 6
3 6 1


 , A3 =



5 6 1
4 5 1
3 0 2




B1 =



0
0
1


 , B2 =



1
2
5


 , B3 =



3
6
1




C1 =
(
5 6 4

)
, C2 =

(
1 5 6

)
, C3 =

(
4 6 6

)

D1 = D2 = D3 = 1

Having completed the design of (10)–(11), a sequence {u} is applied to C.
As expected, the self-synchronization is achieved after a finite transient time,
and so does the recovery of the sequence of inputs (see Figure 4). The transient
time before self-synchronization lasts K = 3 samples. It is in accordance with
the class of nilpotency t = 3 of the set {A′

1, A
′

2, A
′

3}.

6.2. Statistical self-synchronization

In this example we aim at designing a setup (10)–(11) having the statistical
self-synchronization property. Besides, we assess the impact of the variation of
the number of nilpotent semigroups ℓ on the synchronization delay. The dimen-
sion of the dynamical system is n = 10. The number of nilpotent semigroups
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Figure 5: Percentage of the number of times the system C–D has synchronized with respect

to the delay of synchronization K for different number ℓ of nilpotent semigroups

varies from ℓ = 1 to 6. They are built according to the Constructive Ap-
proach 2 given in Section 5.2. The nilpotent semigroups have the same number
of generators Ji = 5 and class of nilpotency ti = 10 ∀i ∈ {1, . . . , ℓ}. The experi-
ment is conducted by generating random mode sequences {v} = {σ(0), σ(1), . . .}
and determining, over 2000 runs, the percentage of sequences for which self-
synchronization occurs. The result is depicted in Figure 5. The experiment
shows that the more semigroups the higher the synchronization delay on av-
erage. In any case, the percentage gets close to 100% as K increases and is
in accordance with Definition 6. The case when there is only one nilpotent
semigroup deserves a special comment. The curve reaches 100% after K = 10.
Indeed it corresponds to a finite self-synchronization according to Remark 6.
The delay K = 10 corresponds to the class of nilpotency t = 10 of the set of
matrices A′

j .
The probability law of synchronization seems to have an exponential-like

shape. It is not trivial to figure out the exact expression of the law. Indeed,
the problem amounts to determine the probability of occurrence of the mode
sequences {v} that induce self-synchronization. And yet, it is shown in [16] that
a general treatment of this issue can be very intricate.

7. Conclusion

This paper has addressed the problem of self-synchronization with poten-
tial applications to secure communications. The setup under considerations
involved two dynamical systems coupled in a unidirectional way. Two kinds
of self-synchronization have been investigated: the finite-time one and, as an
extension, the statistical one. For discrete-time switched linear systems, it has
been shown that a variety of concepts borrowed from control theory, namely
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flatness, right invertibility, transmission zeros are relevant to design an admis-
sible setup. It turns out that the notion of nilpotent semigroups is central to
guarantee the finite-time self-synchronization. More refined characterization of
the probability law defining the delay of synchronization in the statistical case
should be examined in a near future. The control theoretical concepts addressed
through this work can be considered as a first step towards a complete frame-
work for designing self-synchronizing stream ciphers. Clearly, security criteria
must be further incorporated into this framework. They have not been discussed
here because out of the scope but can be found in companion papers.
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