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Abstract

This paper focuses on the Generalized Maxwell Model (GMM) identification. The formulation of the transfer function
of the GMM is defined, as well as its asymptotes. To compare identification methods of the parameters of the GMM,
a test transfer function and two quality indicators are defined. Then, three graphical methods are described, the
enclosing curve method, the CRONE method and an original one. But the results of graphical methods are not good
enough. Thus, two optimization recursive processes are described to improve the results of graphical methods. The
first one is based on an unconstrained nonlinear optimization algorithm and the second one is original and allows
constraining identified parameters. This new process uses the asymptotes of the modulus and the phase of the transfer
function of the GMM. The result of the graphical method optimized with the new process is very accurate and fast.

Key words: Viscoelasticity, Identification, Generalized Maxwell, Fractional Derivatives, Transfer Function,
Pole-Zero, Damping

1. Introduction

Many mechanical systems are damped with viscoelastic materials. This helps to avoid instabilities and to limit
the levels of vibration. Although the viscoelastic behavior of materials is of great importance in order to obtain
accurate results, the assumption of purely elastic materials is very commonplace for frequency analysis with Finite
Element (FE) models. In order to carry out realistic Complex Eigenvalue Analysis (CEA) in dynamics, one needs
to model viscoelasticity. Linear viscoelasticity has been described by many authors, for citing just a few of them:
Ferry [1], Vinh [2], Caputo and Mainardi [3], Lakes [4], Chevalier and Vinh [5], or Balmès and Leclère [6]. Linear
viscoelasticity assumes the existence of a relation between stress, σi j, of a material and its strain, εkl, history. Let us
call hi jkl(t), the relaxation function which is also an element of the complex stiffness tensor. The Fourier transform is
denoted with a hat. 

σi j(t) =

∫ t

−∞

hi jkl(t − τ) εkl(τ) dτ

σ̂i j(ω) = ĥi jkl(ω) ε̂kl(ω)

(1)

Linear viscoelasticity is defined by the Relations (1). In the present paper, identification will be conducted on
ĥi jkl(ω) by considering a rheological model between σ̂i j and ε̂kl. Linear viscoelasticity of rheological models is writ-
ten in terms of force and displacement: F(ω) = H(ω)X(ω), with H(ω), the complex stiffness of a viscoelastic material,
equivalent to ĥi jkl(ω).
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Nomenclature

σi j The stress and σ̂i j its Fourier transform.
εkl The strain and ε̂kl its Fourier transform.
hi jkl The relaxation function and ĥi jkl its Fourier transform.
ω Angular frequency.
χ = log(ω) Logarithm of the angular frequency.
H(ω) = |H(ω)| × exp( jψ(ω)) Measured impedance of the material. A test function in this paper.
Z(ω) = |Z(ω)| × exp( jϕ(ω)) Impedance of the identified model.
|Zu(χk)| Modulus of the model, during the uth iteration taken at the angular frequency 10χk of the kth point of

the modulus curve. With k ∈ [1..V], and u ∈ [1..U].
ϕu(χk) Phase of the model, during the uth iteration taken at the angular frequency 10χk of the kth point of the

phase curve. With k ∈ [1..V], and u ∈ [1..U].
η Damping rate.
K0 Static stiffness taken at ω = 0, i.e. t = +∞.
Ki Stiffness of the ith spring.
Ci Damping of the ith dashpot.
Gi Coefficient of the ith spring-pot.
γi Fractional derivative order of the ith Pole-Zero couple.
ωu

z,i The Zero of the ith Pole-Zero couple during the uth iteration and χu
z,i = log

(
ωu

z,i

)
its logarithm. With

i ∈ [1..N].
ωu

p,i A Pole and χu
p,i = log

(
ωu

p,i

)
its logarithm.

ωu
c,i =

√
ωu

z,iω
u
p,i the medium frequency of a Pole-Zero couple and χu

c,i = (χu
z,i + χu

p,i)/2 its logarithm.

δi j Kronecker’s symbol.
A Area under the phase curve.
S Stiffening of the impedance modulus.
δ|Z| Modulus convergence indicator.
δϕ Phase convergence indicator.
r Weighting coefficient.

Acronyms

GMM Generalized Maxwell Model
PZF Pole-Zero Formulation
GFCMM Generalized Fractional Calculus Maxwell Model
CEA Complex Eigenvalue Analysis

Tests on viscoelastic materials led by many authors exhibit strong stiffness frequency dependence on both modulus
and phase (see Vinh [2], Soula et al. [7, 8]). For example, Figure 1 shows the stiffness of a multi layer material with
layers of glue, rubber and steel. The non-Zero value of the stiffness phase of viscoelastic materials is well known,
because it generates damping. But the stiffness modulus is also frequency dependent, hence, simple models, with con-
stant modulus, such as constant complex modulus or modal damping are not sufficient enough for carrying out CEA.
In order to show how six of these viscoelastic models behave, they are listed with their complex impedance formulas
in Table 1. All these models are linear ones. The Figure 2 shows the modulus and the phase versus frequency of each
model. The parameters used to produce this figure are given in Table 3 in Appendix A.

The constant complex modulus model is non-causal so it is only suitable in the frequency domain, Gaul et al. [9].
The constant complex modulus is not a relevant model since its modulus is constant. The models of Maxwell and
Voigt are efficient only on a small frequency range, but they are unrealistic, respectively, at low and high frequency,
where their modulus is infinitely small and high. Moreover, a ninety-degree-of-phase material would tend towards a
viscous fluid.
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Linear Models Symbol Frequency representation Z(ω)

Constant complex modulus K
∗ K(1 + jη)

Maxwell ( jωKC)/(K + jωC)

Voigt K + jωC

Generalized Maxwell K0 +

N∑
i=1

jωKiCi

Ki + jωCi

Generalized Fractional Calculus Maxwell
γ1

γN

K0 +

N∑
i=1

( jω)γi KiGi

Ki + ( jω)γiGi

Table 1: Rheologic representation of some common linear viscoelastic models

We would like to point out that Generalized Mawell Model is classically composed of Maxwell cells in parallel
(see Koeller [10]). With such definition this model is not able to display reversible creep (see Caputo and Mainardi
[3]). As this paper deals only with viscoelastic solids, Generalized Maxwell Model (GMM) and Generalized Frac-
tional Maxwell Model would refer to a spring in parallel with respectively Maxwell cells and Fractional Calculus
Maxwell cells (see Koeller [10]). Thus the GMM defined here is the same as that used by Chevalier and Vinh [5] and
the same as the Maxwell representation given by Caputo and Mainardi [3], without the first dashpot. The fractional
derivatives allow describing behaviours between purely elastic and purely viscous. Oldham and Spanier [11] and
Podlubny [12] have described the mathematical properties of fractional derivatives. Podlubny [12] has given some
examples for viscoelasticity. Vinh [2], Koeller [10], Bagley and Torvik [13], Gaul et al. [9], Chevalier and Vinh [5]
have studied the application of fractional derivatives in viscoelasticity. Lion [14, 15] has investigated rheological
models incorporating “fractional damping elements”, called spring-pots, from the point of view of thermodynamics.
Heymans [16] has extended the fractional calculus to non-linear viscoelasticity. Koeller [10] has defined the spring-
pot as a rheological element whose stress is proportional to the fractional derivative of the strain.

Generalized Maxwell Model (GMM) and Generalized Fractional Calculus Maxwell Model (GFCMM) (see Table
1) seem to be very relevant. Firstly, their modulus is constant at low frequency, secondly, it increases on a frequency
range and finally it is also constant at high frequency (see Figure 2). Moreover their phase is firstly nil at low frequency,
secondly it is non-Zero on a frequency range and finally it is also nil at high frequency (see Figure 2). GFCMM use
non-integer derivative orders. The use of a GFCMM in state space model requires that these derivative orders are
fractions of integer. Both GMM and GFCMM allow one to describe behaviors between purely elastic and purely
viscous materials (see Vinh [2], Soula et al. [7]). Figure 2 plots a transfer function of a GFCMM with one Pole-Zero
couple with a derivation order of γ = 1/2. The GMM plotted in blue in Figure 3 has 3 couples of spring and dashpot
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Figure 1: Complex shear stiffness of a multilayer viscoelastic mate-
rial at ambiant temperature in the [200-3500Hz] frequency range.
The top graph represents the normalized modulus H( f )/H( f =

200Hz) (dimensionless) and the bottom graph represents the phase
ψ (in degrees).
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Figure 2: Complex stiffness of the viscoelastic models described in Table
1. The parameters of these models are detailed in Table 3 in Appendix A.

in series. It allows describing the same behavior as the Pole-Zero Fractional Derivatives model. By increasing the
number of spring and dashpot in series, the blue curve will tend towards the black one. Although the two models are
relevant for viscoelasticity, the present paper focuses on GMM.

Given a viscoelastic material, one needs to identify the parameters of the GMM from experiments. Common tests
can be sorted in 3 kinds of methods. The first ones are based on the Oberst’s beam method. It consists in comparing
the frequency response function of a structure with and without the viscoelastic material to be tested (see Oberst and
Frankenfeld [17], Zhang and Richards [18], Castello et al. [19], de Lima et al. [20]). Although this works well for low
damping materials, this only allows one to measure values taken at the frequency of the first Eigenmodes of the beam.
The second kind of tests consists in studying the creep and relaxation curves of materials (see Chen [21]). This is
very efficient to get values at low frequency, when the material takes time to respond to the excitation. But to get high
frequency values, one needs to assess a perfect unit step function when excitating the material, which is technically
hard. The last kind of test is the Dynamic Mechanical Analysis. This consists in forcing oscillations of a material at
a frequency and measuring its strain and its stress far from the resonance frequencies of the test bench. By sweeping
in frequency, one is able to build the transfer function between stress and strain on a wide frequency range. This last
kind of test is the most suitable for acquiring knowledge on the behavior of a material versus frequency.

Given an experimental transfer function characterizing a complex stiffness H(ω), the identification of the param-
eters of the GMM can be carried out with some graphical methods. Two of them were described by Vinh [2] and
Oustaloup [22]. These methods are led on a Pole-Zero Formulations which are equivalent to the GMM. For example,
the equivalence between the classical Standard Linear Solid 1 and a Pole-Zero Formulation with one Pole-Zero couple
is demonstrated by Equations (2).


Z(ω) = K0 +

jωK1C1

K1 + jωC1
= K0

1 + jω(C1/K1 + C1/K0)
(1 + jωC1/K1)

= K0
1 +

(
jω/ωz,1

)
1 + jω/ωp,1

ωz,1 =

(
C1

K1
+

C1

K0

)−1

=
K0 K1

C1 (K0 + K1)
and ωp,1 =

K1

C1

(2)

1Standard Linear Solid is also called Zener model. It is a simple case of Generalized Maxwell Model where N = 1.
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The graphical identification methods use the characteristics of the asymptotes of Pole-Zero Formulations. The
present paper presents an algorithm based on the principles of these graphical methods. This algorithm allows one
to identify parameters from both the modulus and the phase curves with more efficiency than the classical graphical
methods thanks to the optimization algorithm based on asymptotes.

2. Theoretical aspects

2.1. The Generalized Maxwell Model

Experimental transfer functions, characterizing complex stiffnesses, are well described by their modulus and
phase. They are usually plotted versus the logarithm of the frequency. Moreover, the modulus is usually repre-
sented in logarithmic scale. In such scale, models with a product of terms, like Pole-Zero Formulations (PZF given
by Equation (3)), become a sum of terms. This is why PZF are very suitable for the identification of parameters on
transfer functions. The rheological formulation of GMM already presented in Table 1, is reminded in Equation (4).

Z(ω) = K0

N∏
i=1

1 +
(
jω/ωz,i

)
1 +

(
jω/ωp,i

) (3)

Z(ω) = K0 +

N∑
i=1

jωKiCi

Ki + jωCi
(4)

Equation (4) is very difficult to use in logarithmic scale. Fortunately, Relations (5) allow one to compute GMM
parameters from the parameters of PZF (see Dion [23], Dion and Vialard [24]). The proof of these relations is given
in Appendix B. 

Ki = K0

N∏
h=1

(
ωp,h

ωz,h

) (
ωp,i − ωz,h

ωp,i + ωp,h(δih − 1)

)

Ci =
Ki

ωp,i

(5)

Given a transfer function of GMM, Z(ω) = |Z(ω)| exp( jϕ(ω)), the modulus and the phase of the associated PZF
are defined in Equation (6).



|Z(ω)| = K0

N∏
i=1

|Z(ω)|i = K0

N∏
i=1

√
1 +

(
ω/ωz,i

)2√
1 +

(
ω/ωp,i

)2

ϕ(ω) =

N∑
i=1

ϕi(ω) =

N∑
i=1

(
tan−1

(
ω

ωz,i

)
− tan−1

(
ω

ωp,i

)) (6)

It is worth noticing that PZF can be generalized to fractional calculus. Then, Equation (3) becomes Equation (7).
The modulus and phase of this Fractional Calculus Pole-Zero Formulation (FCPZF) is given by Equation (8). Thus,
PZF is a particular case of the FCPZF, where the derivation order is γi = 1. One could expect FCPZF to be equivalent
to GFCMM of Table 1, but the link between these two formulations has not been established yet.

Z(ω) = K0

N∏
i=1

1 +
(
jω/ωz,i

)γi

1 +
(

jω/ωp,i

)γi
(7)
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|Z(ω)| = K0

N∏
i=1

√
1 + 2

(
ω/ωz,i

)γ cos (γπ/2) +
(
ω/ωz,i

)2γ√
1 + 2

(
ω/ωp,i

)γ
cos (γπ/2) +

(
ω/ωp,i

)2γ

ϕ(ω) =

N∑
i=1

tan−1
( (

ω/ωz,i
)γ sin (γπ/2)

1 +
(
ω/ωz,i

)γ cos (γπ/2)

)
− tan−1


(
ω/ωp,i

)γ
sin (γπ/2)

1 +
(
ω/ωp,i

)γ
cos (γπ/2)



(8)

2.2. Asymptotes of the PZF
Relations (6) are non-linear compared with frequency and make the identification difficult to carry out. Fortunately,

it is possible to approach the behavior of PZF using the asymptotes of the modulus and the phase (see Vinh [2],
Oustaloup [22] and Dion [23, 24]). The authors want to point out that thanks to Relation (6): log(|Z(ω)|) = log(K0) +∑N

i=1 log(|Z(ω)|i) and ϕ(ω) =
∑N

i=1 ϕi(ω). In statics, when the angular frequency is nil, log (|Z(ω = 0)|) = log (K0) and
ϕ (ω = 0) = 0. In dynamics, the behavior of PZF is the superposition of the behaviors of Pole-Zero couples. Each of
these couples adds a non-linear contribution compared with frequency to the modulus and to the phase (see Equations
(9)). 

log
(
|Z(ω)|i

)
=

1
2

log

1 +

(
ω

ωz,i

)2 − 1
2

log

1 +

(
ω

ωp,i

)2
ϕi(ω) = tan−1

(
ω

ωz,i

)
− tan−1

(
ω

ωp,i

) (9)

At this point, we would like to define χ = log(ω), the logarithm of the angular frequency. Assuming an angular
frequency far from the Zero and the Pole and taking the limit, Relations (9) tend towards the asymptotes given by
Equations (10). These asymptotes are shown in Figure 3. The curves generated by a Pole-Zero couple, as well as their
asymptotes, are symmetrical around the medium angular frequency, χc,i = log(√ωz,iωp,i) = (χz,i + χp,i)/2.

log(|Z(χ)|i) −→ log(|Zasy(χ)|i) =


0 if χ < χz,i < χp,i

log(ω/ωz,i) = χ − χz,i if χz,i ≤ χ ≤ χp,i

log(ωp,i/ωz,i) = χp,i − χz,i if χz,i < χp,i < χ

ϕi(χ) −→ ϕ
asy
i (χ) =


0 if χ < χz,i < χp,i

π/2 if χz,i ≤ χ ≤ χp,i

0 if χz,i < χp,i < χ

(10)

It is worth noticing that the asymptote of the modulus is the primitive of the asymptote of the phase divided by π/2
(see Equations (10) and Figure 3). Considering the analogy between the asymptote of the phase and the derivative of
the asymptote of the modulus with respect to χ, we would like to define the stiffening, S , of a modulus and the area,
A, under a phase curve. Given two angular frequencies, ωa and ωb, S and A are defined thanks to Relations (11):

∀ χa = log(ωa) ∈ R and χb = log(ωb) ∈ R,
S (|Z|, χa, χb) =

∫ χb

χa

∂

∂χ
log(|Z(χ)|) dχ = log(|Z(χb)|) − log(Z|(χa)|) The stiffening

A(ϕ, χa, χb) =

∫ χb

χa

ϕ(χ) dχ The area under the phase curve

(11)
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Figure 3: The modulus and the phase of a PZF with only one one Pole-Zero couple (see Equations (6), (9) and (10)). The asymptotes are plotted in
dashed line.

The analogy between the phase and the derivative of the modulus allow one to get a useful relation between
the stiffening and the area of the asymptotes of PZF (see Equation (12)). Moreover, given two angular frequencies
logarithms χa < χz,i and χb > χp,i, Equations (12) becomes S (|Zasy(χ)|i, χa, χb) = 2/π×A(ϕasy

i (χ), χa, χb) = (χp,i−χz,i).

∀ χa ∈ R and χb ∈ R, S (|Zasy(χ)|i, χa, χb) =
2
π

A(ϕasy
i (χ), χa, χb) (12)

The asymptotes present the advantage to be easy to manipulate and to be simultaneously representative of modulus
and phase. Asymptotes allow one to perform simple graphical identification.

3. Existing methods

3.1. The Enclosing Curve Method

Vinh [2] has described a graphical method based on asymptotes (see Figures 4 and 7). This consists in plot-
ting 2 enclosing curves above and below the experimental modulus curve, here : |H(ω)|+ = |H(ω)| × 100.06 and
|H(ω)|− = |H(ω)| /100.06. Then the 2 enclosing curves are linked alternatively by 2 types of curves: constant ones
( f = a) and linear one with a unitary slope ( f = log(ω) + b). The Zeros are given by the angular frequency where the
linear segments cross the bottom curve and the Poles are given by the angular frequency where the linear segments
cross the top curve. The closer to modulus are the enclosing curves, the better the model fits the modulus curve and
the more it requires Pole-Zero couples. The parameters obtained with the enclosing curves method are listed in Table
4 in Appendix C.

Each linear segment is in fact the asymptotic behavior of a Pole-Zero couple. This old method shows how pow-
erful it is to use asymptotic curves in the logarithmic scale instead of the non-linear modulus and phase relations in
the linear scale. Oustaloup [22] has proposed the same kind of method for the phase curve. His method consists in
equalizing the area under the experimental curve, ψ(χ), and the area between the model curve, ϕ(χ).
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Figure 5: CRONE’s graphical method [22]. The areas under the
asymptotes curve and under the test curve are equal. The width αi
give the distance between poles and zeros.

3.2. The CRONE Method

The CRONE Method is described by Oustaloup [22] in his book. First, the number of Pole-Zero couples is defined
to have at least one Pole-Zero couple per decade in the frequency domain, here we have 8 couples for 5 decades. The
frequency domain is divided in frequency subdomains, χ ∈

[
χa,i ... χa,i+1

]
, one for each Pole-Zero couple, (see Figure

5). The subdomains have the same length, `i. In each subdomain, the area under the test curve is approached by the
area of a rectangle whose height is the first phase value of the subdomain, ψi. It has to be equal to the area under the
asymptotic curve of the model phase. Zeros are arbitrary placed on the left of subdomains, thus, χz,i+1 = `i + χz,i.
Poles are placed in such a way that χp,i = χz,i + αi, with αi = ψi`i × 2/π.

This method generates edge effects with a decreasing phase near the edge. To avoid it, the first Zero and the
last Pole are corrected by an arbitrary value around 0.08 : χcorrected

z,1 = χz,1 − 0.08 and χcorrected
p,end = χp,end + 0.08. This

helps to increase the phase value of the first and the last Pole-Zero couple. Then in Figure 5 the asymptotic area
of the first subdomain begins on the left of it. As it is shown in Figure 5, this method is not very accurate for non
smooth phase curves. The parameters of the method used to obtain Figures 5 and 8 are listed in Table 5 in Appendix C.

3.3. A test transfer function

In order to benchmark the methods presented in this paper, it is useful to define a common transfer function with
modulus and phase, H(χ) = |H(χ)| exp( jψ(χ)). For this purpose we have chosen and arbitrary Pole-Zero function with
big variations in order to test the robustness of the methods. The logarithm of the Zeros and Poles are presented in
Table 2, and K0 = 1000.

It is worth noticing that a Pole-Zero couple with the Zero bigger than the Pole is not causal. Such a couple gen-
erates a decreasing modulus with a negative phase, what would mean that the material respond before the excitation.
One can expect an identification method of viscoelastic properties to always give causal Pole-Zero couples, i.e. with a
Zero lower than the Pole. In order to test the robustness of the methods with the test transfer function, its 4th Pole-Zero
couple is not causal (see Table 2). Nevertheless, the transfer function, which is the sum of all couples behavior, is still
globally causal with an increasing modulus and a positive phase (Figure 6). It is worth noticing that for all methods,
experimental curves are usually interpolated exponentially in the frequency domain for the modulus and linearly for
the phase. This helps to treat values between experimentally measured points. The present test function is defined
with 1000 points equally spaced in logarithmic scale between 102 and 106 rad/s. The subscript k will be used to refer

8



Pole-Zero couples 1 2 3 4 5 6
χz 2.52 3.10 3.20 4.10 4.40 4.80
χp 2.95 3.50 3.75 3.80 4.60 5.25

χp − χz 0.43 0.40 0.55 - 0.30 0.20 0.45

Table 2: Poles and Zeros list of the test function and Kstk1 = 1000
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Figure 6: The modulus and the phase of the test transfer function used to compare identification methods. Particular attention should be payed on
the fourth Pole Zero couple which has been arbitrary taken to be non-causal (see Table 2).

to one of these points.

3.4. Two fitting indicators

To compare the methods presented in this paper, two curves fitting indicators are defined, one for the modulus and
one for the phase. The purpose is to quantify how good a model Z(χ) = |Z(χ)| exp( jϕ(χ)), is able to fit an experimental
transfer function H(χ) = |H(χ)| exp( jψ(χ)). To be equivalent, these indicators must respect the analogy between the
stiffening of the modulus asymptote and the area under the asymptote of the phase see Relation (12).

δ|Z| =

∫ χmax

χmin

(
∂

∂χ
log (|H(χ)|) −

∂

∂χ
log (|Z(χ)|)

)2

dχ∫ χmax

χmin

(
∂

∂χ
log (|H(χ)|)

)2

dχ

(13)

δϕ =

∫ χmax

χmin

(ψ(χ) − ϕ(χ))2 dχ∫ χmax

χmin

ψ(χ)2dχ
(14)

Taking advantage of the definition of the stiffening as an integral in Equation (11), the indicators are given in
Equations (13) and (14). They are normalized to be dimensionless. A model curve that fits really well an experimen-
tal curve will exhibit a low indicator. These indicators only allow evaluating the identification of Poles and Zeros,
but do not evaluate the identification of the static modulus, K0. Thus, even if a GMM has low indicators, an offset
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Figure 7: Enclosing Curves Method. Pole Zero couples are detailed
in Table 4 in Appendix C. The indicators of such parameters are
δ|Z| = 4.5% and δϕ = 1.25%
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Figure 8: CRONE’s graphical method [22]. Pole Zero couples are
detailed in Table 5 in Appendix C. The indicators of such parame-
ters are δ|Z| = 23.48% and δϕ = 8.24%.

Figure 9: The iterative identification process with three different methods for initialization and two methods for optimization.

can occur between the modulus of the GMM and the modulus of the experimental curve. Indeed, the offset between
the two modulus curves is driven by the static modulus: K0. This static modulus is chosen after the identification of
poles and zeros. One can either set it before the identification and deals the offset with the first zero (see Section 4.2.2).

As the indicators of these two methods show (Figures 7 and 8), the enclosing curves method gives better results
than the CRONE method. But these results can be improved, furthermore, none of both methods allow identifying
parameters from both modulus and phase curves.

4. The Asymptotical Variations Method

Figure 9 represents the identification process. This begins by an initialization of the parameters of the PZF. Three
initialization methods are presented in this paper and they are detailed in Section 3 for the two firsts and in Section
4.1 for the last one. Given the initial parameters of the PZF, optimization processes allow one to improve the fitting
of experimental curves. The indicators are used to quantify the quality of the identified parameters.

4.1. Initialization of the PZF parameters with a new graphical method
Given an experimental transfer function with modulus and phase, one can expect to use both of them for the

identification of GMM parameters. The previous methods have already shown that these two kinds of curves content
10



the same information. The next methods presented in this paper are described for the modulus and for the phase,
then to manage the two kinds of value, the Poles and the Zeros will be the averaged with a weighting coefficient r :
ωz,i = (1 − r) ×ωmodulus

z,i + r ×ωphase
z,i and ωp,i = (1 − r) ×ωmodulus

p,i + r ×ωphase
p,i . Here, the weight r will always be taken

to 0.5. Moreover, in order to prevent edge effects, the test curves are extrapolated with a constant modulus and a null
phase on about half a decade before and after the frequency domain.

Unlike the previous method already described by Oustaloup, the area under the phase is evaluated by the Trapezes
Method (see Figure 10). This helps to give better results when the transfer function is only known in a few points.
Then Pole-Zero couples are placed according to the need of stiffening and phase. This is realized by dividing the fre-
quency domain in N frequency subdomains, one for each Pole Zero couple. Each of these subdomains, χ ∈

[
χa,i..χb,i

]
,

has the same experimental stiffening αi =
∫ χb,i

χa,i

d
dχ [log(|H(χ)|)]dχ = log(|H(χb,i)|) − log(|H(χa,i)|), (see the modulus

curve in Figure 10) or the same area of phase, αiπ/2 =
∫ χb,i

χa,i
ψ(χ)dχ, (see the phase integral curve in Figure 10).

Thus, if high stiffening or high phase occurs in the vicinity of a frequency, then couples will concentrate around this
frequency. In a subdomain, the medium frequency of a couple χc,i = (χz,i + χp,i)/2, is placed with respect to this prin-
ciple. The medium frequency divides the subdomain in two parts of equal stiffening or area of phase. In Figure 10, the
stiffening or phase integral apportionment is represented by horizontal lines and the frequency domain apportionment
by vertical lines, continuous lines separating subdomains and dashed lines denoting medium frequencies.

As in the previous method, the ratio αi is used to place the Zeros and the Poles, but here it is defined for both mod-
ulus and phase. The factor αi is the value calculated in a subdomain and it affects only the Pole Zero couple of this
subdomain. Because of the frequency domain apportionment, here αi is the same for all subdomains. Unfortunately,
there are some cases where curves with big variations can produce very smooth fitted model. To avoid these cases,
αi is weighted by a coefficient νi which depends on the length of the subdomains. A short subdomain means that the
phase or the slope of the stiffness is big, then a big νi coefficient is required, Equation (15):



`total = χmax − χmin

`i = χb,i − χa,i

νi =

(
`total − `i

`total

) ( N
N − 1

) =⇒


χz,i = χc,i −

νiαi

2

χp,i = χc,i +
νiαi

2

(15)

Notice that
∑N

i=1 νi = N, and that when all the subdomains have the same length, the weighting coefficients are
νi = 1. The results of this method are shown in Figure 10. The blue curves are produced by a fitting on the test
modulus curve, the Pole Zeros coefficients of such a model are shown in Table 6 in Appendix C. Table 7 lists the Pole
Zeros coefficients of the model produced by a fitting on the test phase curve (red curves). The static modulus, K0, in
Equation (3) is taken as the first value of the test modulus curve. Notice that all Zeros are lower than their associated
Poles. Finally, the average Pole Zeros coefficients are shown in Table 8, they lead to the model plotted in Figure 11.

This method allows improving the placement of the couples. It is better than the CRONE method but it is worse
than the enclosing curve method which intrinsically places well couples. Nevertheless, this method uses both the
modulus and the phase. The values of the convergence indicators are lower for a fitting on the experimental modulus
: 6.3% and 1.7% than for a fitting on the experimental phase: 12.31% and 3.8%. The averaged parameters score
intermediate indicators: 8.87% and 2.57%. These indicators value are not so good, this means that the model is not
close enough to the test curves especially for the test curve of phase (see Figure 11). The results of this method can be
optimized and they will be used as an initialization for the optimization processes proposed in the following sections.

4.2. Optimization of identified parameters
Given a GMM with initial values for Poles and Zeros, some ways to optimize the fitting of experimental curves are

described in this section. For this purpose, iterative methods are required. One can use the classical Newton-Raphson
11
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Figure 10: A new graphical method using asymptotes to identify
parameters on both modulus and phase curve. The parameters are
detailed in Appendix C. The final parameters (see Table 8 and Fig-
ure 11) are obtained by averaging the ones from the modulus curve
(see Table 6) and from the phase curve (see Table 7).
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Figure 11: The final results of the graphical method described in
Section 4.1. The parameters are in detailed in Table 8 in Appendix
C. They have been averaged from the ones plotted on Figure 10.
The indicators of such parameters are δ|Z| = 8.87% and δϕ = 2.57%

method to find the parameters leading to the least mean square value. This method does not work very well because
of the existence of several local minima.

To overcome this difficulty, two optimizations processes are presented here. First, a Matlabr function is used, it
is based on the Nelder-Mead Simplex Method. Second, a new method based on the modulus and phase asymptotes is
described. These asymptotes are used to translate the differences between the model and the experimental curves into
step of variations.

4.2.1. An unconstrained nonlinear optimization algorithm
”fminsearch” is a Matlabr function based on the Nelder-Mead Simplex Method which convergence properties

have been discussed by Lagarias and al. [25]. This method finds the minimum of a scalar-valued nonlinear function
W of n real variables, the Zeros and the Poles. For the present identification problem, this function will be defined as
the weighted sum of the 2 indicators previously defined in Equations (13) and (14) (see Equation (16)). This allows
fitting both modulus and phase in the same time:

W = (1 − r) × δ|Z| + r × δϕ (16)

Although in general cases, taking the weighting coefficient r , 0.5 gives better results, in the present paper, r has
been taken to 0.5 for all methods in order to compare them. This was already the case in Section 4.1. The simplex
method will be used to minimize W. The calculation time used by this method seems to be strongly dependent of the
initial parameters. These initial parameters where found by the method described in Section 4.1 and are listed in Table
8 in Appendix C.

According to the indicators : 0.11% and 0.03%, this method gives very good results (Figure 12). The parameters
of this method are reported in Table 9 in Appendix D. Since it is an unconstrained method, non causal Pole-Zero
couples can occur like the fourth couple of Table 9 for which its Zero is greater than its Pole. Despite its good results,
this method remains unconstrained and can lead to non causal solutions.
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Figure 12: The GMM obtained after the optimization of parameters given by the method described in Section 4.1 (see Table 8 in Appendix C). The
optimization is proceed thanks to a Matlabr function based on the Nelder-Mead Simplex Method. The optimized parameters are detailed in Table
9 in Appendix D. The indicators of such parameters are δ|Z| = 0.11% and δϕ = 0.03%. Notice that the fourth Pole is lower than the fourth Zero,
thus it is non-causal.

4.2.2. Optimization with the Asymptotical Variations Method
The method described here allow constraining Pole Zero couples to be causal, i.e. with the Zero smaller than the

Pole. The principle of this method is to find each local difference between the experimental curves and the model
curves in terms of stiffening or phase integral. These local differences are attributed to all different couples in function
of their local weight. Local lack and excess of stiffening and integral of phase can be seen as a gradient integrated
on a variable step. The asymptotes provide the simple relations for the translation of this variable step into parameter
variations.

To compute the stiffening and the phase integral, the experimental curves are interpolated in logarithmic scale
thanks to linear functions. After the interpolation, curves reach a rate of 100 points per decade. The subscript k will
be used to denote these points. The interval between two successive points is a subdomain where integration is done
with the Trapezes Method. In Figure 13, Figure 15 and Figure 17, the interpolated modulus and phase are represented
with a wide line.

While identifying the modulus, the relevant quantity to look at is the difference between the modulus slope of the
experimental curve, d

dχ [log(|H(χ)|)], in dashed line in Figure 13 and the modulus slope of the model, d
dχ [log(|Z(χ)|)],

in dashed-dotted line in Figure 13. Integrating this modulus slope in between 2 points, ω ∈ [ωk..ωk+1], provides the
local stiffening :

∫ χk+1

χk

d
dχ [log(|Z(χ)|)]dχ = log(|Z(χk+1)|) − log(|Z(χk)|). The local stiffening difference, δS k, is defined

by Equation (17). In the upper part of Figure 13, the model lack and excess of local stiffening are represented in
painted area.

δS k = log
(
|Z(χk+1)||H(χk)|
|Z(χk)||H(χk+1)|

)
(17)

Relation (10), describing the behavior of asymptotes of the model is used to convert the local differences of
stiffening into parameter variations steps. These variations steps are shared between all couples in agreement with
their local weight in each subdomain. The local weight of a couple, I |Z|k,i is defined as the ratio of its local stiffen-
ing contribution to the model’s local stiffening (Equation (18)). The local stiffening contribution of the ith couple is
log(|Z(χk+1)|i)− log(|Z(χk)|i), this is the difference between 2 successive points of the modulus logarithm generated by

13



Figure 13: Modulus of the test function and its derivative compared
to the model’s ones with the couple contributions during the 1st
iteration

Figure 14: Sharing between the Poles and the Zeros of the modulus
derivative difference between the model and the test function

the ith couple (Equation (9)).

I |Z|k,i =
log(|Z(χk+1)|i) − log(|Z(χk)|i)
log(|Z(χk+1)|) − log(|Z(χk)|)

(18)

Figure 13 shows, in its upper part, the contribution of each particular couple to the derivative of the modulus,
d

dχ [log(|Z(χk)|i)], and, in the lower part, the derivative of the modulus, d
dχ [log(|Z(χk)|)], as the sum of all couple con-

tributions. The influence curves of each Pole Zero couple are shown in the upper part of Figure 14. Notice that for
each couple, the peak of influence occurs in the vicinity of its medium frequency, χc,i. These medium frequencies are
represented in the lower part of Figure 14 with the local stiffening difference, δS k (Equation (17)). In each subdomain,
this difference already shared between couples according to their influence must be shared again between the Pole and
the Zero of a couple. The sum of stiffening difference occuring in subdomains on the left of the medium frequency is
attributed to the Zero and the sum of the ones of the right is attributed to the Pole (see Equation (19)). Thus at each
iteration step denoted by the superscript u, the parameters are changed according to the lack and excess of stiffening.


χmodulus

z,i = χu
z,i −

∑
χk≤χc,i

I |Z|,uk,i δS u
k

χmodulus
p,i = χu

p,i +
∑
χc,i<χk

I |Z|,uk,i δS u
k

(19)

The way to identify the phase curve is analogous. The relevant quantity to look at is the difference between the
phase of the experimental curve, ψ(χ), in continuous line in Figure 15 and the phase of the model curve, ϕ(χ), in
dashed line in Figure 15. Integrating this phase between 2 points, ω ∈ [ωk..ωk+1], provides the local area of phase :∫ χk+1

χk
ϕ(χ)dχ = (ϕ(χk+1) + ϕ(χk))/2. The local area of phase difference, δAk, is defined by Equation (20). The model

lack and excess of area of phase are represented in painted area.

δAk =
ψ(χk+1) + ψ(χk) − ϕ(χk+1) − ϕ(χk)

2
(20)

Relation (10), describing the behavior of asymptotes of the model will be used to convert the local differences
into parameter variations step. These variations steps are shared between all couples in agreement with their local

14



Figure 15: Phase of the test function compared to the model’s phase
with the couple contributions during the 1st iteration

Figure 16: Sharing between the Poles and the Zeros of the phase
difference between the model and the test function

weight in each subdomain. The local weight of a couple, Iϕk,i is defined as the ratio of its local area of phase con-
tribution to the model’s local area of phase (Equation (21)). The local area of phase contribution of the ith couple
is (ϕi(χk+1) + ϕi(χk))/2, this is the integral of phase between two successive points of the phase generated by the ith

couple (Equation (9)).

Iϕk,i =
ϕi(χk+1) + ϕi(χk)
ϕ(χk+1) + ϕ(χk)

(21)

Figure 15 shows, in its upper part, the phase contribution of each particular couple ϕi(χ) and, in the lower part,
the model phase, ϕ(χ), as the sum of all couple contributions. The influence curves of Pole Zero couple are shown
in the upper part of Figure 16. Notice that for each couple, the peak of influence occurs in the vicinity of its medium
frequency, χc,i. These medium frequencies are represented in the lower part of Figure 16 with the local area of phase
difference, δAk (see Equation (20)). In each subdomain, this difference already shared between couples according to
their weight must be shared again between the Pole and the Zero of a couple. The sum of area of phase difference
occuring in subdomains on the left of the medium frequency is attributed to the Zero and the sum of the ones of
the right is attributed to the Pole (see Equation (22)). Thus at each iteration step denoted by the superscript u, the
parameters are changed according to the lack and excess of area of phase.



χ
phase
z,i = χu

z,i −
2
π

∑
χk≤χc,i

Iϕ,uk,i δAu
k

χ
phase
p,i = χu

p,i +
2
π

∑
χc,i<χk

Iϕ,uk,i δAu
k

(22)

The sharing of differences between couples in function of their weight has the advantage to only affects couples
close to a local deviation, thus it does not disturb couples without any weight. The sharing of differences between
Pole and Zero, in function of the position of a subdomain to the medium frequency, allows two different kinds of pa-
rameters behavior during iteration. First, the medium frequency of a Pole Zero couple can move in frequency without
any change of the relative position of the Pole to the Zero. It seems that the whole couple is moving in frequency. The
second behavior has a standstill medium frequency while the coefficient Pole and the Zero are changing their value.
This behavior induces the growth or the decrease of the whole couple.
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Figure 17: The GMM obtained after the optimization of parameters given by the method described in Section 4.1 (see Table 8 in Appendix C).
The optimization is proceed thanks to the method, described in Section 4.2.2, using asymptotes to translate model deviations from the test curves
into parameters steps. The optimized parameters are detailed in Table 10 in Appendix D. The indicators of such parameters are δ|Z| = 0.77% and
δϕ = 0.15%.

The parameters found according to modulus and phase are averaged as in the previous method: ωz,i = (1 −
r) × ωmodulus

z,i + r × ωphase
z,i , with r = 0.5 and the static modulus, K0, defined in Equation (3) is taken as the first

value of the test modulus curve. The method described here for the modulus allows fitting its derivative. Thus,
although the global form of the modulus is respected, an offset always occurs between the model and the test
function. To remove this offset, the first Zero is modified according to the mean distance between the 2 curves :
χu+1

Z0
= χu

Z0
− 1

N
∑V

k=1 log(|H(χk)|)− log(|Zu(χk)|). Indeed, this means distance can be seen as a stiffening. Moreover, the
causality is verified at each iteration. If the Zero of one couple is bigger than its Pole then their values are forced, for
example, χp,i − χz,i = 10−6 centred on the medium frequency. Notice that such a couple is superfluous for the model
since it does not produce any phase or stiffening. Finally, the problem of edge effects have already been treated by
the extrapolation of tests curves. If for some reasons the medium frequency of a couple would step out the frequency
domain, a virtual medium frequency would be defined inside the frequency domain in order to allow the computation
of Equations (19) and (22).

The iterative process stops when the maximum parameter step, δu
ZP max = max(|χu+1

z,i − χ
u
z,i|, |χ

u+1
p,i − χ

u
p,i|) is smaller

than a defined value, ε = 10−3 for example, or after a certain amount of iteration, 125 for example. For robustness,
the maximum parameter step is imposed to be smaller than the previous one : δu

ZP max ≤ δ
u−1
ZP max. If it is not the case

all parameter steps are normalized by multiplying per δu−1
ZP max/δ

u
ZP max. During the first iteration, this step limitation is

initialized to a certain value, 0.25 for example.

This method gives good results (see Figure 17), and the indicators prove it : 0.77% and 0.15%, moreover the
causality is respected for all Pole Zero couples (see Table 10 in Appendix D). Finally, this method is a little bit faster
than the simplex method one.
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5. Conclusion and perspectives

Generalized Maxwell Model (GMM) can be expressed with a Pole Zero Formulation (PZF). In logarithmic scale
this formulation is a superposition of Pole Zero couple behavior. These behaviors are non-linear against frequency
and it is easier to manipulate the asymptotes to approach the value of stiffening and integral of phase. The new iden-
tification method presented in this paper is split in 2 parts, initialization of parameters and optimization.

The initialization places the medium frequencies of Pole-Zero couples in the frequency domain such that they are
equally distant according to stiffening and integral of phase. Thus, the couples are placed where they are most needed.
The stiffening and area of phase are translated into parameter steps: distance between Pole and Zero of each couple,
thanks to the relations of asymptotes. This gives the initialized parameters of the GMM. Then they are optimized by
considering each local deviation between the model and the experimental curve. Each local deviation is translated into
parameter step thanks to asymptotes. The steps are shared between couples in function of their local weight. Then
they are shared between Poles and Zeros in function of the position of the local deviation compared to the medium
frequency of the couple. Iterating until the parameters steps become too small provides the optimized parameters.

This new method is very efficient for the identification of a Pole Zero Formulation according to both modulus
and phase curves. It is neither restricted to viscoelasticity nor to the GMM. A very analogous version of this method
could be applied to identify the parameters of a Fractional Calculus Pole Zero Formulation (FCPZF). Indeed the only
difference would be the asymptotic value. Given a derivation order, γi and considering Equation (8), the stiffening and
the integral of phase of one Pole-Zero couple’s asymptotes become for a FCPZF, respectively, S i = γi × (χp,i − χz,i)
and Ai = γi × π/2 × (χp,i − χz,i).

The advantage of this method is the possibility to constrain the parameters. In the present case of viscoelasticity,
for the seek of causality, Zeros were constrained to be smaller than their Pole. Although this method is very quick
and efficient, some improvements would still be possible. It is possible that the Zero of a couple would become close
but different to its Pole. In such a situation the contribution of this couple is very low inducing very low step variation
because of the weighting parameters. That means that it will be difficult to modify this kind of couple. This problem
can be solved by adding a constant to the weighting coefficient, I |Z|k,i and Iϕk,i. This constant would be equal for all
couples, for example: ζ = 1/N.

Other improvements can be done when, for some reasons, a Zero tends to be equal to a Pole. In this case the
behavior of the Zero is exactly cancelled by the behavior of the Pole. In that case, the number of Pole Zero couples to
identify can be reduced. One other possibility is to suppress this couple and to replace it by another one located in the
frequency region with the highest deviations.
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A. Rheological models

Model Parameters value

Complex modulus K = 100 and η = 0.5

Maxwell K = 250 and C = 2.5 × 10−5

Kelvin-Voigt K = 2.5 and C = 2.5 × 10−3

Generalized Maxwell Model


with K0 = 9.3072
K1 = 7.8211 and C1 = 1.551 × 10−3

K2 = 46.3241 and C2 = 0.4646 × 10−3

K3 = 65.8711 and C3 = 0.0631 × 10−3

Generalized Fractional Calculus Maxwell
{

with K0 = 7.746 and γ1 = 2/3
K1 = 100 and C1 = 0.02

Table 3: Classical rheologic model
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B. The parameters of GMM in function of the parameters of PZF

The proof of Relations (5) is given below. It allows linking a Pole-Zero Formulation to a Generalized Maxwell
Model. Starting from a Pole-Zero Formulation:

Z( jω) = K0

N∏
i=1

1 + jω/ωz,i

1 + jω/ωp,i
= K0 jω

 N∏
h=1

ωp,h

ωz,h

  1
jω

N∏
i=1

jω + ωz,i

jω + ωp,i



Z( jω) can be expressed as a sum of fractions: Z( jω) = K0 jω

 N∏
h=1

ωp,h

ωz,h

  A0

jω
+

N∑
i=1

Ai

jω + ωp,i


Considering the following relation:

A0

jω
+

N∑
i=1

Ai

jω + ωp,i
=

1
jω

N∏
i=1

jω + ωz,i

jω + ωp,i

The coefficient A0 is obtained by multiplying the previous relation by jω and taking jω = 0. The coefficients Ai

are obtained by multiplying the previous relation by ( jω + ωp,i), and taking jω = −ωp,i:

A0 =

N∏
h=1

ωz,h

ωp,h
and Ai =

N∏
h=1

ωz,h − ωp,i

ωp,h(1 − δih) − ωp,i
∀i ∈ [1..N] (23)

By replacing Equations (23) into the Pole-Zero Formulation, one obtains :

Z( jω) = K0 jω

 N∏
h=1

ωp,h

ωz,h

  A0

jω
+

N∑
i=1

Ai

jω + ωp,i

 = K0 + K0

 N∏
h=1

ωp,h

ωz,h

 N∑
i=1

jω Ai

jω + ωp,i

Then by comparing the above relation with the Generalized Maxwell Model, one is able to identify the coefficients
Kstk, Ki and Ci, see Equation (24):

Z(ω) = Kstk +

N∑
i=1

jωKiCi

Ki + jωCi

Thus, Equations (5) are retrieved:

Kstk = K0

Ki = K0

N∏
h=1

(
ωp,h

ωz,h

ωz,h − ωp,i

ωp,h(1 − δih) − ωp,i

)

Ci =
Ki

ωp,i

(24)
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C. Parameters values obtained with initialization methods

Pole-Zero couples 1 2 3 4 5
χz|modulus 2.3524 2.7528 4.3263 4.7708 5.2833
χp|modulus 2.5526 3.6657 4.4865 5.0310 5.4595

(χp − χz)|modulus 0.2002 0.9129 0.1602 0.2603 0.1762

Table 4: Poles and Zeros list with the enclosing curves method.

Pole-Zero couples 1 2 3 4 5
χz|phase 1.9208 2.8000 3.6000 4.4000 5.2000
χp|phase 2.1370 3.2956 4.0674 4.6529 5.5618

(χp − χz)|phase 0.2162 0.4956 0.4674 0.2529 0.3618

Table 5: Poles and Zeros list with CRONE’s graphical method using phase’s asymptotes.

Pole-Zero couples 1 2 3 4 5
χz|modulus 2.4554 2.8652 3.2120 4.2537 5.0071
χp|modulus 2.7630 3.2604 3.6071 4.5796 5.2890

(χp − χz)|modulus 0.3077 0.3952 0.3952 0.3259 0.2819

Table 6: Poles and Zeros list with the new graphical method applied to the modulus curve.

Pole-Zero couples 1 2 3 4 5
χz|phase 2.3860 2.8798 3.3314 4.1681 5.0654
χp|phase 2.6807 3.2485 3.6940 4.4963 5.3297

(χp − χz)|phase 0.2947 0.3688 0.3627 0.3282 0.2643

Table 7: Poles and Zeros list with the new graphical method applied to the phase curve.

Pole-Zero couples 1 2 3 4 5
χz 2.4207 2.8725 3.2717 4.2109 5.0362
χp 2.7218 3.2545 3.6506 4.5379 5.3093

χp − χz 0.3012 0.3820 0.3789 0.3271 0.2731

Table 8: Poles and Zeros list with the new graphical method applied to both the modulus and the phase curves, taking the mean value weighted
with r = 0.5.
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D. Parameters values obtained with optimization methods

Pole-Zero couples 1 2 3 4 5
χz 2.4707 2.7978 3.3134 4.6268 3.9743
χp 2.6792 3.5962 3.7026 3.7209 5.2124

χp − χz 0.2085 0.7984 0.3892 -0.9059 1.2381

Table 9: Poles and Zeros list with fminsearch optimization.

Pole-Zero couples 1 2 3 4 5
χz 2.5726 2.9975 3.1630 4.6855 4.7029
χp 2.9198 3.5205 3.4539 4.7131 5.2103

χp − χz 0.3472 0.5230 0.2910 0.0276 0.5074

Table 10: Poles and Zeros list with the new method using the gradient of asymptotes with variable step and K0 = 1000.
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