A second order anti-diffusive Lagrange-remap scheme for two-component flows

Abstract : We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in Allaire, Clerc and Kokh (2002). The algorithm is based on Kokh and Lagoutière (2010) which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves.
Type de document :
Article dans une revue
ESAIM: Proceedings, EDP Sciences, 2011, 32, pp.149-162. 〈10.1051/proc/2011018〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00708605
Contributeur : Gloria Faccanoni <>
Soumis le : mercredi 16 avril 2014 - 14:11:12
Dernière modification le : jeudi 7 février 2019 - 16:07:16
Document(s) archivé(s) le : vendredi 31 mars 2017 - 09:27:00

Fichier

simcapiad.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Marie Billaud Friess, Benjamin Boutin, Filipa Caetano, Gloria Faccanoni, Samuel Kokh, et al.. A second order anti-diffusive Lagrange-remap scheme for two-component flows. ESAIM: Proceedings, EDP Sciences, 2011, 32, pp.149-162. 〈10.1051/proc/2011018〉. 〈hal-00708605〉

Partager

Métriques

Consultations de la notice

933

Téléchargements de fichiers

281