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Abstract 14 

[1] Satellite monitoring of changes in terrestrial water storage provides invaluable 15 

information regarding the basin-scale dynamics of hydrological systems where ground-based 16 

records are limited. In the Bengal Basin of Bangladesh, we test the ability of satellite 17 

measurements under the Gravity Recovery and Climate Experiment (GRACE) to trace both 18 

the seasonality and trend in groundwater storage associated with intensive groundwater 19 

abstraction for dry-season irrigation and wet-season (monsoonal) recharge. We show that 20 

GRACE (CSR, GRGS) datasets of recent (2003 to 2007) groundwater storage changes 21 

(ΔGWS) correlate well (r=0.77 to 0.93, p-value <0.0001) with in situ borehole records from a 22 

network of 236 monitoring stations and account for 44% of the total variation in terrestrial 23 

water storage (ΔTWS); highest correlation (r=0.93, p-value <0.0001) and lowest root mean 24 

square error (<4 cm) are realized using a spherical harmonic product of CSR. Changes in 25 

surface water storage estimated from a network of 298 river gauging stations and soil-26 

moisture derived from Land Surface Models explain 22% and 33% of ΔTWS respectively. 27 
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Groundwater depletion estimated from borehole hydrographs (−0.52±0.30 km3/yr) is within 28 

the range of satellite-derived estimates (−0.44 to −2.04 km3/yr) that result from uncertainty 29 

associated with the simulation of soil moisture (CLM, NOAH, VIC) and GRACE signal-30 

processing techniques. Recent (2003 to 2007) estimates of groundwater depletion are 31 

substantially greater than long-term (1985 to 2007) mean (−0.21±0.03 km3/yr) and are 32 

explained primarily by substantial increases in groundwater abstraction for the dry-season 33 

irrigation and public water supplies over the last two decades.  34 

 35 

1. Introduction 36 

[2] Groundwater is the world’s largest distributed store of freshwater [Shiklomanov and 37 

Rodda, 2003]. Quantification of changes in groundwater storage (ΔGWS) is consequently 38 

critical to understanding terrestrial freshwater dynamics and assessing the impacts of 39 

groundwater withdrawals as well as climate variability and change[Yeh and Famiglietti, 40 

2009]. Reductions in groundwater storage, referred to as “groundwater depletion”, have 41 

recently been detected in arid and semi-arid areas where intensive groundwater abstraction 42 

sustains irrigated agriculture [Konikow and Kendy, 2005; McGuire, 2007; Leblanc et al., 43 

2009; Rodell et al., 2009; Famiglietti et al., 2011]. The magnitude of groundwater depletion 44 

is such that it is estimated to account for up to 25% of recently observed rises in global sea 45 

levels [Wada et al., 2010]. There is, however, no global reporting of in situ groundwater 46 

observations to monitor ΔGWS [Rodell and Famiglietti, 2001; Taylor et al., 2010].  47 

[3] The Gravity Recovery and Climate Experiment (GRACE) [Tapley et al., 2004] offers 48 

the opportunity to monitor monthly changes in total terrestrial water storage (ΔTWS) via 49 

satellite observations at regional scales starting from April 2002 [Cazenave and Chen, 2010].  50 

ΔGWS is estimated from GRACE-derived ΔTWS after deducting the contribution of changes 51 
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in remaining terrestrial water stores including soil moisture (ΔSMS), surface water (ΔSWS), 52 

and ice and snow (ΔISS) over a particular time period (t) (equation 1).   53 

ttttt ISSSWSSMSTWSGWS Δ−Δ−Δ−Δ=Δ    (1) 54 

[4] Accurate disaggregation of GRACE ΔTWS into different water stores is therefore 55 

critical to quantifying ΔGWS. Recent studies in humid environments [Frappart et al., 2008; 56 

Han et al., 2009; Kim et al., 2009; Frappart et al., 2011] highlight the substantial 57 

contribution (>25%) of ΔSWS to ΔTWS.  Robust estimates of ΔGWS have been resolved from 58 

GRACE ΔTWS in the USA where these satellite data are validated using ground-based (in 59 

situ) hydrological datasets [Swenson et al., 2006; Yeh et al., 2006; Rodell et al., 2007; 60 

Strassberg et al., 2007].  Several studies have sought to quantify changes in terrestrial water 61 

stores in the humid tropics [Crowley et al., 2006; Winsemius et al., 2006; Tiwari et al., 2009] 62 

but none of these is well constrained by ground-based observations.  63 

[5] GRACE measurements record large-scale variations in ΔTWS. The application of 64 

GRACE measurements to space-limited areas (e.g. river basin) is associated with both bias 65 

(i.e. amplitude damping from mass inside the basin) and leakage (i.e. sensitivity to masses 66 

outside the basin) [Chambers, 2006; Swenson and Wahr, 2006; Klees et al., 2007; 67 

Longuevergne et al., 2010]. Multiplicative [Swenson and Wahr, 2006] and additive [Klees et 68 

al., 2007] approaches to account for bias and leakage have been developed using a priori 69 

information on terrestrial distributions in water stores derived from Land-Surface Models 70 

(LSMs). Such data-processing methods for GRACE data are critical when the basin area 71 

(Bengal Basin ~138,000 km2) marginally exceeds the limits in the resolution (~100,000 km2) 72 

of GRACE observations [Longuevergne et al., 2010].  73 

[6] The Bengal Basin of Bangladesh and West Bengal (India) (Figure 1), the largest river 74 

delta in the world [Shamsudduha and Uddin, 2007], is an ideal location to test the robustness 75 

of GRACE-derived estimates of ΔGWS in the humid tropics for four reasons. First, the basin 76 
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features dense networks of ground-based, surface-water and groundwater level monitoring 77 

stations with which to resolve and test estimates of ΔGWS from ΔTWS [Shamsudduha et al., 78 

2009; Steckler et al., 2010]. Second, a basin-wide database of storage coefficients, derived 79 

from 279 pumping-test records [BWDB, 1994; Shamsudduha et al., 2011], enables 80 

conversion of groundwater-level observations to ΔGWS. Third, substantial intra-annual 81 

(seasonal) and inter-annual changes in groundwater storage (see supplementary Figures S1 82 

and S2 for dry and wet-season groundwater levels in Bangladesh) occur as a result of 83 

intensive groundwater abstraction for dry-season irrigation and wet-season (monsoonal) 84 

recharge [Shamsudduha et al., 2011]. Fourth, the basin’s area in Bangladesh (~138,000 km2) 85 

is around the limit in the resolution of GRACE observations. In addition, the Bengal Basin 86 

provides a representative case study for other Asian Mega-Deltas for which detailed ground-87 

based monitoring records are unavailable.  88 

[7] Here, we test the ability of GRACE satellite measurements to trace intra-annual 89 

(seasonal) and inter-annual ΔGWS in a highly seasonal, tropical humid hydrological system, 90 

the Bengal Basin, over the period of January 2003 to December 2007 using in situ (ground-91 

based) observations of groundwater levels [Shamsudduha et al., 2009] and distributed 92 

specific yield estimates [Shamsudduha et al., 2011].  Critically, we resolve contributions of 93 

ΔSWS and ΔSMS to ΔTWS using in situ observations of ΔSWS from a network of 298 river-94 

level monitoring stations across Bangladesh [Steckler et al., 2010] and simulations of ΔSMS 95 

from three Land Surface Models (LSMs) (CLM, NOAH, VIC) provided by the Global Land 96 

Data Assimilation System (GLDAS) [Rodell et al., 2004]. Further, we evaluate the robustness 97 

of different GRACE data-processing methods for resolving ΔGWS in a highly seasonal, 98 

tropical humid basin where variations in the dry and wet-season groundwater levels are 99 

substantial (mean annual amplitude 5.4±2.6 m). Finally, we place estimates of recent (2003 to 100 
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2007) trends in ΔGWS in the context of long-term trends (1985 to 2007) derived from long-101 

term in situ observations. 102 

 103 

2. Datasets and Methods 104 

2.1. GRACE datasets 105 

[8] In this study, we use both post-processed gridded GRACE datasets and spherical 106 

harmonic (SH) products, provided by the Centre for Space Research (CSR) and Groupe de 107 

Recherche en Géodesie Spatiale (GRGS), to derive ΔGWS in the Bengal Basin. Gridded files 108 

include: (i) a monthly, 1°×1° CSR GRACE time-series dataset masked over the Bengal Basin 109 

in Bangladesh (land grid version “ss201008”; http://grace.jpl.nasa.gov/data/; hereafter 110 

referred to as CSR GRID) [Swenson and Wahr, 2006] wherein bias and leakage are 111 

compensated using a scaling factor to restore GRACE TWS signal amplitude for each grid; 112 

and (ii) a 10-day, 1°×1° GRGS GRACE time-series data (version RL02; http://grgs.omp.obs-113 

mip.fr; hereafter referred to as GRGS GRID) [Lemoine et al., 2007; Bruinsma et al., 2010]; 114 

no scaling factor is applied for the GRGS GRID data. The scaling coefficients provided for 115 

each 1° bin of the CSR GRID data are intended to restore much of the energy removed by 116 

destriping, filtering, and truncation processes [Swenson and Wahr, 2006]. Unlike CSR GRID 117 

monthly data, GRGS GRID products do not require additional filtering [Biancale et al., 2006; 118 

Lemoine et al., 2007; Ramillien et al., 2008; Tregoning et al., 2008; Bruinsma et al., 2010]. 119 

SH-based products (hereafter referred to as CSR SH for CSR and GRGS SH for GRGS 120 

products) are processed based on methods described by Longuevergne et al. [2010]. Bias and 121 

leakage are calculated using the additive hypothesis of Klees et al. [2007]. In the Bengal 122 

Basin, GRACE error amounts to 5 cm and is estimated by computing variability in the oceans 123 

at the same latitude and by propagating LSM error into leakage corrections according to 124 

Longuevergne et al. [2010]. The estimated error might be slightly overestimated as variability 125 



6 

in the oceans may still contain geophysical signals. We convert the 10-day GRGS GRID 126 

solutions to a monthly time series by taking the average values in order to directly compare 127 

them with other GRACE solutions used in this study. Missing GRACE TWS data in CSR 128 

(June 2003) and GRGS (January, February, and June 2003) time-series products were 129 

imputed (i.e. infilling of missing values) using linear interpolation and monthly mean values.  130 

 131 

2.2. Borehole hydrograph and groundwater storage 132 

[9]  We use weekly time-series records of borehole hydrographs from a subset of 236 133 

shallow (mean well depth of 30 m below ground level, bgl) monitoring wells (see 134 

supplementary Figure S3 for borehole location) to assess changes in the groundwater storage 135 

over two periods (January 2003 – December 2007; January 1985 – December 2007). The first 136 

period represents recent changes in groundwater storage that are directly comparable to 137 

satellite observations under GRACE. The second period represents the longest period of 138 

groundwater storage changes for which observational records of high quality (mean missing 139 

record <4.3%) and density are available.  140 

[10]  The annual range (annual maxima – annual minima) in observed groundwater levels 141 

or hydraulic heads )( hΔ in the regionally unconfined shallow aquifer (<100 m below ground 142 

level, bgl) in the Bengal Basin is translated into an equivalent groundwater depth (GWD) to 143 

derive in situ ΔGWS. Groundwater levels in shallow aquifers in Bangladesh reach the peak 144 

around September following rain-fed recharge through the monsoon season after their 145 

deepest levels observed towards the end of dry-season irrigation [Shamsudduha et al., 2011]. 146 

Estimates of in situ ΔGWS are compared with GRACE-derived estimates according to 147 

equation 2 wherein )(tSgw is the trend in GWD and A is area of the same grid cells (n=27) 148 

within the Bengal Basin of Bangladesh over which time-series measurements of GRACE 149 

ΔTWS and ΔSMS data were collated.    150 
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[11] gwS is calculated at each monitoring location using specific yield value )( yS and range 152 

in annual groundwater levels according to equation 3. 153 

ygw ShS ×Δ=        (3) 154 

[12]  Similar to GRACE-derived ΔGWS estimates we apply both linear (August to 155 

October) and multiple linear trends to estimate in situ ΔGWS over the entire Bangladesh. 156 

Spatially distributed yS values derive from 279 pumping test records [Shamsudduha et al., 157 

2011] are applied across Bangladesh (see supplementary Figure S4 for the location of 158 

pumping test and spatial distribution of yS ). The mean value of the estimated yS in 159 

Bangladesh is 0.06 (range 0.01 to 0.2) with a standard deviation of 0.04. In light of 160 

uncertainty in values of yS in Bangladesh [Michael and Voss, 2009], we compare this 161 

estimates derived from distributed yS values with an upper-limit uniform value of 0.10; such 162 

a high yS value (0.12) has similarly been applied regionally [Rodell et al., 2009] where in situ 163 

derived values are absent. 164 

 165 

2.3. Surface water storage and soil moisture 166 

[13]  ΔSWS used in our analysis refers primarily to flood-water loads and river storage as 167 

there are no irrigation dams or reservoirs in Bangladesh [WARPO, 2000]. The Bengal Basin 168 

in Bangladesh is, however, flood prone. Areas of up to one-third of the country (~48,000 169 

km2) are inundated by flood water each year and two-thirds of the country may be under 170 

water during extensive flood years [Steckler et al., 2010]. We generate monthly time-series 171 

data of ΔSWS of a spatial resolution of 1°×1° using daily river-stage observations from 298 172 

monitoring stations throughout Bangladesh (supplementary Figure S5 for seasonal variations 173 
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in the in-situ ΔSWS). This procedure involves: (i) conversion of daily river-stage records to 174 

mean monthly time series; (ii) interpolation (applying the Inverse Distance Weighting 175 

method using the GSTAT package in R programming language) of mean monthly river-level 176 

records (point data) over the entire Bangladesh on a regular grid size of 0.05°×0.05°; (iii) 177 

subtracting gridded surface-water level data from a resampled 300-m digital elevation model 178 

data on a regular grid size of 0.05°×0.05°, and (iv) aggregating interpolated values over a 179 

larger grid size of 1°×1° (n=27) over a period of January 2003 to December 2007 to generate 180 

mean monthly time-series of ΔSWS.        181 

[14]  Soil moisture is often the dominant contributor to ΔTWS variability in warm and 182 

temperate regions [Rodell et al., 2009]. We apply monthly time-series soil moisture records 183 

from three simulations of the Global Land Data Assimilation System (GLDAS) [Rodell et al., 184 

2004]. Time series records of ΔSMS of a spatial resolution of 1°×1° derived from three LSMs 185 

such as CLM (v. 2) [Dai et al., 2003], NOAH [Ek et al., 2003], and VIC [Liang et al., 2003]. 186 

The total depth of ΔSMS in CLM (10 layers), NOAH (4 layers), and VIC (3 layers) models 187 

are 3.4 m, 2.0 m, and 1.9 m respectively. In the absence of in situ ΔSMS data we use the 188 

ensemble mean of 3 LSMs-derived time-series data to represent ΔSMS in the Bengal Basin; a 189 

similar approach was used to estimate ΔGWS in northwestern India by Rodell et al. [2009] 190 

and central valley of California by Famiglietti et al. [2011]. None of these LSMs, however, 191 

includes groundwater storage [Dai et al., 2003; Rodell et al., 2004] or a specific module for 192 

surface water routing. 193 

 194 

2.4. Disaggregation of GRACE ΔTWS 195 

[15]  Disaggregation of GRACE ΔTWS into GRACE-derived ΔGWS is carried out 196 

differently for GRID and SH products. For CSR GRID and GRGS GRID, we derive temporal 197 

changes in groundwater storage, ΔGWS, over the basin area (~138,000 km2) in Bangladesh 198 
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by (i) extracting GRACE ΔTWS, ΔSMS, and ΔSWS time-series (January 2003 to December 199 

2007) records for each 1°×1° grid cell (n=27; see supplementary Figure S6 for location), and 200 

(ii) averaging these time-series signals from all grids and applying the equation 1. Note that 201 

ΔSMS represents changes in soil moisture storage in all soil horizons and ΔSWS includes 202 

river and flood water storage. Changes in freshwater storage derived from ice and snow 203 

(ΔISS) are negligible in Bangladesh and not considered in this study. For CSR SH and GRGS 204 

SH, ΔGWS is resolved differently to reduce the propagation of uncertainties from bias and 205 

leakage variations on surface water and soil moisture. Equation (1) is applied to GRACE SH 206 

solutions to derive ΔGWS estimates. Bias (due to signal loss in internal water mass) and 207 

leakage (due to contribution from water mass outside of basin area) corrections are applied to 208 

GRACE-derived estimates of ΔGWS following the method described in Longuevergne et al., 209 

[2010]. This method, however, requires information on ΔSMS and ΔSWS mass distribution in 210 

inside and outside of the basin area. The same filtering used for GRACE solutions (truncation 211 

at degree 60 and a 300 km Gaussian smoothing for CSR SH, truncation at degree 50 for 212 

GRGS SH) is applied to ΔSMS and ΔSWS before subtracting from the raw GRACE data 213 

(uncorrected for bias and leakage). Both spatial extent and mass variations in ΔSWS are 214 

known for the Bengal Basin. To account for temporal and spatial mass variability of ΔSWS 215 

outside of the Bengal Basin we use a global-scale model of surface water extent [Papa et al., 216 

2010].  217 

[16]  Linear and multiple linear trends were estimated from the basin-averaged GRACE 218 

derived ΔGWS.  Linear trends (i.e. simple linear regression) in ΔGWS were calculated using 219 

data from the latter part of the wet season (August to October) of each year as these represent 220 

net changes in groundwater storage after the dry-season irrigation for high-yielding rice 221 

(“Boro”) (Figure 1) cultivation and monsoon recharge have taken place [Shamsudduha et al., 222 

2011]. Estimates of linear trend in observed ΔGWS can be biased by the strong seasonality 223 
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(dry and wet season variations) present in the time-series records. To capture the highly 224 

seasonal structure in the ΔGWS signal, multiple linear trends (i.e. multiple linear regression) 225 

were calculated through the annual means of time series where, in addition to time (t), both 226 

sine ))/2(sin( Ttπ  and cosine ))/2(cos( Ttπ  functions of time are included as covariates; 227 

where T is the total number )12( =T of time unit (month) in the complete seasonal cycle of 228 

the time series. Other approaches to separate seasonality from trend and residual components 229 

in the time series (e.g., seasonal-trend decomposition based on filtering procedure) can be 230 

applied but accurate, bias-free (due to seasonality) decomposition will require longer time 231 

scales [Cleveland et al., 1990; Shamsudduha et al., 2009].    232 

 233 

3. Results 234 

[17]  Figure 2 shows monthly time-series anomalies in all GRACE derived ΔTWS, 235 

simulated ΔSMS from 3 LSMs and their average, observed groundwater levels and river-stage 236 

levels, and average monthly rainfall in Bangladesh for the period of January 2003 to 237 

December 2007. ΔTWS signals derived from basin-averaged gridded GRACE products (CSR 238 

GRID, GRGS GRID) compare favorably (r >0.94, p-value >0.0001) with ΔTWS derived from 239 

GRACE SH data applying a basin function (CSR SH and GRGS SH) over the Bengal Basin 240 

in Bangladesh. Mean annual amplitudes in ΔTWS between 2003 and 2007 are 51 cm (CSR 241 

GRID), 52 cm (GRGS GRID), 49 cm (CSR SH) and 58 cm (GRGS SH). Although GRACE 242 

ΔTWS solutions are highly correlated, the amplitude is less well constrained and can vary by 243 

up to 15%. Variability among GRACE ΔTWS solutions (3.5 cm) is, however, within the 244 

estimated GRACE error (5 cm). The leakage correction error for the defined basin area is 245 

large and accounts for 3.5 cm of the estimated GRACE error.  246 

[18]  Substantial variations in magnitude are observed between ΔSMS signals derived from 247 

three LSMs (Figure 2c) and introduce considerable uncertainty in recovering ΔGWS from 248 
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ΔTWS. The mean seasonal amplitude in ΔSMS varies among the LSMs: 8 cm (CLM), 26 cm 249 

(NOAH) and 20 cm (VIC). At the outset of the monsoon season, ΔSWS rises quickly whereas 250 

ΔGWS responds more slowly with a lag of ~1 month to ΔSMS (Figure 2d). Overall, variations 251 

in individual water stores compare well with observed variability in monthly rainfall (Figure 252 

2e). Figure 3 shows that the strong seasonality associated with the unimodal (monsoonal) 253 

distribution in annual rainfall is reflected in mean monthly time-series records of GRACE-254 

derived ΔTWS, modeled ΔSMS, and in situ ΔSMS and ΔGWS.  255 

[19]  Estimates of ΔGWS over the period of 2003 to 2007 from observed borehole 256 

hydrographs, and all GRACE datasets are plotted in Fig 4. Changes in groundwater storage 257 

over the period of 2003 to 2007, estimated from GRACE data sets and borehole (in situ) 258 

hydrographs, are strongly correlated (Figure 4; Table 1). The highest Pearson correlation 259 

(r=0.93, p-value <0.0001) is observed between in situ ΔGWS and CSR SH derived ΔGWS 260 

time series. Time-series records of ΔGWS derived from GRGS SH are also strongly 261 

correlated (r=0.89, p-value <0.0001) to in situ ΔGWS in Bangladesh. Pearson correlations 262 

between in situ ΔGWS and GRGS (GRID and SH) derived ΔGWS are slightly lower than 263 

CSR datasets but cross-correlation analysis reveals that improved correlations (Table 1) are 264 

achieved by employing a time lag of 1 month in the time series (Table 1). The 1-month phase 265 

lag in time series of ΔGWS between GRGS-derived estimates and observed records in the 266 

highly-seasonal hydrological system of Bengal Basin can be attributed to the leakage 267 

correction in GRACE processing methodologies. Phases of ΔSMS and ΔSWS time series are 268 

in advance with respect to ΔGWS and a slight error in leakage correction can introduce such a 269 

time lag. Calculated uncertainty in GRACE-derived ΔGWS, represented in Figure 4, results 270 

from 16 possible estimates (4 GRACE solutions × 4 ΔSMS estimates derived from 3 LSMs 271 

and the mean of these).   272 
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[20]  Linear trends and their standard errors in estimates of GRACE-derived and in situ 273 

ΔGWS averaged over the Bengal Basin in Bangladesh are summarized is Tables 2 and 3. 274 

Standard error in the simple linear regression is a measure of error (uncertainty) of an 275 

estimated coefficient (slope of trend line). Linear trends in wet-season (August – October) 276 

groundwater levels represent changes in ΔGWS as wet-season groundwater levels reflect 277 

groundwater storage after monsoonal recharge has taken place. The trend (January 2003 to 278 

December 2007) in ΔGWS based on wet-season groundwater levels is −0.52±0.30 km3/yr (± 279 

standard error of linear trend estimate) using distributed yS values; this rate of groundwater 280 

depletion increases to −1.06±0.59 km3/yr if a uniform yS value of 0.1 is applied. Multiple 281 

linear trends in annual means represent net changes in ΔGWS that can be influenced by 282 

declining groundwater levels or increased seasonality over time associated with increased 283 

groundwater-fed irrigation during the dry season. These in situ ΔGWS estimates therefore 284 

produce slightly higher rates of groundwater depletion (−0.85±0.17 to −1.61±0.32 km3/yr). 285 

GRACE-derived estimates of ΔGWS losses using a simulated mean ΔSMS range from 286 

−0.44±1.24 to −2.04±0.79 km3/yr for wet-season trends and −0.52±0.50 to −2.83±0.42 287 

km3/yr based on trends in annual means.  288 

[21]  Short-term changes in ΔGWS, estimated over the period for which GRACE data are 289 

available, are highly sensitive to the length of the time series. For example, trends in ΔGWS 290 

estimated for a shorter (2003 to 2006) period are nearly twice that calculated for the period of 291 

2003 to 2007 (Tables 2 and 3). Long-term (1985 to 2007) trends derived from in situ ΔGWS 292 

rates are considerably lower (−0.21±0.03 to −0.23±0.02 km3/yr) than those calculated over 293 

the period of GRACE observations. The estimation of in situ ΔGWS from borehole 294 

hydrographs enables the identification of areas of rising and falling groundwater storage over 295 

both short (2003 to 2007) and long (1985 to 2007) periods of observation (Figure 5). Over 296 

both periods, there are decreasing trends in ΔGWS in central and northwestern parts of 297 
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Bangladesh and rising trends in southwestern and coastal regions. Relative to long term 298 

terms, trends in recent in situ ΔGWS have reversed in northern areas and intensified in central 299 

and northwestern regions.  300 

 301 

4. Discussion  302 

[22]  Intra-annual (seasonal) variations and inter-annual trends in ΔGWS derived from both 303 

gridded GRACE and GRACE SH datasets in the tropical, humid Bengal Basin compare very 304 

well with estimates of in situ ΔGWS derived from borehole observations (Table 1, Figure 4). 305 

Similarity in the signals of in situ and GRACE time-series records of ΔGWS is characterized 306 

using their correlation coefficients, centered root mean square (RMS) difference and 307 

amplitude of variations (represented by standard deviations) and represented graphically in 308 

Figure 6 [Taylor, 2001]. High correlation coefficients (r >0.85, p-value <0.0001) and low 309 

RMS error (<5 cm) suggest that all CSR GRACE datasets (both gridded and SH) closely 310 

match in situ observations among the GRACE-derived ΔGWS estimates. There are, however, 311 

a number of sources of uncertainty and underlying assumptions that are inherent to both 312 

techniques. Estimation of in situ ΔGWS assumes: (1) trends in groundwater levels do not 313 

result from inhomogeneities in observation records; and (2) values of yS used to convert 314 

groundwater levels to ΔGWS, are representative of the monitored aquifer. Estimation of 315 

GRACE-derived ΔGWS assumes: (1) an accurate estimate of ΔSMS contribution from LSMs 316 

and ΔSWS from observations to recover ΔGWS; and (2) water storage is well described by 317 

LSMs inside the area of interest and in the surrounding area to estimate bias and leakage 318 

effects. The second point is not obvious in a highly seasonal basin featuring large spatial and 319 

temporal variability in (water) mass. For example, variability among LSMs is not 320 

substantially reduced following the application of filters to GRACE data; variability 321 

expressed as a standard deviation that is 6.5 cm for raw LSM data, becomes 4.0 cm and 5.1 322 
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cm under CSR-like and GRGS-like filters respectively. GRACE solutions consequently 323 

suffer from the propagation of uncertain storage variability (different for CSR and GRGS 324 

solutions) surrounding their region of interest. Indeed, this problem may explain the noted 325 

differences in seasonal amplitudes and leads to larger RMS error in ΔGWS recovery (6 cm) 326 

relative to the amplitude of seasonal variations (20 cm).  327 

[23]  Another difficulty in trend estimation in this region relates to leakage of glacier melt 328 

from the Himalayas [Matsuo and Heki, 2010]. Forward modeling indicates that leakage of 329 

glacial mass changes (+2%) from the Himalayas into the Bengal Basin region for the CSR 330 

solution whereas for the GRGS solution it is the reverse (-1%). The difference in sign may be 331 

explained by the hard truncation for the GRGS solution. Although the value is small, a large 332 

glacier mass loss of ~50 cm/yr [Matsuo and Heki, 2010; Bolch et al., 2011] induces mass 333 

changes of +1.38 km3/yr for CSR GRACE data and −0.69 km3/yr for GRGS GRACE data 334 

into the Bengal Basin. This explains why estimated trends in ΔGWS derived from GRGS (SH 335 

and GRID) data are systematically smaller than those for CSR (SH and GRID) data.  336 

[24]  Uncertainty in simulated ΔSMS associated with the choice of LSM (GLDAS) for 337 

GRACE disaggregation also contributes substantially (standard deviations from CLM, 338 

NOAH and VIC models are 3, 11 and 8 cm respectively) to overall calculated uncertainty in 339 

ΔGWS. Seasonal variability in simulated ΔSMS is observed in LSMs derived time-series 340 

datasets (supplementary Figure S7). NOAH model derived ΔSMS represents the greatest 341 

seasonal variability (i.e. annual amplitude) whereas CLM-derived ΔSMS shows the least 342 

seasonal variation. Our estimated ΔSMS (ΔTWS − ΔGWS − ΔSWS) shows strong correlations 343 

(r=0.83, p-value <0.0001 for CSR GRID; r=0.89, p-value <0.0001 for CSR SH) with the 344 

average ΔSMS derived from 3 LSMs. Individually, VIC model derived ΔSMS compare well 345 

with the estimated ΔSMS time-series data. It is also unclear whether LSMs capture large 346 

inter-annual variability in the Asian monsoon associated with climatic teleconnections such 347 
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as ENSO and IOD. Other uncertainties in GRACE-derived estimate of ΔGWS associated with 348 

the use of simulated (GLDAS LSMs) ΔSMS can arise from (1) under-representation of ΔSMS 349 

in areas of thick unsaturated zone, and (2) over-representation of ΔSMS in areas of very 350 

shallow groundwater table and substantial surface water storage. In the latter case, simulated 351 

ΔSMS may include parts of shallow groundwater and surface water storage due to poor 352 

compartmentalization of individual terrestrial water stores [Gulden et al., 2007]. In the 353 

Bengal Basin, areas featuring a deep unsaturated soil zone are minimal (present only in thick 354 

clay-covered Pleistocene terrace areas) as groundwater levels in Bangladesh predominantly 355 

occur at very shallow depths (see supplementary Figures S1 and S2). In this study, the use of 356 

an average value of simulated ΔSMS from 3 LSMs, however, minimizes the uncertainty in 357 

estimation of ΔGWS using GRACE satellite measurements. 358 

[25]  We demonstrate that resolving trends in ΔGWS is problematic over short (e.g. 4 to 5 359 

year) periods in a highly seasonal basin where seasonality in water storage is greater than the 360 

trend. Seasonality (i.e. annual amplitude) in ΔTWS in the Bengal Basin generally results from 361 

monsoonal flooding during the wet season and intensive groundwater abstraction during the 362 

dry-season. The trend in estimated ΔGWS for a 5-year period (2003 to 2007) is approximately 363 

half of that estimated from 2003 to 2006. Additionally, estimation of trend in ΔGWS in the 364 

Bengal Basin can be problematic due to the presence of strong seasonality in the dataset. We 365 

demonstrate that the strong seasonality in ΔGWS can however be captured well in multiple 366 

linear regression by using additional covariates (e.g. sine and cosine function of time) and 367 

error in trend estimates can be minimized (Tables 2 and 3). 368 

[26]  Critical to our estimation of ΔGWS from GRACE data in the Bengal Basin is the 369 

robust resolution of ΔSWS from in situ observations as ΔSWS accounts for 22% of the total 370 

variability in GRACE-derived ΔTWS. This contribution although very critical in humid 371 

tropics [Frappart et al., 2011] is often ignored in flood-prone regions around the world 372 
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[Swenson et al., 2006; Rodell et al., 2007; Tiwari et al., 2009] as flood water is mostly 373 

unregulated or its effect on ΔTWS is assumed to be negligible relative to ΔSMS. 374 

[27]  Estimated rates of groundwater depletion in the Bengal Basin (−0.52±0.30 to 375 

−1.61±0.32 km3/yr equivalent to −0.34 to −1.14 cm/yr) are substantially lower than those 376 

recently estimated elsewhere on the Indian sub-continent by Rodell et al. [2009] in semi-arid, 377 

northwestern India (−4.0 cm/yr), and Tiwari et al. [2009] for Bangladesh, Nepal and West 378 

Bengal (India), their “zone D” (−2.5 cm/yr). More recently, another study [Llovel et al., 379 

2010] has reported trends in ΔTWS (August 2002 to July 2009) of −1.1 cm/yr and −1.5 cm/yr 380 

over the River Ganges and Brahmaputra Basins respectively. Each of these studies attributes 381 

groundwater depletion to intensive groundwater-fed irrigation. In the Bengal Basin, more 382 

rapid groundwater storage depletion estimated for the period 2003 to 2007, relative to 1985 to 383 

2007, is linked to substantial increases in groundwater abstraction for irrigation and urban 384 

water supplies [Hoque et al., 2007; Shamsudduha et al., 2009; Shamsudduha et al., 2011]. In 385 

situ measurements show further that groundwater depletion primarily occurs in central 386 

(Dhaka city) and northwestern Barind Tract areas of Bangladesh where a low-permeability 387 

surficial deposit (Madhupur Clay Formation; see supplementary Figure S4 and S8 for 388 

hydraulic properties of the shallow aquifer in Bangladesh) of variable thickness (6 to 40 m) 389 

inhibits direct rainfall-fed recharge [Shamsudduha et al., 2011].  390 

[28]  A curious finding is the more favorable comparison that is observed between wet-391 

season trends in ΔGWS derived from GRACE (−0.44±1.24 to −2.04±0.79 km3/yr) and in situ 392 

observations using a high, uniform estimate (0.1) of yS (−1.06±0.59 to −1.61±0.32 km3/yr) 393 

rather than a spatially distributed value (mean: 0.06±0.04) of yS (−0.52±0.30 to −0.85±0.17 394 

km3/yr) derived from pumping tests. In the large Mississippi Basin, Rodell et al. [2007] stress 395 

the importance of applying representative, distributed storage coefficients but, as recognized 396 

by a recent study [Sun et al., 2010], the determination of yS is challenging. yS values derived 397 
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from pumping tests can be biased toward low values in two ways. First, elastic storage often 398 

dominates short pumping tests where confined or semi-confined exist locally and water-table 399 

drainage has insufficient time to respond.  Second, in situ estimates of yS , that sample an area 400 

of <0.5 km2 but are scaled up to a 1°×1° grid cell (used in our analysis of in situ ΔGWS), do 401 

not represent the considerable variability in yS that naturally exists in alluvial aquifers. The 402 

influence of low yS values may be exaggerated at regional scales as abstraction and resultant 403 

groundwater depletion are biased to areas of higher yS . Our deductions highlight the current 404 

but under-explored uncertainty associated with the selection of storage coefficients to 405 

reconcile ΔGWS from GRACE, as an equivalent groundwater depth, with in situ monitoring 406 

observations from borehole hydrographs. 407 

 408 

5. Conclusions  409 

[29]  In a highly seasonal hydrological system in the humid tropics, the Bengal Basin, we 410 

show that GRACE satellite measurements closely trace recent (2003 to 2007) intra-annual 411 

(seasonal) and inter-annual variations in groundwater storage (ΔGWS) indicated by in situ, 412 

ground-based observations (borehole hydrographs). Critical to this analysis is the resolution 413 

of ΔGWS from total water storage (ΔTWS) derived from GRACE  using (1) changes in 414 

observed surface water storage (ΔSWS) derived from river stage records monitored at 298 415 

gauging stations; and (2) changes in simulated soil moisture storage (ΔSMS) using 3 Land 416 

Surface Models (LSMs) (CLM, NOAH, and VIC). GRACE-derived ΔTWS in the Bengal 417 

Basin from 2003 to 2007 is explained well by changes in surface water storage (ΔSWS) 418 

(22%), changes in soil moisture storage (ΔSMS) (33%), and ΔGWS (44%).  Groundwater 419 

depletion in the Bengal Basin estimated from in situ observations using a distributed specific 420 

yield ( yS ) ranges from −0.52±0.30 km3/yr (wet season trends) to −0.85±0.17 km3/yr (trend in 421 
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annual means). These estimates are highly comparable (within error) to the range in 422 

estimates, −0.44±1.24 to −2.04±0.79 km3/yr (wet-season trends) and −0.52±0.50 to 423 

−2.83±0.42 km3/yr (trends in annual means), derived from different GRACE datasets 424 

(gridded and spherical harmonic (SH) products of CSR and GRGS). Of the 4 GRACE 425 

solutions, CSR SH derived ΔGWS shows the highest correlation (r=0.93, p-value >0.0001) 426 

and the lowest (<4.0 cm) RMS error with in situ ΔGWS estimates with distributed specific 427 

yield. It remains unclear whether the small discrepancy between in situ and GRACE satellite 428 

estimates derives from uncertainties in resolving GRACE ΔGWS from ΔTWS or the 429 

representivity of storage coefficients derived from in situ pumping tests. Estimates of the 430 

linear trend in ΔGWS are highly dependent upon the length of the time series (e.g. 2003-2006 431 

vs. 2003-2007). Calculated trends are also strongly influenced by the annual variability in the 432 

amplitude; errors can arise from residual inter-annual variations once the seasonal component 433 

is removed from the time series. Long-term (1985 to 2007) trends in observed ΔGWS 434 

(−0.21±0.03 to −0.23±0.02 km3/yr) are considerably lower than recent (2003 to 2007) trends 435 

and indicate higher rates of groundwater depletion as a result of increased groundwater 436 

abstraction for irrigation and urban water supplies.  437 
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Figure Captions: 598 

Figure 1. Map shows areas of dry-season Boro rice cultivation in 2007−2008 in Bangladesh 599 

(data from Bangladesh Space Research and Remote Sensing Organization) and percentage of 600 

land (graduated circles) in each of the country’s 64 districts irrigated with groundwater using 601 

shallow and deep tubewells. Map also shows digital elevation (gray shades), river channels 602 

(blue polylines), district level boundaries (thin gray lines), and the international boundary 603 

(solid black line). 604 

 605 

Figure 2. Monthly time series anomaly of water stores for the period of January 2003 to 606 

December 2007: (a) averaged gridded GRACE products (CSR GRID and GRGS GRID); (b) 607 

spherical harmonics GRACE products with measurement error (CSR SH and GRGS SH) 608 

extracted over the Bengal Basin of Bangladesh using a basin function; (c) 3 simulated soil 609 

moistures (CLM, NOAH, and VIC) and their average value (AvgSMS) derived from GLDAS 610 

Land Surface Models (LSMs); (d) monthly anomalies in groundwater storage averaged from 611 

a total of 236 monitoring locations and surface water storage averaged from a total of 298 612 

gauging stations; and (e) mean monthly rainfall averaged from a total of 250 BWDB stations 613 

(2003 to 2006) and a total of 15 weather stations managed by Bangladesh Meteorology 614 

Department. Total annual rainfall (mm) for each year from 2003 to 2007 is provided. 615 

 616 

Figure 3. Mean (2003-2007) monthly GRACE TWS (both gridded and spherical harmonics 617 

GRACE products), average LSM-derived soil moisture storage (ΔSMS), observed surface 618 

water storage (ΔSWS), borehole-derived groundwater storage (ΔGWS), and rainfall in 619 

Bangladesh. Strong seasonality with variable magnitudes in terrestrial water stores in the 620 

Bengal Basin (soil moisture, surface water, and groundwater storage) results from seasonal 621 

(monsoonal) rainfall. Peak level of ΔGWS lags the peak level of ΔSWS by approximately 1 622 

month where correlation is the highest (r=0.93, p-value <0.0001); the peak level of ΔGWS 623 

occurs almost at the same time as the ΔSMS (r=0.91, p-value <0.0001).  624 

 625 

Figure 4. Comparison of monthly time-series anomaly (cm) of groundwater storage (ΔGWS) 626 

in Bangladesh derived from borehole hydrograph with GRACE derived ΔGWS estimates for 627 

the period of January 2003 to December 2007. Time series of ΔGWS derived from borehole 628 

hydrograph with distributed specific yield (GWS yS = distributed; blue line) and a uniform 629 
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value of 0.10 (GWS yS = 0.10; red line) and an average time series (Mean GRACE-GWS; 630 

black line) from various GRACE solutions (CSR GRID, GRGS GRID, CSR SH and GRGS 631 

SH). Average soil moisture from 3 GLDAS LSMs and their average value, and monthly time-632 

series records of surface water storage (ΔSWS) were used for these GRACE ΔGWS estimates. 633 

Variability in GRACE-derived ΔGWS is observed in time series records of a total of 16 634 

estimates. 635 

 636 

Figure 5. Groundwater storage changes (ΔGWS) in the Bengal Basin of Bangladesh 637 

expressed as trends (cm/year) in equivalent groundwater depth (GWD) derived from borehole 638 

hydrographs. Panels (a) and (b) show trend estimates in GWD from linear (through wet-639 

season values) and multiple linear (through entire time series) respectively for the period of 640 

2007 to 2007; panels (c) and (d) show linear and multiple linear trends in GWD for a longer 641 

period (1985 to 2007). Areas of recent declines in ΔGWS are highlighted in top two panels. 642 

 643 

Figure 6. A Taylor diagram [Taylor, 2001] displaying pattern statistics between in situ 644 

ΔGWS with distributed specific yield ( yS = dist) and 6 models of GRACE-derived ΔGWS and 645 

2 in situ ΔGWS models with yS = 0.1 and the national mean (0.06) value. The radial distance 646 

(dashed blue lines) from the origin is proportional to the standard deviation of ΔGWS 647 

estimates. The centered root mean square (RMS) difference between the modeled (colored 648 

circles) and observed field (black square) is proportional to their distance apart (in the same 649 

units as the standard deviation). The correlation between the two datasets is given by the 650 

position of the modeled observation (dashed black lines). In the legend, CSRSH GWS (corr) 651 

and GRGSSH GWS (corr) denote estimates are corrected for leakage and bias using methods 652 

described in Longuevergne et al. [2010]. CSRSH GWS (std) and GRGSSH GWS (std) denote 653 

estimates derived using basin-averaged time series data without bias/leakage corrections. 654 

Based on the diagram it is evident that CSR GRACE datasets compare well in situ ΔGWS 655 

estimate whereas all estimated values range between in situ ΔGWS estimates with yS = 0.1 656 

and 0.06 values. 657 
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Figure 1. Map shows areas of dry-season Boro rice cultivation in 2007−2008 in Bangladesh 59 
(data from Bangladesh Space Research and Remote Sensing Organization) and percentage of 60 
land (graduated circles) in each of the country’s 64 districts irrigated with groundwater using 61 
shallow and deep tubewells. Map also shows digital elevation (gray shades), river channels 62 
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Figure 2. Monthly time series anomaly of water stores for the period of January 2003 to 107 
December 2007: (a) averaged gridded GRACE products (CSR GRID and GRGS GRID); (b) 108 
spherical harmonics GRACE products with measurement error (CSR SH and GRGS SH) 109 
extracted over the Bengal Basin of Bangladesh using a basin function; (c) 3 simulated soil 110 
moistures (CLM, NOAH, and VIC) and their average value (AvgSMS) derived from GLDAS 111 
Land Surface Models (LSMs); (d) monthly anomalies in groundwater storage averaged from 112 
a total of 236 monitoring locations and surface water storage averaged from a total of 298 113 
gauging stations; and (e) mean monthly rainfall averaged from a total of 250 BWDB stations 114 
(2003 to 2006) and a total of 15 weather stations managed by Bangladesh Meteorology 115 
Department. Total annual rainfall (mm) for each year from 2003 to 2007 is provided. 116 
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 152 
Figure 3. Mean (2003-2007) monthly GRACE TWS (both gridded and spherical harmonics 153 
GRACE products), average LSM-derived soil moisture storage (ΔSMS), observed surface 154 
water storage (ΔSWS), borehole-derived groundwater storage (ΔGWS), and rainfall in 155 
Bangladesh. Strong seasonality with variable magnitudes in terrestrial water stores in the 156 
Bengal Basin (soil moisture, surface water, and groundwater storage) results from seasonal 157 
(monsoonal) rainfall. Peak level of ΔGWS lags the peak level of ΔSWS by approximately 1 158 
month where correlation is the highest (r=0.93, p-value <0.0001); the peak level of ΔGWS 159 
occurs almost at the same time as the ΔSMS (r=0.91, p-value <0.0001). 160 
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Figure 4. Comparison of monthly time-series anomaly (cm) of groundwater storage (ΔGWS) 181 
in Bangladesh derived from borehole hydrograph with GRACE derived ΔGWS estimates for 182 
the period of January 2003 to December 2007. Time series of ΔGWS derived from borehole 183 
hydrograph with distributed specific yield (GWS yS = distributed; blue line) and a uniform 184 

value of 0.10 (GWS yS = 0.10; red line) and an average time series (Mean GRACE-GWS; 185 

black line) from various GRACE solutions (CSR GRID, GRGS GRID, CSR SH and GRGS 186 
SH). Average soil moisture from 3 GLDAS LSMs and their average value, and monthly time-187 
series records of surface water storage (ΔSWS) were used for these GRACE ΔGWS estimates. 188 
Variability in GRACE-derived ΔGWS is observed in time series records of a total of 16 189 
estimates. 190 
 191 
 192 
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Figure 5. Groundwater storage changes (ΔGWS) in the Bengal Basin of Bangladesh 239 
expressed as trends (cm/year) in equivalent groundwater depth (GWD) derived from borehole 240 
hydrographs. Panels (a) and (b) show trend estimates in GWD from linear (through wet-241 
season values) and multiple linear (through entire time series) respectively for the period of 242 
2007 to 2007; panels (c) and (d) show linear and multiple linear trends in GWD for a longer 243 
period (1985 to 2007). Areas of recent declines in ΔGWS are highlighted in top two panels. 244 

245 
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 279 
Figure 6. A Taylor diagram [Taylor, 2001] displaying pattern statistics between in situ 280 
ΔGWS with distributed specific yield ( yS = dist) and 6 models of GRACE-derived ΔGWS and 281 

2 in situ ΔGWS models with yS = 0.1 and the national mean (0.06) value. The radial distance 282 

(dashed blue lines) from the origin is proportional to the standard deviation of ΔGWS 283 
estimates. The centered root mean square (RMS) difference between the modeled (colored 284 
circles) and observed field (black square) is proportional to their distance apart (in the same 285 
units as the standard deviation). The correlation between the two datasets is given by the 286 
position of the modeled observation (dashed black lines). In the legend, CSRSH GWS (corr) 287 
and GRGSSH GWS (corr) denote estimates are corrected for leakage and bias using methods 288 
described in Longuevergne et al. [2010]. CSRSH GWS (std) and GRGSSH GWS (std) denote 289 
estimates derived using basin-averaged time series data without bias/leakage corrections. 290 
Based on the diagram it is evident that CSR GRACE datasets compare well in situ ΔGWS 291 
estimate whereas all estimated values range between in situ ΔGWS estimates with yS = 0.1 292 

and 0.06 values. 293 
 294 
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