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[1] The Gravity Recovery and Climate Experiment (GRACE) satellites provide
observations of water storage variation at regional scales. However, when focusing on a
region of interest, limited spatial resolution and noise contamination can cause estimation
bias and spatial leakage, problems that are exacerbated as the region of interest approaches
the GRACE resolution limit of a few hundred km. Reliable estimates of water storage
variations in small basins require compromises between competing needs for noise
suppression and spatial resolution. The objective of this study was to quantitatively
investigate processing methods and their impacts on bias, leakage, GRACE noise reduction,
and estimated total error, allowing solution of the trade‐offs. Among the methods tested is
a recently developed concentration algorithm called spatiospectral localization, which
optimizes the basin shape description, taking into account limited spatial resolution. This
method is particularly suited to retrieval of basin‐scale water storage variations and is
effective for small basins. To increase confidence in derived methods, water storage
variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de
Recherche de Géodésie Spatiale) GRACE products, which employ different processing
strategies. The processing techniques were tested on the intensively monitored High Plains
Aquifer (450,000 km2 area), where application of the appropriate optimal processing
method allowed retrieval of water storage variations over a portion of the aquifer as
small as ∼200,000 km2.

Citation: Longuevergne, L., B. R. Scanlon, and C. R. Wilson (2010), GRACE Hydrological estimates for small basins:

Evaluating processing approaches on the High Plains Aquifer, USA, Water Resour. Res., 46, W11517,

doi:10.1029/2009WR008564.

1. Introduction

[2] The Gravity Recovery and Climate Experiment
(GRACE) satellite mission, launched in March 2002 [Tapley
et al., 2004], has proven to be an excellent complement to
ground‐based hydrologic measurements tomonitor water mass
storage variations within the Earth’s fluid envelopes. The dom-
inant GRACE signal reflects changes in vertically integrated
stored water, including variations from snow pack, glaciated
areas,surfacewater, soilmoisture,andgroundwateratalldepths.
In this way, GRACE data are distinctly different from those of
other remote sensing satellites, which are typically limited to
observations near the land surface. Extracting water storage
variations of any single component (e.g., groundwater) requires
disaggregating the vertically integrated water storage signal,
either bymaking assumptions (e.g., neglecting snow or surface
water contributions) or by usingmodels or other observations to
estimate certain components, such as soil moisture.
[3] Numerous studies have shown that GRACE‐derived

stored water variations compare favorably with ground‐
based measurements and hydrological models at spatial

scales of several hundred kilometers and greater. As reviewed
by Ramillien et al. [2008], these studies provide confidence
that GRACE can be used to monitor hydrological systems
and to improve hydrological modeling [Lettenmaier and
Famiglietti, 2006; Güntner, 2008]. GRACE data have been
applied to monitoring soil moisture and/or groundwater
depletion from drought or irrigation [Leblanc et al., 2009;
Rodell et al., 2009; Tiwari et al., 2009] and to extract flux
information from the water balance equation, such as evapo-
transpiration [Rodell et al., 2004b; Ramillien et al., 2006] or
river discharge [Syed et al., 2009]. GRACE data have also
been integrated into the modeling process, such as for vali-
dating global land‐surface models [Ngo‐Duc et al., 2007],
validating parameterization of land‐surface schemes [Niu
and Yang, 2006; Han et al., 2009], and validating modifica-
tions of land‐surface models (G. Y. Niu, et al., The commu-
nity Noah land surface model with multi‐physics options,
submitted to Journal of Geophysical Research, 2009a; G. Y.
Niu et al., The community Noah land surface model with
multi‐physics options 2. Tests over global river basins, sub-
mitted to Journal of Geophysical Research, 2009b). Finally,
GRACE data have led to improved descriptions of water
fluxes via joint calibration of hydrologic models and river
discharge [Werth et al., 2009] or via assimilation into land‐
surface models [Zaitchik et al., 2008]. Such applications of
GRACE data require both robust and bias‐free estimates of
water storage change and error estimates to appropriately
weight the data [Güntner, 2008]. At the same time, interest
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in using GRACE data is expanding to smaller basins (i.e.
basin areas ≤250,000 km2) and improved data processing is
required to reliably estimate water storage variations at these
smaller spatial scales.
[4] The GRACE mission consists of two satellites at an

altitude of ∼450 km in an identical polar orbit, one trailing
the other by ∼200 km [Schmidt et al., 2008]. GRACE mea-
sures mass redistribution on the Earth by monitoring very
precisely the distance between the two satellites and by
tracking their positions via the GPS constellation. Changes
in mass distribution (due to movement of water, air, and other
sources) alter Earth’s gravity field and change the distance
(range) and speed (range‐rate) between the satellites. Chan-
ges in the range of ∼2 mm over the ∼200 km separation are
detectable. This yields sensitivity to mass change equivalent
to a ∼1 cm thick disk of water at the land surface, with
dimensions of a few hundred kilometers or larger. Numerous
studies have demonstrated that with this sensitivity, GRACE
can contribute usefully to understanding total water storage
changes in large basins with dimensions of many hundreds to
thousands of kilometers. However, as the spatial scale of
interest approaches a few hundred kilometers, GRACE data
are more difficult to use. The goal of this study was to assess
methods of estimating changes in water storage fromGRACE
data when the area of interest is near this resolution limit.
[5] GRACE responds to all sources of mass redistribution

near the Earth’s surface. Thus, it is important to correct
measured range‐rate variations for well‐recognized influ-
ences, which include atmospheric mass redistribution, ocean
mass redistribution due to currents and winds, ocean and solid
Earth tides, and others. These mass redistributions are esti-
mated from climate, ocean, and other models, and the asso-
ciated mass variations are known as “dealiasing products”
[Bettadpur, 2007]. Because dealiasing products are imperfect,
new data releases (currently Release 04) have been computed
over time to take advantage of improvements in dealiasing
elements (e.g., the ocean tide model). Each release involves
reprocessing all the range‐rate data since launch in 2002,
usually leading to demonstrable improvements in quality. The
residual range‐rate signal (after removing dealiasing products
and effects of the solid Earth gravity field) should be due
largely to terrestrial water storage variations, including ice
storage change in polar areas and other effects, such as
rebound of previously glaciated regions and earthquakes.
[6] Two types of products have been developed from

GRACE range‐rate data. One is a spherical harmonic (SH)
expansion of the gravity field, analogous to a Fourier series
representation for spherical geometry. Dimensionless coef-
ficients of the expansion (Stokes coefficients) are the standard
GRACE Level 2 product used in this study. Several sets of
Stokes coefficients, reflecting varying computational strate-
gies, are available at the official data repository online at
http://podaac.jpl.nasa.gov/grace/ (CSR, GFZ, JPL), and more
recently from additional sources such as DEOS (http://www.
lr.tudelft.nl/live/pagina.jsp?id=6062b504‐715e‐4a22‐9e87‐
ab2231914a4b&lang=en), ITG (http://www.geod.uni‐bonn.
de/itg‐grace03.html) or CNES/Groupement de Recherche en
Géodesie Spatiale (GRGS) (http://bgi.cnes.fr:8110/geoid‐
variations/README.html). A second type ofGRACEproduct
translates range‐rate residuals directly into a global set of
localized surface mass concentrations (“mascons”), omitting
the direct use of spherical harmonics [Rowlands et al., 2005].

Mascon solutions are not examined in this study but are
compared with SH solutions by Klees et al. [2008a].
[7] Changes in Stokes coefficients from month to month

allow computation of maps of spatial water mass variations Ŝ
[see, e.g., Wahr et al., 1998, Chambers, 2006]. The limited
range of SH Stokes coefficients (typically to degree and
order 60) fundamentally limits spatial resolution. Further-
more, noise contamination generally increases with increas-
ing degree and order; therefore, those coefficients most
important for fine spatial resolution are the noisiest. Thus, a
compromise is needed to meet dual goals of noise sup-
pression and maximum spatial resolution. A main point of
this study is to examine various approaches to this com-
promise by finding combinations of available SH terms that
are optimal by various measures.

2. Basin‐Scale Studies and Associated Bias
and Leakage

[8] Stokes coefficients, Cl,m and Sl,m relative to degree
l and order m are generally estimated up to degree and order
Lmax = 60. This limit fixes spatial resolution at ∼300 km (in
SH expansions, spatial resolution is typically reported as
pa/Lmax, where a is Earth radius). However, additional fil-
tering is required to suppress increasing noise with increasing
SH degree, leading to spatial resolution somewhat <300 km.
A SH expansion of GRACE water storage variations can be
displayed as a global map of month‐to‐month apparent sur-
face mass changes, but these cannot be simply interpreted
pixel‐by‐pixel as is done with traditional remote sensing
images. Instead, comparison with independent observations
or models must be made at the same spatial resolution by
representing these observations as SH expansions with the
same Lmax and then applying the same filtering used with the
GRACE data. Comparisons have generally been conducted
in continental scale studies [e.g., Syed et al., 2008]. Careful
attention must be paid when estimating basin‐scale water
storage as described in this section.
[9] A surface mass change estimate for a space‐limited

region of interest R with area R0 requires a basin function
h (Figure 1b), which is defined as 1 inside R and 0 outside the
basin, i.e.,

h Xð Þ ¼
1 if X 2 R

0 if X 2 W � R
;

�

where X is position on the Earth’s surface X = (�,8), and
W represents the entire Earth surface. If Lmax approaches
infinity, the basin function approaches its ideal shape, but
for finite Lmax it is only an approximation to the exact h(X).

The GRACE water storage estimate �̂S0 over the region of

interest of area R0 is then �̂S0 ¼
1

R0

Z

W

�̂ShdW [Wahr et al.,

1998].
[10] A basin function can be described either on the Earth’s

surface or in terms of SH coefficients h(X)→(hl,m
c and hl,m

s );
therefore, the estimate can also be written as a linear combi-
nation of the GRACE Stokes coefficients [Swenson et al.,
2003]:

�̂S0 ¼
4�a3�e

3R0

X

Lmax

l¼0

X

l

m¼0

2l þ 1

1þ k
0

l

Cl;m hCl;m þ Sl;m hSl;m

� �

;

where re represents the Earth’s mean density. The weighting

factor 2lþ1

1þk
0

l

accounts for the Earth’s response to surface mass
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loads at each SH degree, including both direct Newtonian

attraction and elastic deformation via the load Love numbers

k′l, derived from seismic Earth models such as the preliminary

reference Earth model [Dziewonski and Anderson, 1981]

after solving gravitoelasticity equations [Pagiatakis, 1990;

Guo et al., 2004].
[11] Because water storage estimates can be expressed as a

set of linear weights applied to the Stokes coefficients, these
estimates can be developed with the goal of both maximizing
resolution within the region of interest and filtering high‐
degree and high‐order Stokes coefficients to suppress noise
(Figure 1b) [Swenson and Wahr, 2002]. The effective basin
function (EBF) ĥ is defined as the spatial function on the
surface of the sphere, and its corresponding SH weights are
applied to GRACE Stokes coefficients developed with these
two goals in mind. ĥ describes the ability of GRACE to
determine an average water storage change within the basin
of interest. There is more than one way to select the EBF ĥ,
and a main goal of this study was to investigate how the EBF
affects estimates of water storage variations.
[12] In practice, SH truncation and filtering associated

with ĥ modifies the basin shape. An example is shown in
Figure 1b, illustrating two differences relative to the exact
basin function h. First, the mean value of the EBF over the
basin of interest is no longer unity (which would lead to a
biased estimate), and the EBF is not zero outside the basin,
making the estimates sensitive to water storage changes out-
side the basin of interest (leakage). Bias and leakage time
series may be calculated numerically considering the EBF ĥ

[Klees et al., 2007]: �S0 ¼ �̂S0 þ bias� leak where

bias ¼
1

R0

Z

R

S0 h � ĥ
� �

dW ð1Þ

leak ¼
1

R0

Z

W�R

Sleak ĥ dW; ð2Þ

where S0 is true stored water variation and �S0 is average

stored water over R. Sleak is true stored water variation out-

side the basin, and �̂S0 is the GRACE estimate before bias and

leakage corrections. Note that the terminology used here dif-

fers somewhat from other studies. For example, Wahr et al.

[1998] and Swenson and Wahr [2002] considered “leakage”

to include effects of both bias (here associated with varia-

tions within the basin) and variations external to the basin

(Figure 1b).
[13] Bias and leakage effects depend on actual water storage

variations (both interior and exterior to the basin) and must
generally be estimated from hydrological models. There is
more than one way to select the EBF ĥ, and a main goal of
this study was to investigate how the EBF affects estimates
of water storage variations. The quality of the EBF may be
measured by concentration near unity (ability to describe the
area of interest) and rejection of contributions from sur-
rounding areas (i.e. reducing leakage effects). EBF concen-
tration is defined as follows:

L ¼

Z

R

ĥ2dW

,

Z

W

ĥ2dW; ð3Þ

the integrated squared value within the basin of interest rel-
ative to the globally integrated squared value. For example, a
concentration of 0.9 means that only 10% of the variance
(energy) originates from outside of the region of interest.
[14] Chen et al. [2005] showed that bias can generally be

corrected to within a few percentage points using a simple
multiplicative factor to rescale GRACE water storage esti-
mates assuming a uniform distribution of water over the
basin and no water storage variation outside the basin. The
multiplicative factor k is then as follows:

k ¼
1

R0

Z

R

ĥ dW

0

@

1

A

�1

; ð4Þ

Figure 1. (a) Outlines of the High Plains aquifer (red) and of the convex portion of the simple basin
function (black). (b) Cross‐section of basin function near latitude 41 (black). Basin function truncated
to maximum degree Lmax = 60 (red). EBF, effective basin function.
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according to the work by Fenoglio‐Marc et al. [2006],
Velicogna and Wahr [2006], and Swenson and Wahr
[2007]. A second approach to determine bias and leakage
employs a hydrological model. From the model, an equiva-
lent rescaling factor is calculated as the ratio of hydrological
model water storage mean value over a basin to values
determined from the basin region after truncation and fil-
tering of GRACE Stokes coefficients.
[15] Leakage arises from hydrological conditions outside

the basin and is not generally described by a single multi-
plicative factor. Bias and leakage correction methods are
summarized in Table 1, highlighting the different assump-
tions. Rodell et al. [2009] emphasized the importance of
adapting bias and leakage estimation methods to a particular
basin and estimated water storage variation. Recently, Baur
et al. [2009] proposed an iterative process using forward
modeling to correct for both bias and leakage.
[16] If temporal water storage variations are spatially

homogeneous over a large area, bias and leakage partially
cancel one another and filtered GRACE solutions may agree
quite well with unfiltered estimates of water storage from
hydrological models [Chen et al., 2005]. Leakage effects tend
to be reduced for basins near oceans, where storage variations
are generally smaller, with the result that the bias effect may
cause filtered GRACE data to significantly underestimate
water storage variations in the basin. Additional leakage

problems have been observed for adjacent basins whose
storage changes are out of phase (e.g., the Orinoco and
Amazon basins).
[17] The different processing steps to estimate GRACE

water storage variations at basin scale are synthesized in
Figure 2. There were two main objectives in this study. The
first (section 3) was to survey methods for estimating water
storage variations considering problems of bias, leakage, and
GRACE error, especially for basins with spatial dimensions
near the limit of GRACE resolution, between ∼450 and
750 km, and to determine the best concentration/filtering
method that minimizes GRACE error and leakage correc-
tion error. A number of previously published approaches
were surveyed and compared with an optimal concentration
method on the basis of spatiospectral localization [Simons
et al., 2006]. The second objective (section 4) was to derive
and then apply the best suited method minimizing both
GRACE error and leakage correction error for the particular
case of the High Plains Aquifer (HPA) in central North
America (Figure 1), a major groundwater resource. The HPA
provides an interesting and useful test case to evaluate meth-
odologies because of its size, irregular shape, and availability
of detailed surface and groundwater monitoring. To supple-
ment in situ observations, leakage effects were quantified
using a numerical data‐assimilating water storage model.
Results from this study are important for testing the appli-

Table 1. Synthesis of Bias and Leakage Correction Methodsa

Method Assumption

Same processing applied to GRACE and
a priori hydrological model

Fully trusts a priori hydrological model relative amplitude between
inside and outside the basin of interest (i.e. spatial patterns). Model
error damped by (h − ĥ). Generally expressed as a single
multiplicative coefficient.

Equation (1) + Equation (2)

bias ¼
1

R0

Z

R

S0 h� ĥ
� �

dW and leak ¼
1

R0

Z

��R

Sleak ĥ d�

Partly trusts a priori hydrological model relative amplitude over (h − ĥ).
Model error damped by (h − ĥ). Bias and leakage contributions are
calculated separately. Corrections expressed as time series.

Equation (4) + Equation (2)

k ¼
1

R0

Z

R

ĥ dW

0

@

1

A

�1

and leak ¼
1

R0

Z

��R

Sleak ĥ d�

No a priori for water mass variations inside the area of interest except
homogeneity, trusts a priori hydrological model amplitude outside the
area of interest. Model error damped by (h − ĥ). Required when the
a priori model does not fully model water storage variations (e.g.,
groundwater system) or when studying localized phenomena.
Leakage correction expressed as time series.

aGRACE, Gravity Recovery and Climate Experiment.

Figure 2. Diagram synthesizing the Gravity Recovery and Climate Experiment (GRACE)satellite pro-
cessing for basin‐scale water storage estimate on the basis of level 2 spherical harmonics products.
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cability of GRACE to other areas of similar size and irregu-
larity in shape.

3. Filtering and Construction of the Effective
Basin Function

[18] Construction of GRACE changes in water storage
typically involves two steps. The first is to filter GRACE data
to suppress noisy high‐degree and high‐order SH coeffi-
cients, and the second is to find an effective basin function ĥ
best concentrated within the region of interest considering a
limited range of SH. These steps are treated separately in this
study, although they are not completely independent. Filter-
ing affects concentration by removing signal at high degrees
and orders, as shown by Chen et al. [2007] , and concentra-
tion may improve the signal‐to‐noise ratio by limiting noise
leakage into the region of interest [Han et al., 2008]. The
quest to find the optimal filtering and concentration methods
depends on the nature of the noise, size, and shape of the
region of interest, and to some extent the hydrological setting
of the region. Therefore, solutions need to be tailored to the
region of interest. Three parameters are listed to measure the
quality of an EBF. The first two depend only on geometrical
properties of the region of interest: (1) the EBF concentration
L and (2) b = k−1, the mean value of the EBF over the region
of interest (the reciprocal bias). The third parameter mea-
sures the efficiency of investigated methods: the final error
D�S0 on GRACE basin‐scale water storage estimate after
bias and leakage corrections.

3.1. Filtering to Suppress GRACE Measurement Noise

[19] Two types of filters for suppression of noisy SH
coefficients are in general use: (1) fixed parameter filters
and (2) data adaptive filters (i.e. filters that adjust their
transfer functions according to an optimizing algorithm).
Fixed parameter filters include isotropic gaussian (applied
equally to all orders at each degree) [Jekeli, 1981;Wahr et al.,
1998] and cosine taper or anisotropic filters [Wooters et al.,
2007]. Data‐adaptive filters may use geophysical models or
GRACE observations to judge noise and signal levels. These
may be isotropic or anisotropic [Guo et al., 2010; Han et al.,
2005; Sasgen et al., 2006; Seo et al., 2006; Swenson and

Wahr, 2006; Kusche, 2007]. Additional examples include
the adaptive filter of Klees et al. [2008b], which minimizes
RMSE while accounting for signal variance and covariance
and the iterative least squares filter to pass signal and reject
noise using a priori water storage estimates from hydro-
logical models [Ramillien et al., 2005].
[20] Besides suppression of noisy high‐degree Stokes

coefficients, another important problem is suppression of
longitudinal stripes found in most current GRACE solutions.
These stripes are due to the ill‐posed nature of the least
squares estimation problem [Save, 2009] and to aliasing of
geophysical signals at time scales <1 month [Seo et al.,
2008]. Swenson and Wahr [2006] developed an effective
data‐adaptive polynomial filter to remove the stripes. It is
possible that future GRACE product releases will suppress
these stripes. A modified version of the Swenson and Wahr
[2006] destriping filter was applied in this study. A fourth‐
degree polynomial was fit for SH orders 6 to 40. Above
SH degree 40, the polynomial degree was reduced to 3 up
to degree 50.
[21] The performance of the following common fixed‐

parameter filters was examined. An isotropic gaussian filter,
expressed by coefficients Wl for all orders of SH of degree l:

Wl ¼ exp �
l rð Þ2

4 ln 2ð Þ a2

 !

;

where r is the half‐length radius of the filter (Figure 3).
Sasgen et al. [2006] showed that the optimal isotropic Wiener
filter is close to a gaussian filter with a 400 km half radius.
An isotropic cosine taper, also defined in the SH domain by
the following (Figure 3):

Wl ¼

1 if l < l1
1

2
1þ cos �

l � l1

l2 � l1

� �� �

if l1 < l < l2

0 if l > l2

8

>

<

>

:

The half‐length wavelength is defined as 2� a
l1 þ l2ð Þ . The cosine

taper has the advantage of suppressing only the highest SH
degrees, leaving mid‐degrees unchanged. The bandwidth is
also better limited, suppressing entirely SH degrees above l2.

Figure 3. Transfer function of isotropic spherical harmonic (SH) filters used in this study, a 300‐km
gaussian filter, and cosine taper from degrees 30 to 50.
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3.2. Construction of the Effective Basin Function

[22] The purpose of EBFs is to best describe the area of
interest considering the maximum degree Lmax of GRACE
products. No EBF can be strictly both space‐limited and band‐
limited to a range of SH coefficients below Lmax [Percival and
Walden, 1993]. Although space‐limited methodsmay be seen
as most adapted to examine specific regions of interest,
truncation of the SH expansion to degree 60 affects their
shape (Figure 1b). Methods that work directly with the SH
coefficients are thus more suited to investigate water mass
variations from GRACE associated with a localized geo-
physical phenomenon because they allow control over the
useful range of Stokes coefficients.
[23] The simplest approach to the concentration problem is

to truncate the exact basin function to the range of available
SH. An east‐west section through a simple truncated basin
function (Lmax = 60) is shown in Figure 1b, along with related
statistics concerning bias and leakage. Simple truncation
produces large oscillating side lobes outside the region of
interest. Two modifications to this approach were also exam-
ined in this study. The first modification is to use a truncated
function with the smallest convex region containing the basin
of interest as indicated in Figure 1a. The MATLAB “con-
vhull” function was used to select from the original contour
the contour points describing the smallest convex shape. This
simple geometric operation leads to smoothing of compli-
cated basin shapes and increases the amplitude of low‐ and
mid‐SH degrees relative to simple truncation. The second
modification is to use a Hamming Window instead of sharp
truncation of Stokes coefficients. This reduces side lobes
outside the region of interest. Simple truncation and the two
modifications depend entirely on the geometry of the region
of interest.
[24] A data‐adaptive method developed by Swenson et al.

[2003] aims at minimizing the sum of GRACE error and
leakage error. This method is neither space‐limited nor band‐
limited (except if GRACE errors are considered as infinite
for l ≥ Lmax), but it has the important characteristic of
damping noisier high‐degree SH’s. The isotropic modification

of the basin function leads to ĥlm ¼ 1þ
2B2

l

ð2 lþ 1Þ�2
0
Gl

� ��1

hlm,

where Bl values are degree amplitudes of GRACE measure-
ment errors given in terms of an equivalent water layer, Gl

values are Legendre coefficients of an assumed exponentially
decaying signal spatial covariance function, and s0

2 is signal
variance. This EBF is generally insensitive to the correlation
length of the signal covariance function, and a value of
500 km was used in this study, in the midrange of that sug-
gested by Swenson et al. [2003]. This is referred to as
Swenson’s EBF in the following discussion. GRACE error is
taken as the formal error provided by GRACE processing
`centers. Because formal error likely underestimates true
error, Swenson’s window is used in combination with other
filters that suppress high SH coefficients. This windowwould
perform optimally using realistic error estimates, which are
not necessarily reported with GRACE products from the
various processing centers.
[25] Recently, new methods for SH analysis, called spa-

tiospectral localization, have been developed to maximize
the concentration parameter L [Simons and Dahlen, 2008].
This work follows from Fourier time series analysis results
from Slepian [1978], leading to multitaper spectral analysis

methods [Thomson, 1982]. The idea is to find, for maximum
SH degree Lh, functions that maximize the concentration L

from equation (3). Wieczorek and Simons [2005] derived
this result for axisymmetric windows and it was extended
to arbitrary domains by Simons et al. [2006]. There is a set
of functions ĥ that maximize L, and all are eigenvectors of
the eigenvalue problem Dĥ ¼ �ĥ, where matrix D contains
integrals of products of Legendre polynomials. The resulting
set of Slepian functions ĥ are orthogonal over both the entire
sphere and on the region of interest. Among the (Lh + 1)2

solutions to this equation, only well‐concentrated solutions
(l ≈ 1) are used. The number N of well‐concentrated solu-
tions ĥ is found from the equivalent of the Shannon number

on a sphere, N ¼ Lh þ 1ð Þ2
R0

4� a2
, which is the product of

the SH bandwidth and the normalized area of the basin of
interest [Simons et al., 2006]. Lhmay be chosen to be as large
as Lmax. However, in practice, Lh is maintained as small as
permitted by the size of the basin. The goal is to achieve a
balance between spatial and spectral concentration [Dahlen
and Simons, 2008] and to limit noise contamination from
GRACE high‐degree SH coefficients. The final EBF is built
as the sum of the chosen N well‐concentrated ĥ.

3.3. GRACE Noise Levels

[26] Numerous studies of GRACE errors have been pub-
lished. Wahr et al. [2004] and Seo et al. [2006] provide
overviews of the GRACE error budget in water storage
estimates using GRACE Release 1 (RL01) solutions. For a
given month, RMSE values are typically in the range of 5mm
(equivalent water thickness) for the fundamental GRACE
measurement (satellite to satellite range rate) and 10 to 50mm
for errors in atmospheric and oceanic corrections, depending
on latitude. GRACE measurements tend to be more precise
at high latitudes owing to increased track density associated
with a polar orbit, but atmospheric and oceanic dealiasing
products typically degrade in quality at higher latitudes
[Seo and Wilson, 2005]. Wahr et al. [2006] proposed an
estimate of error from nonseasonal GRACE residuals over
land, after subtracting annual and semiannual sinusoids and
smoothing, but this approach tends to overestimate errors
when there are significant nonseasonal signals. Chen et al.
[2009] estimated errors from residual variations over the
oceans, taking into account atmospheric effects not in deal-
iasing products. Deficiencies in oceanic dealiasing products
might cause this error estimate to be too large as well.
However, both error estimates are similar, with RMSE values
∼25 mm (equivalent water layer thickness) depending on the
latitude of the basin.
[27] Concentration effects (i.e. bias and leakage correction

errors) should also be considered when focusing on a space‐
limited area. In the following, bias is assumed to be corrected
using the multiplicative factor k, which implies spatially
homogeneous variations within the basin. For simplicity in
estimating leakage correction error, mass variations outside
the area of interest are also considered as spatially homoge-
neous with amplitude Sleak in the region of sensitivity of
the EBF. Leakage can then be rewritten as leak = b Sleak

with � ¼
R

W�R

ĥ d�. Finally, the total errorD�S0 may be written

asD�S0 = kD�̂S0 + �̂S0 Dk +D(kb) Sleak + kbDSleak. Total error
is the sum of the following:
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[28] (1) kD�̂S0, level 2 GRACE error estimate amplified
by bias correction. The methodology of Chen et al. [2009]
was used in this study to estimate D�̂S0. RMS variability
was calculated over all oceans in a latitudinal band containing
the basin but excluding ocean regions within 1000 km of
continents to avoid leakage from terrestrial storage changes.
Over an area equivalent to the High Plains Aquifer, the error
D �̂S0 is on the order of 10 mm using a 300‐km gaussian
smoother for GRACE data measured after 2002.
[29] (2) Dk �̂S0 þ Dðk�ÞSleak is the calculation error in

estimating bias and leakage effects. It includes both numeric
errors in integral calculation and error in approximating the
basin using rectangular grids. With 0.25‐degree grid reso-
lution, this error is <1% (Figure 4), and with 0.5‐degree grid
this error is <2%. A similar grid for a hydrological model
would accurately correct leakage effects.
[30] (3) kb DSleak is the error due to leakage correction,

which is derived from a hydrological model and linked to
the concentration parameter. This error is difficult to evaluate
because it requires an error estimate from an a priori hydro-
logical model. As a first guess, a standard deviation from
differences among VIC, MOSAIC, CLM, and NOAH land
surface models, included in Global Land Data Assimilation
Systems (GLDAS) [Rodell et al., 2004a], was used. Unfor-
tunately, all models in GLDAS use the same forcing dataset;
therefore, errors are probably correlated, and the resulting
value of 30 mm may thus be an underestimate.

4. Application to the High Plains Aquifer

[31] The unconfined High Plains Aquifer (HPA)
(450,000‐km2 area) (Figure 1a) is the principal source of
water for one of the major agricultural areas in the world in
central North America. The climate of the region is mostly
semiarid, with mean annual precipitation (P) ranging from
350 mm in the west to 750 mm in the east and mean annual
temperature ranging from 7.5°C in the north to 18°C in the
south [PRISM mean 1895–2008, www.prismoregonstate;
Daly et al., 2008; DiLuzio et al., 2008]. Potential evapo-
transpiration greatly exceeds precipitation; therefore, agricul-
ture in the region is heavily dependent on irrigation, mainly
from groundwater [McGuire, 2007]. The HPA was specifi-
cally mentioned in the National Research Council report

“Satellite Gravity and the Geosphere” as suitable for study
with a satellite system such as GRACE [Dickey et al., 1997],
and a prelaunch study by Rodell and Famiglietti [2002]
confirmed this. Since then, Strassberg et al. [2007, 2009]
verified that GRACE can monitor HPA water storage var-
iations, showing that at seasonal time scales, GRACE data
agree well with water storage estimates from ground‐based
measurements.

4.1. Data and Processing

[32] Two different GRACE data sets were used to test the
filtering and concentration schemes examined in this study.
The first is monthly samples from the Center for Space
Research (CSR) RL04 GRACE SH (Lmax = 60) [Bettadpur,
2007]. The second is 10‐day samples produced by CNES‐
GRGS RL01 (Lmax = 50) [Lemoine et al., 2007]. GRGS
solutions are stabilized so that the time‐variable part of the
Stokes coefficients diminish to 0 at degree 50. CSR and
GRGS solutions use the same range‐rate data and similar
geophysical models but employ independent processing
strategies. Therefore, it is interesting to compare results for
the HPA using both.
[33] In all cases, total water storage variations from

GLDAS NOAH [Rodell et al., 2004a], available on a 0.25‐
degree grid, was taken as the a priori hydrological model to
correct for leakage effects. GRACE mass storage estimates
were compared with GLDAS‐NOAH predictions (monthly
or 10‐day averages) and with water storage variations
derived from groundwater table elevations and soil moisture
point measurements and analyzed by Strassberg et al.
[2009]. The soil moisture and groundwater data were also
analyzed at a daily time step using the Karhunen‐Loeve
transform to extract significant modes of spatial and tem-
poral variability from the point measurements. Kriging was
then performed on the spatial pattern associated with each
mode to calculate a spatial mean. The details of this modal
upscaling analysis are beyond the scope of this paper and can
be found in the work by Longuevergne et al. [2007]. The
resulting time series is, however, given as an alternative to
that of Strassberg et al. [2009]. They calculated mean soil
moisture variations over a 1‐degree grid when data were
available. A seasonal signal was assumed to calculate
groundwater storage variations and determined using available
data. Differences between the two estimates provide a mea-
sure of uncertainty inwater storage estimates derived from the
point measurements. At monthly time scales, the variance of
the mode‐derived time series is reduced relative to that of
Strassberg et al. [2009] by 8%, and the correlation between
the two analyses is 0.92.

4.2. Comparison of Concentration Methods

[34] Five different EBFs have been used to estimate HPA
water storage variations from GRACE (Figure 5). In the
case of the Slepian EBF, the maximum degree and order
was set at Lh = 50 and the first two solutions to the eigen-
value problem Dĥ ¼ �ĥ were used to describe the elongated
shape of the HPA. Experimentation with a large value Lh = 60
(a possibility with the CSR solution) would allow computing
an EBF on the basis of the first three solutions and better
describe the shape of the HPA. However, this choice did not
significantly improve concentration and reciprocal bias;
therefore, using the full range of Stokes coefficients avail-

Figure 4. Convergence on bias and leakage calculation
with respect to grid size for the High Plains Aquifer (HPA).
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able with the CSR solution would not be optimal in terms of
final error.
[35] Leakage problems are illustrated after rescaling the

EBF to restore the signal amplitude (Figure 5a). Side lobe
oscillations are partially damped by gaussian filtering. Other

methods besides the truncated basin function, including the
convex truncated basin function, are less subject to oscil-
lation problems. When a filter is applied, the EBFs converge
more quickly toward 0 outside the area of interest.

Figure 6. Spectrum characteristics of EBFs. (a) Swenson’s EBF; (b) Slepian’s EBF, both relative to the
exact basin function; and (c) RMS amplitude spectra of GRACE estimates as a function of SH degree
after a 300‐km gaussian filter and bias correction are applied.

Figure 5. a) Comparison among several EBFs for the HPA at latitude 40°N. SH expansion maximum
degree is 60. The Slepian [1978] EBF is the sum of the first two eigenvectors, with Lh = 50. Differences
between EBFs and the true basin ĥ − h for (b) Swenson’s EBF and (c) Slepian’s EBF.
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[36] The difference between the EBF ĥ and the true basin
h was used to evaluate bias and leakage effects (Figures 5b
and 5c). The fact that the EBF is not homogeneous over the
entire region of interest should be taken into account,
especially for irregularly shaped basins such as the HPA.
[37] The five EBFs have different characteristics affecting

the SH spectrum of the solution (Figure 6). Swenson’s EBF
damps the highest‐degree coefficients to reduce Stokes
coefficient errors that increase with degree. In contrast, the
convex function amplifies the highest degrees and diminishes
the lowest degrees (Figure 6c). Because the Slepian EBF is
derived by an optimization process, it is not simply related to
the exact basin function. At low degrees, EBFs are identical,
but at higher degrees, specific degrees and orders are ampli-
fied or damped (Figure 6b).
[38] After windowing by the original basin function, the

GLDAS spectrum diminishes slowly as SH degree increases
(Figure 6c), but GRACE error limits the ability to recover
these high degrees. Swenson’s EBF, which uses the GRACE
formal error spectrum, is likely themost effective in accounting
for this. The Slepian EBF offers a trade‐off among the EBFs,
retaining mid‐degrees to describe the basin shape while
diminishing rapidly at higher degrees.
[39] Leakage correction requires knowledge of the signal

exterior to the basin and was estimated on the basis of the
GLDAS‐Noah stored water variations (considering snow,
vegetation, and soil moisture) for various EBFs (Figure 7).
Swenson’s EBF and Slepian’s EBF reduce leakage below
15 mm most of the time. Leakage is also dependent on the
filtering method.
[40] Bias was computed using both GLDAS‐Noah as a

priori information for true water storage inside the area of
interest and the geometric multiplicative factor k. GLDAS‐
Noah‐derived bias may then be expressed as an equivalent
multiplicative factor by a least squares fit to uncorrected
GRACE data (Table 1). Both estimates may differ by up to
40%. Indeed, GLDAS‐Noah does not model groundwater
storage variations and therefore significantly underestimates

true water storage changes inside the HPA. For this reason,
the SH approach described above was used to estimate the
bias factor k.

4.3. Noise Reduction–Spatial Resolution Trade‐Off

[41] Error in GRACE water storage estimates is linked to
both the EBF properties and to the filtering method. An
unfiltered EBF may exhibit excellent concentration, but in
combination with filtering, concentration is diminished with
resulting increases in bias and leakage (Figures 8a and 8b).
The destriping filter may have a large impact, because this
filter removes variance similar in shape to the HPA, which
trends north‐south. However, the real impact of the destriping
filter is difficult to determine accurately. The destriping filter
is data‐adaptive (i.e., not a conventional linear filter) and
fitted to GRACE data directly; therefore, predicting its effect
cannot be undertaken by destriping the shape of the aquifer or
results from hydrological models. In practice, as shown in
Tables 2 and 3 and Figure 8, the amplitude of CSR time series
is very close to that of the GRGS time series (which does not
require any destriping) and to that of ground data. Therefore,
destriping is assumed to have little effect on concentration and
bias in the following analysis. GRACE error without des-
triping is as high as 50 mm most of the time, whereas use
of the destriping filter reduces GRACE error by a factor of
∼10 (not shown in Figure 8c). This filter is thus absolutely
necessary for CSR RL4 solutions. A cosine taper filter is
an interesting alternative to the gaussian filter and reduces
leakage problems by filtering the highest degrees only and
leaving mid‐degrees unchanged. It also has better spectral
characteristics than the gaussian filter.
[42] Compared to a truncated basin function, the convex

basin function decreases bias, showing that this simple geo-
metric operation can be useful for smaller basins. However,
it does not perform well for the HPA because of the indented
shape of the HPA (its boundary is in places concave). Con-
centration is diminished as a result, leading to larger leakage.

Figure 7. Leakage effect associated with various concentration methods after a cosine taper between
degree 30 to 50 is applied, considering Global Land Data Assimilation Systems (GLDAS) ‐Noah stored
water variations (snow, vegetation and all soil moisture layers) as a‐priori information.
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However, the leakage is more concentrated near the edge of
the HPA compared to a simple truncated EBF. The Hamming
EBF is generally inferior relative to the truncated or convex
EBF. Swenson’s EBF performs very well, providing high
concentration despite the complicated shape of the HPA.
[43] For the CSR solution, the best combined concentration/

filtering method is the Slepian EBF, supplemented by a
cosine taper between degrees 30 and 50, which results in a
final RMSE of ∼25 mm. When using a 300‐km Gaussian
filter, GRACE error is higher (10mmversus 7mm); however,
the leakage correction error is lower (∼14 mm versus 18 mm).
The optimum concentration/filtering method for the GRGS
solutions is quite different because GRGS solutions are sta-
bilized. Because of the lack of stripes in GRGS solutions, in
contrast to CSR solutions, no additional filtering is optimum.
Despite the GRGS Lmax = 50, GRACE error is higher (15 mm)
but leakage correction error is reduced to 12 mm. The final
chosen filtering/concentration methods are described in
Table 2.
[44] When using the CSR solution for the HPA, the choice

of filtering method to reduce noise is more critical than the
concentration method. Most of the concentration methods
lead to errors within 5 mm of one another. In contrast, the
concentration method was more important for the GRGS
solution, which does not require additional filtering for the
HPA.
[45] Deriving basin scale water storage estimates using a

truncated EBF does not lead to error estimates that are sig-
nificantly higher. However, the sensitivity of truncated EBFs
to external masses may extend quite a distance from the
region (Figure 5), which is not properly translated here in the

leakage correction error estimate. As a result, leakage cor-
rection errors may be underestimated, especially in the case of
large spatial variations in water storage (e.g., in monsoon
areas). In the latter cases, the use of a Slepian [1978] window,
by maximizing concentration, would minimize sensitivity to
water masses outside the area of interest and thus, leakage
error.
[46] GRACE error for deriving total water storage varia-

tions in both saturated and unsaturated zones is slightly lower
than the GLDAS‐Noah estimated error, which is limited to
soil moisture variations. GRACE thus provides meaningful
data to improve knowledge of the water cycle over the HPA
and to recover groundwater storage variations (Figure 9).

4.4. Water Storage Variations in the High
Plains Aquifer

[47] The optimal combination of concentration/filtering
was applied to extract stored water variations for the HPA.
The selected processing scheme and the main characteristics
are summarized in Table 1. CSR and GRGS solutions employ
independent processing strategies and require different pro-
cessing methods, but GRACE water storage estimates agree
well (Figure 8), which provides confidence in the method-
ology and processing choices selected.
[48] Agreement between ground‐based total water storage

estimates and GRACE estimates is generally very good,
except for the April 2003 peak. Correlations are ≥0.8 for
CSR at monthly and seasonal time scales and ≥0.70 for
GRGS solutions at 10‐day time scales (Table 2). Although
HPA is large, discharge from irrigation and evapotranspi-
ration and recharge from precipitation are far from uniform

Table 3. Correlation and Amplitude Factor Between GRACE‐Derived Water Storage Variations and Soil Moisture+Groundwater

Analysis for Several Time Scalesa

CSR GRGS

Cor. 30 d Cor. 90 d Fact. Cor. 10 d Cor. 30 d Cor. 90 d Fact.

HPA 0.80 0.87 1.18 0.70 0.71 0.77 1.12
HPA north 0.79 0.84 1.13 0.75 0.77 0.83 1.10
HPA south 0.80 0.88 1.12 0.75 0.78 0.87 1.12

aThe amplitude factor is defined as the ratio between the standard deviations. Cor. stands for correlation and Fact. for amplification factor.

Table 2. Filtering and Concentration Applied for GRACE Processing on the High Plains Aquifer

Processing Applied CSR Solutions GRGS Solutions

HPa 450,000 km2 Filter method
Concentration method
Concentration L

Multiplicative factor k
RMS error

Cosine taper [30 50]
Slepian EBF N = 2 Lh = 50
0.60
1.64 (1.23 using GLDAS‐Noah)
24 mm

No filter
Slepian EBF N = 2 Lh = 50
0.66
1.45 (1.08 using GLDAS‐Noah)
26 mm

Northern part of HPa,
210,000 km2

Filter method
Concentration method
Concentration L

Multiplicative factor k
RMS error

Cosine filter [40 60]
Slepian EBF N = 1 Lh = 50
0.60
2.0 (1.32 using GLDAS‐Noah)
30 mm

No filter
Slepian EBF N = 1 Lh = 50
0.60
1.66 (1.10 using GLDAS‐Noah)
30 mm

Southern part of HPa,
240,000 km2

Filter method
Concentration method
Concentration L

Multiplicative factor k
RMS error

Cosine filter [30 50]
Slepian EBF N = 1 Lh = 50
0.55
1.66 (1.29 using GLDAS‐Noah)
30 mm

No filter
Slepian EBF N = 1, Lh = 50
0.58
1.47 (1.18 using GLDAS‐Noah)
30 mm
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over the HPA, making spatial resolution a challenging issue.
Moreover, the EBFs for the HPA as a whole are not homo-
geneous because of differential hydrological behavior and
the elongated shape of the aquifer (Figures 6b and 6c); there-
fore, division into subregions should conform better to the
homogeneity hypothesis assumed when using a simple scalar
bias correction k. To test this idea, the aquifer has been sub-

divided into a northern part (210,000 km2) and a southern
part (240,000 km2) by the 40th parallel. The northern and
southern parts of the aquifer behave differently. For example,
the 100 mm recharge event during September–October 2004
is restricted to the southern part of the aquifer (Figure 9).
Correlation with GRACE estimates is retained for the sub‐
basin time series, which validates the concept of using

Figure 8. Variation of reciprocal bias, concentration, and final GRACE error estimate for the HPA as a
function of the concentration method and the filtering method used (gaussian or cosine taper as a function
of the filter half‐width). Destriping effect is shown for a truncated basin function only. Maximum degree
for SH expansion is 60. Slepian function is built as the sum of the two first tapers, the bandwidth being
limited by Lh = 50. (a) Concentration; (b) mean value of EBF or reciprocal bias; (c) CSR GRACE error
after destriping algorithm is applied and leakage correction error; (d) CSR total error; (e) GRGS GRACE
error and leakage correction error; and (f) GRGS total error.
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GRACE to study regions at this scale. Note that the optimal
filter for CSR solutions differs for the northern and southern
parts of the aquifer.
[49] GRGS 10‐day solutions provide improvedmonitoring

of rapid water storage variations, such as those related to
aquifer pumping during spring 2003 and spring 2006.
Even if the correlation between GRACE and ground‐based
measurements is slightly lower compared to monthly sam-
pling, its value (≥0.70) at 10‐day time scales indicates that

interesting information is available at shorter time scales than
provided by the CSR solutions.
[50] In all cases, variance in GRACE water storage esti-

mates exceeds that of ground‐based water storage by 10%–

18%. There are several potential explanations for this,
including (1) overestimation of bias corrections using the
simple multiplicative factor k, (2) underestimation of leakage
corrections related to underestimation associated with the
GLDAS‐Noah water storage estimates, and (3) inadequate

Figure 9. Comparison between GRACE‐derived stored water variations for both CSR and GRGS solu-
tions with water storage derived from ground‐based measurements and GLDAS‐Noah model. Only
GRACE measurement error is shown for clarity, leakage correction error is excluded (∼13 mm). SM
and GW stand, respectively, for soil moisture and groundwater measurements.
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ground measurements producing biased regional estimates.
Strassberg et al. [2009] found closer agreement between
GRACE and surface estimates with GRACE variance
exceeding ground‐based variance by 5%–10 %.

5. Summary

[51] This study investigated how different processing
choices may affect GRACE level 2 estimates of water storage
variations, considering problems of bias, leakage, andGRACE
error when focusing on spatial scales near the limit of GRACE
resolution, between ∼450 and 750 km. Leakage correction in
particular relies on an a priori hydrological model; therefore,
leakage should be reduced to make GRACE water storage
variations independent from a priori hydrological models.
Spatiospectral concentration was introduced to minimize
leakage effects. This method allows restriction of the spherical
harmonic bandwidth to achieve a balance between spatial and
spectral concentration, optimally describing the shape of the
basin while avoiding noise contamination from noisy high
degrees Stokes coefficients. Reliable estimates of water
storage variations require a trade‐off among GRACE noise
reduction, maximum spatial resolution, and minimum spatial
leakage, achieved by minimizing errors related to GRACE
and leakage correction. Optimum filter type and concentration
methods may vary from basin to basin, depending on geo-
graphical location, shape, characteristics of hydrological
signals in and surrounding the basin, and also GRACE noise
characteristics. As a result, the optimized method varies from
region to region and should be determined separately for each
basin and the particular GRACE solution.
[52] To increase confidence in derived methods, water

storage variations were calculated for both CSR and GRGS
solutions, which employ different processing strategies. The
approach to developing a processing scheme in this study
was validated for the High Plains Aquifer, where intensive
monitoring of soil moisture and groundwater has been con-
ducted. Using the CSR GRACE solution for small basins, the
choice of filtering method is more critical than the concen-
trationmethod. In contrast, the concentrationmethodwasmore
important for the GRGS solution, which does not require
additional filtering in this case. In both cases, the Slepian
[1978] window was found to be the most suitable method
for deriving estimates of water storage variations from
GRACE in a space‐limited area. These windows are indeed
optimized to reduce leakage effects, considering a limited
range of Stokes coefficients. The final error is ∼25 mm,
demonstrating the ability of GRACE to improve knowledge
of the water cycle over the HPA and to recover groundwater
storage variations using appropriate methods.
[53] With suitable concentration and filter methods, it is

possible to divide the HPA into two subregions, demon-
strating that GRACE can be used effectively with basins as
small as ∼200,000 km2, with irregular shapes. The shorter
10‐day temporal sampling of GRGS solution also appears
to provide useful monitoring of rapid water storage varia-
tions, such as those related to groundwater pumping.
[54] An important lesson from this study is dependence on

oceanic and atmospheric models, as well as data‐assimilating
land surface models such as GLDAS to optimize the use of
GRACE data. While a goal of the GRACE mission is to
provide independent measures of the water cycle, it is clear,

especially for smaller basins, that an iterative analysis will
be most effective. In all future gravity measurements from
space, it is anticipated that land surface models will continue
to guide the formulation of GRACE water storage variation
estimates as, in turn, GRACE or other gravity satellite esti-
mates contribute to land surface models.
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