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Statistical Biases and Very-Long-Term Time 
Stability Analysis

François Vernotte and Éric Lantz

Abstract—The prediction of very-long-term time stability is 

a key issue in various fields, such as time keeping, obviously, 

but also navigation and spatial applications. This is usually 

performed by extrapolating the measurement data obtained by 

estimators such as the Allan variance, modified Allan variance, 

Hadamard variance, etc.

This extrapolation may be assessed from a fit over the vari-

ance estimates. However, this fit should be performed on the 

log-log graph of the estimates, which corresponds to a least-

squares minimization of the relative difference between the 

variance estimates and the fitting curve. However, a bias exists 

between the average of the log of the estimates and the log of 

the true value of the estimated variance.

This paper presents the theoretical calculation of this log-

log bias based on the number of equivalent degrees of freedom 

of the estimates, shows simulations over a large number of 

realizations, and provides a reliable method of unbiased loga-

rithmic fit. Extrapolating this fit yields a more confident as-

sessment of the very-long-term time stability.

I. I

T stability of clocks and oscillators is generally as-
sessed by estimators such as the Allan deviation, mod-

ified Allan deviation, Hadamard deviation, etc. However, 
unlike the variance estimates, the deviation estimates are 
severely biased and should not be used for further calcula-
tions, such as fit.

On the other hand, the prediction of very-long-term 
time stability is usually performed by fitting and extrapo-
lating an Allan variance (AVAR) curve. Such a curve may 
be modeled as

σ τ τ τ τy
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An extrapolation may be achieved by extending the as-
ymptotes of such a curve beyond the largest τ value (see 
Fig. 1).

The Ci coefficient are related to the noise levels hα of 
the power law noise model by Table I, [1]:
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and to the linear frequency drift D1:

y t D D t t( ) = ( )0 1+ + η , (3)

where η(t) represents the pure random component of the 
frequency deviation y(t).

However such an extrapolation is very sensitive to esti-
mation errors. It is then of importance to perform a reli-
able estimation of the Ci coefficients. The weighted rela-
tive least squares are an effective method [2] which is 
weighted, to take into account the uncertainty ∆j over 
each estimate ˆ ,σ τy j

2( )  and relative, to be equivalent to a 
classical least square fit on the log-log plot by minimizing 
the relative distance between the curve and the estimate 
[(estimate − curve)/estimate],
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It is important to emphasize that for the relative fit, 
i.e., the fit of ∆ˆ ˆσ σ

2 2/  and not of ∆σ̂ 2, that 1) it ensures
that the fit will minimize the relative differences between 
the curve and the estimates (e.g., 10% for an estimate at 
the 10−14 level as well as 10% for an estimate at the 109 
level), whereas a classical fit would minimize the absolute 
differences, overwhelming the small estimates; and 2) be-
cause dx/x = d ln x, it is exactly equivalent to a classical 
fit on the log of the estimates.

As a consequence, this extrapolation method is based 
on the logarithm of the estimates and not the estimates 
themselves. We know that the estimate σ̂ τy

2( ) is an unbi-

ased estimator of σ τy
2( ), but it is not known if ln(ˆ )σ τy

2( )  is 

an unbiased estimator of ln( )σ τy
2( ) .

II. S A

A. Statistics of the Allan Variance and the Allan 
Deviation

The definition of the Allan variance is [3], [4]

σ τy y y2
2 1

2
( ) =

1

2
.〈 〉−( ) (5)

The estimate of the Allan variance may be calculated as
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Because y2 and y1 are Gaussian values1, y y2 1−  is a Gauss-

ian centered value, so y y2 1
2

−( )  obeys a χ1
2 distribution;

therefore, 1 2
=1 2 1

2/( ) ( )N y y
i

N
∑ − is a χν

2 distribution with ν
= N if the y i samples are independent, with ν < N other-
wise. ν is the number of equivalent degrees of freedom 
(EDF).

The χν
2 distributions have the following properties:

E( )2χν  = ν, and var( )2χν  = 2ν ( std⇒ ( )2χν  = 2ν).
As shown by Fig. 2, the number of EDF reflects the 

AVAR estimates dispersion. A method for assessing the 
EDF may be found in [6].

B. Model World and Measurement World

Let us define [see Fig. 3(a)] θ as the model parameter 
and ξ as the measured data of the parameter. For exam-
ple, we could consider the true value σ τy

2(  = 10 s) = h0/20 

(where h0 is the white FM level) as a parameter; σ̂ τy
2( ) is a 

measurement data of σ τy
2(  = 10 s).

Two problems are generally addressed: the direct prob-
lem, which attempts to forecast the measurement data 
knowing the parameter and the inverse problem, which 
aims to estimate the parameter knowing the measurement 
data. In the same vein, Tarantola distinguishes the model 
space, i.e., the space in which the parameter is given, from 
the data space, i.e., the space in which the measurement 
data are given [7]. In the following, we will use the terms 
model world and measurement world.

1) Model World (Direct Problem): In the direct prob-
lem, the task is to determine how the measurement data ξ 
are distributed when the parameter θ0 is known [see Fig. 
3(b)]. However, the parameter θ0 is precisely the unknown 
quantity that we want to estimate. This parameter is only 
known in theory and simulations.

2) Measurement World (Inverse Problem): In the in-
verse problem, the task is to estimate a confidence inter-
val over θ from the known measurement data ξ0 [see Fig. 
3(c)]. This is the usual task of the metrologist.

C. Study of a χ2 Distribution With ν = 1 Degree of 
Freedom

1) Properties: The properties of a χ1
2 distribution are

discussed in this section [8]. The probability density func-
tion (PDF) is

Fig. 2. Dispersion of Allan variance (AVAR) estimates for a pure white 
frequency noise and their equivalent degrees of freedom, ν (65 536 sam-
ples at 1 s).

TABLE I. T R   A V   D N T   
P L M    L F D. 

Sy( f ) h+2 f +2 h+1 f +1 h0 f 0 h−1 f −1 h−2 f −2 y(t) = D1t
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For the high frequency noises ( f +2 FM and f +1 FM), it is necessary to introduce a high cut-off frequency fh [10].

Fig. 1. Extrapolation of a least square fit. The graph shows the Al-
lan deviation (i.e., the square root of the Allan variance) but the fit 
was performed over the Allan variance estimates according to the cri-
terion (4) using SigmaTheta-1.2 [15]. The equation of the curve is [(4.7 
· 10−13)2τ −2 + (3.1 · 10−13)2τ −1 + (4.8 · 10−14)2 + (1.2 · 10−15)2τ +1 +
(5.2 · 10−18)2τ +2]1/2.

1 It is generally accepted that the frequency deviation samples follow 
statistics that can be approximated by a Gaussian model [5], although 
the non-stationary effects of low-frequency noises could limit the rel-
evance of this model.
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The PDF is normalized:

0
( ) = 1

∞

∫ p X Xd . (8)

The mathematical expectation is

E X X p X X( ) = ( ) = = 1
0

∞

∫ ⋅ d ν . (9)

We can define the logarithmic mean as the exponential of 
the mathematical expectation of ln (X )

e X p X X

e
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C

(ln ) exp ln

,
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0
= ( ) ( )

=
2

0.2807
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−

∫ ⋅








≈

d
 (10)

where C is the Euler constant; C ≈ 0.57722. The cumula-
tive distribution function (CDF) is

P X p y y
XX

( ) = ( ) = 1
(1 2, 2)

0∫ −d
/ /incΓ

π
, (11)

and the inverse CDF is

P− −
−

1 1( ) = 2 1 2, (1 )α π αΓ inc /( ). (12)

This relationship is useful for getting the bounds of a con-
fidence interval.

How is the reduced variable X of the relationships (7) 
to (11) related to the measurement data ξ and the model 
parameter θ ?

2) Parameter, Measurement, and Reduced Variable: Let
us consider the standard χ1

2 variable X = x2 where x is a 
Gaussian centered standard random variable:

E X E
X

( ) = = 1 = 1.ν
ν

⇒ ( )  (13)

It is well known that σ̂ τy
2( ) = ξ is χ1

2 distributed; ξ is an

unbiased estimator of the parameter σ τy
2( ) = θ. Therefore,

E
ξ

θ
( ) = 1. (14)

We can then define the reduced variable X as

X = = .ν
ξ

θ

ξ

θ
(15)

The differential dX is then

d d dX
X X

= .
∂
∂

+
∂
∂ξ

ξ
θ
θ (16)

3) Conditional Probabilities in the Model World (Direct
Problem): The parameter θ is a constant. Let θ = θ0; the 
differential dX is then:

Fig. 3. (a) Model parameter and measurement data for a χ1
2 distribution

(106 realizations of θ · χ1
2 for θ = 10k and −3 < k < +9). (b) Measure-

ment dispersion for a parameter θ0 ≈ 1. (c) Model parameter values for 
a measurement data ξ0 ≈ 1.
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d d dX = =
1
.

0 0

ν

θ
ξ
θ
ξ (17)

From (17) and the relationships (7) to (9), we find the 
conditional probability density function:

p
e

( | ) =
2

.0

(2 )

0

0

ξ θ
πθ ξ

ξ θ− /

(18)

ξ is unbiased:

E p( ) = ( | ) = .
0

0 0ξ ξ ξ θ ξ θ
∞

∫ ⋅ d (19)

The logarithmic mean is

e p

e

E

C

ln exp ln( )

0
0

0 0

= ( ) ( | )

=
2

0.2807 .

ξ ξ ξ θ ξ

θ θ

[ ]
∞

−

∫ ⋅






≈ ⋅

d
 (20)

Thus, the mathematical expectation of the log of the mea-
surement data does not converge to the log of the pa-
rameter. Therefore, there is a significant bias for log-log 
representation (and fit); let us call it the log-log bias.

4) Conditional Probabilities in the Measurement World
(Inverse Problem): The measurement data ξ is a constant. 
Let ξ = ξ0; the differential dX is then

d dX = .
0

2
−
ξ

θ
θ (21)

From (21) and the relationships (7)–(9) comes the condi-
tional probability density function:

p e( | ) =
2

.0
0
3

(2 )0θ ξ
ξ

πθ

ξ θ− / (22)

There is no mean value,

E p( ) = ( | )
0

0θ θ θ ξ θ
∞

∫ ⋅ d (23)

does not converge. The logarithmic mean is

e p

e

E

C

ln exp ln

.

( )

0
0

0 0

= ( ) ( | )

= 2 3.562

θ θ θ ξ θ

ξ ξ

[ ]
∞

∫ ⋅








≈ ⋅

d
 (24)

In the measurement world also, the mathematical ex-
pectation of the log of the parameter does not converge 
to the log of the measurement data. However, this bias is 
exactly the inverse of the log-log bias defined previously. 
(This property will be demonstrated later in a more gen-
eral context, see Section II-D.) This implies that we just 
have to renormalize the measurement data by the log-log 
bias to get both an unbiased estimator in the model world 

and a mathematical expectation of the parameter equal to 
the measurement data in the measurement world.

D. Generalization to Any Positive-Valued Random Process

Let ξ be a positive-valued estimator constructed with 
M measurement data resulting from a random measure-
ment process. ξ is itself a random variable in the model 
world, which we assume to have a mean. The most obvi-
ous example is Allan variance. Another example is the 
estimation of the standard deviation. It is quite generally 
possible to define a new reduced variable,

Y
k

=
0

ξ

θ
, (25)

which obeys (13), unlike X:

EY Y pY Y( ) = ( ) = 1
0

∞

∫ ⋅ d . (26)

Let Z = f (Y) be a monotonic function of Y. A funda-
mental property of density probabilities is

p Y Y p Z ZY Z( ) = ( )d d , (27)

where the subscripts emphasize the fact that the differ-
ent density probabilities are different functions (these sub-
scripts are, as usual, omitted in the following). An imme-
diate consequence is, for Z = ξ,

0
0( ) =

∞

∫ ⋅ξ ξ ξ θp kd / . (28)

If X is a standard χM
2  variable with ν = M degrees of 

freedom, then Y = X/ν ; with ξ a variance measurement 
data, we have, in the model world, k = 1 and (28) means 
that ξ is an unbiased estimator of the true variance θ 0. In 
the case of standard deviation estimation, the square root 
of the Allan variance is a biased estimator, but the value 
of k can be easily calculated as a function of M (the esti-
mator is convergent: k → 1 if M → ∞) and (28) allows 
also the definition of an unbiased estimator.

The situation is worse in the measurement world. The 
variable is, in this case, θ :

Y
k

= 0ξ

θ
, (29)

with, once more,

pY Y p( ) = ( | )0d dθ ξ θ. (30)

Eqs. (29) and (30) give, for k = 1,

0
0 0

0
0( | ) =

1
( )

∞ ∞

∫ ∫⋅ ⋅ ⋅ ≠θ θ ξ θ ξ ξp
Y
pY Yd d . (31)

We have seen previously that this latter expression may 
not be convergent.
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Let Z = ln (Y ). We can easily calculate

−∞

∞ ∞

∫ ∫⋅Z p Z Z Y pY Y B( ) = ( ) ( ) =
0

d dln . (32)

Hence, going back into the model world for k = 1 and us-
ing (8):

−∞

∞ ∞

∫ ∫⋅

+

ln (ln ) ln ln

ln .

( ) ( ) ( ( )) = ( ) ( )

= ( )

0

0

ξ ξ ξ ξ

θ

p pY Y

B

d d
 (33)

Eq. (33) means that ln (ξ ) − B is an unbiased estimator of 
ln (θ0). Hence, the log-unbiased estimator of θ0 appears to 
be, in the model world, ξ ′, defined as

′ ⋅
−ξ ξ= .e B (34)

In the measurement world, we have, from (29) with k 
= 1,

Y
e
B

= 0
′ ⋅ξ

θ
, (35)

and then

ln ln ln( ) = ( ) ( ) .0θ ξ′ − +Y B (36)

Unlike linear estimators, this estimator ensures that its 
mean is equal to the actual measurement data:

E p

B B

(ln ) ln (ln ) ln

ln ln

( ) = ( ) ( ) | ( ( ))

= ( ) = (

0

0 0

θ θ θ ξ θ

ξ ξ

−∞

∞

∫ ⋅ ′

′ − + ′

d

)).

 (37)

To conclude this section, a log-estimator can easily be 
rendered unbiased by multiplying the linear estimator by 
the right constant, with the important further advantage 
that, in the measurement world, the unknown true val-
ue has, for its mean, the actual measurement data. This 
equivalence between the model and measurement worlds 
for a scale parameter was already noticed 50 years ago [9].

E. Generalization to a χν
2 Distribution

The results of Section II-C can be extended to any χν
2

distribution, regardless of the number of degrees of free-
dom ν.

1) Model World: The reduced variable is

X =
0

ν
ξ

θ
, (38)

and E(X) = ν. The PDF is

p
e

( | ) =
2 ( 2)

0

2 2 1 2

2
0
2

0

ξ θ
ν ξ

ν θ

ν ν νξ θ

ν ν

/ / /

/ //

− −( )

.
Γ

(39)

The mean is

E( ) = 0ξ θ . (40)

The logarithmic mean is

eE ln exp ,( ) (0)
0=

2

2
ξ

ν
ψ

ν
θ[ ] ( )



 (41)

where ψ (0)(x) is the digamma function [10].

2) Measurement World: The reduced variable is

X = 0ν
ξ

θ
, (42)

and E(X) = ν. The PDF is

p
e

( | ) =
2 ( 2)

0

2
0
2 2

2 2 1

0

θ ξ
ν ξ

ν θ

ν ν νξ θ

ν ν

/ /

/ //

−

+

( )/( )

.
Γ

(43)

The mean (ν > 2) is

E( ) =
2 0θ
ν

ν
ξ

−
. (44)

The logarithmic mean is

eE[ln ] exp .( ) (0)
0=

2 2
θ ν

ψ
ν
ξ− ( )






 (45)

Table II and Fig. 4 show the biases and the 95% confi-
dence interval versus EDF.

III. D

A. A log-Unbiased Estimator

We know that σ̂ τy
2( ) is an unbiased estimator of σ τy

2( ). 
However, E [ln(ξ )] ≠ ln(θ0) and eE [ln(ξ )] ≠ θ0. Similarly, 
E [ln(θ )] ≠ ln(ξ0) and eE [ln(θ )] ≠ ξ0.

TABLE II. B  95% C I B V EDF ν. 

ν E(θ )/ξ0 eE[ln(θ )]/ξ0 B2.5% B97.5%

1 ∞ 3.56213 0.19905 1018.26086
2 ∞ 1.78108 0.27108 39.49783
3 3.00000 1.44625 0.32091 13.90209
4 2.00000 1.31043 0.35896 8.25735
5 1.66667 1.23754 0.38964 6.01530
6 1.50000 1.19222 0.41524 4.84911
7 1.40000 1.16137 0.43715 4.14232
8 1.33333 1.13902 0.45624 3.67017
9 1.28571 1.12210 0.47312 3.33285
10 1.25000 1.10885 0.48821 3.07978
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Let us define a new estimator L̂θ as

ˆ ln exp ,Lθ
ν

ψ
ν
ξ=

2 2
(0)− ( )






{ } (46)

and, with ν = 1,

ˆ ln lnLθ ξ ξ= (3.5625 ) = ( ) 1.2705.⋅ +  (47)

The mathematical expectation of L̂θ is then

〈 〉ˆ ln .Lθ θ= ( )0 (48)

L̂θ is then an unbiased estimator of ln(θ0).
On the other hand, from (45), for measurement data ξ0:

E[ln ] ln exp ˆ ,( ) =
2 2

=(0)
0θ

ν
ψ

ν
ξ θ− ( )






{ } L  (49)

and from (24), with ν = 1,

E[ln ] ln ˆ( ) = (3.5625 ) = .0θ ξ θ⋅ L (50)

The mathematical expectation of ln(θ ) is equal to ˆ .Lθ
Therefore, e L̂θ is a log-unbiased estimator of θ. For fit-

ting a log-log plot, this log-unbiased estimator is then op-
timal.

B. Fitting an Allan Variance Curve

Fig. 5 displays the bias estimates (crosses) as well as 
the log-unbiased estimates (circles) of a simulated oscil-
lator. Fitting the AVAR estimates rather than the log-
unbiased estimates leads to a significant underestimation 
of the long-term asymptotes (τ and τ 2 asymptotes) and 
therefore of the very-long-term stability of the oscillator.

C. Simulation Results

1) Pure Random-Walk FM: We first simulated pure
random-walk FM, because it is often the dominating noise 
for the very-long-term.

a) Principle of the simulation: We performed one mil-
lion simulations of a sequence of 1024 frequency deviation 
samples of pure random-walk FM with a noise level (mod-
el parameter) within the interval: 10−3 < h−2 < 10+9 with 
a uniform distribution of the exponent2 between −3 and 
+9. Thus, this variation range can cover all of the model 
parameters which may give a measurement data ĥ−2 equal
to 1. It is then possible to select either the realizations for 
which the model parameter h−2 is close to 1 at 5% (i.e., 
within the interval [0.952, 1.05]), or the realizations for 
which the measurement data ĥ−2 is close to 1 at 5%.

b) Study of AVAR for the higher τ value: It is well known
that an AVAR measurement data for the higher τ value is 
χ1
2 distributed. Because each sequence contains 1024 sam-

ples, the higher τ argument of AVAR is τmax = 1024/2 = 
512 arbitrary units (a.u.). From Table I, the theoretical 
AVAR result (model parameter) for h−2 = 1 a.u. and τ = 
512 a.u. is

σ τ
π τ π

y n

h
K2

2
2

2

( = 512) =
2

3
=
1024

3
= 3368.8.− ≈  

(51)

Let us now consider the theoretical σy
2(512) as the model 

parameter and the σ̂y
2(512) computed value as the mea-

Fig. 4. Biases and 95% confidence intervals over the model parameter θ 
versus equivalent degrees of freedom, ν, in the measurement world where 
the measurement data are ξ0 = 1. The circles represent the exponential 
of the mathematical expectation of the log of the model parameter and 
the crosses represent the mathematical expectation of the model param-
eter (which does not converge for ν ≤ 2).

Fig. 5. Example of log-log fit (obtained with SigmaTheta-1.2 [15]). As in 
Fig. 1, the graph shows the Allan deviation (ADEV) but the fit was per-
formed over the Allan variance (AVAR) estimates. The crosses represent 
the ADEV estimates, whereas the circles represent the square root of the 
log-unbiased estimates.

2 This distribution represents, at best, the total ignorance of a value, 
i.e., a uniform law for the order of magnitude of this value. It was formal-
ized as the Newcomb-Benford law [11], or first-digit law, and in particu-
lar explains the reason for the uneven wear of logarithm tables [12]. It is 
the basis of the concept of prior ignorance in Bayesian statistics [13].
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surement data. To more easily compare these values, we 
normalize them by the coefficient Kn given by (51):
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(52)

where Y1 and Y2 are, respectively, the average of the first
512 frequency deviation samples and the average of the 
last 512 frequency deviation samples of a considered simu-
lated sequence.

Thus, we can select either the sequences for which θ = 
θ0 = 1 ± 5% (model world) or the sequences for which ξ 
= ξ0 = 1 ± 5% (measurement world). We can then eas-
ily compare the histogram of the ξ measurement data, 
knowing that θ0 = 1 ± 5%, to the theoretical conditional 
probability given by (18) as well as the histogram of the 
θ parameter, knowing that ξ0 = 1 ± 5%, to the theoreti-
cal conditional probability given by (22). Fig. 6 shows the 

very good agreement between histograms and theoretical 
conditional probability for both the model world and mea-
surement world.

For the model world, we obtained 3568 sequences for 
which θ0 = 1 ± 5% a.u., 〈ξ 〉 = 0.977 a.u., exp(〈ln(ξ )〉) = 
0.276 a.u., 〈 〉exp( ˆ )Lθ  = 3.48 a.u., exp( ˆ )〈 〉Lθ  = 0.983 a.u. For
the measurement world, we obtained 3523 sequences for 
which ξ0 = 1 ± 5% a.u., 〈θ 〉 = 19 800 a.u., exp(〈ln(θ )〉) = 
3.84 a.u., and 3479 sequences for which exp( ˆ )Lθ  = 1 ±
5% a.u., 〈θ 〉 = 5630 a.u., exp(〈ln(θ )〉) = 1.04 a.u.

Again, the results of this simulation are in perfect 
agreement with the theoretical considerations we have de-
veloped previously.

c) Results in the model world: The model parameter is
now the random-walk FM level h−2 and the measurement 
data are its estimation ˆ .h−2  Among the million simulated
sequences, 3568 have a model parameter h−2 within the 
interval [0.952, 1.05]: model parameter, 〈h−2〉 = 1.0007 
a.u.; fit over classical estimates, 〈 〉−ĥ 2  = 0.911 a.u. (−8.9%);
and fit over log-unbiased estimates, 〈 〉−ĥ 2  = 0.911 a.u.
(−0.9%).

The estimation of the random-walk noise level is clearly 
better with the fit over the log-unbiased estimates, but 
the estimation of h−2 over the classical estimates is only 
slightly underestimated because it is based on all esti-
mates, including those obtained for low τ values that are 
little biased (see Fig. 7).

2) White FM + Random Walk FM: We simulated 10 000
sequences of a combination of white FM and random-walk 
FM in such a way that the random-walk FM is the domi-
nating noise over the last decade. For the simulations, we 
used model parameter: h0 = 1 a.u., h−2 = 1.5 · 10−5 a.u.; 
fit over classical estimates: 〈 〉ĥ0  = 0.969 a.u. (−3.1%), 〈 〉−ĥ 2
= 1.01 · 10−5 a.u. (−33%); and fit over log-unbiased esti-

Fig. 6. Comparison of the histogram of the simulations and the theoreti-
cal conditional probability distribution function (PDF) (a) in the model 
world, for which the model parameter is θ0 = 1, and (b) in the measure-
ment world, for which the measurement data are ξ0 = 1.

Fig. 7. Example of one realization among one million simulations of an 
Allan deviation (ADEV) curve for a pure random-walk FM with a unit 
noise level (obtained using SigmaTheta-1.2 [15]). The crosses represent 
the ADEV estimates, whereas the circles represent the square root of the 
log-unbiased estimates.
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mates: 〈 〉ĥ0  = 0.983 a.u. (−1.7%), 〈 〉−ĥ 2  = 1.42 · 10−5 a.u.
(−5.5%).

In this case, the estimation of the random-walk FM 
noise level is drastically improved by the use of the log-
unbiased estimates because the random walk asymptote is 
fitted over the very last τ values, which are significantly 
affected by the log-log bias (see Fig. 8). For comparison, 

Theo1� estimates [14] were added on Fig. 8.

IV. C

AVAR estimates are not biased and are easily fitted by 
weighted relative least squares. However, ln(AVAR) es-
timates are biased, and this log-log bias affects the fits 
performed on log-log plots.

A log-unbiased estimator has been defined in such a 
way that its log is an unbiased estimator of the log of the 
model parameter. On a log-log AVAR plot, it is then rec-
ommended to fit the log-unbiased estimates rather than 
the classical AVAR estimates.

For this purpose, we developed the SigmaTheta software 
package [15] which performs fits according to the criterion 
(4) including log-unbiased estimator. It is free software 
developed under a GNU license for UNIX and Windows 
(Microsoft Corp., Redmond, WA) systems, available at 
http://theta.obs-besancon.fr/spip.php?article103.
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Fig. 8. Example of one realization among 10 000 simulations of an Allan 
deviation (ADEV) curve for a combination of white FM and random-
walk FM (obtained using SigmaTheta-1.2 [15]). As in Fig. 1, the graph 
shows ADEV but the fit was performed over the Allan variance (AVAR) 
estimates. The crosses represent the ADEV estimates, whereas the cir-
cles represent the square root of the log-unbiased estimates. For com-
parison, Theo1� estimates [14] are represented as asterisks.
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