
HAL Id: hal-00707940
https://hal.science/hal-00707940

Submitted on 19 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comprehensive View of Process Engineering
Colette Rolland

To cite this version:
Colette Rolland. A Comprehensive View of Process Engineering. International Conference on Ad-
vanced information Systems Engineering, 1998, Italy. pp.1-24, �10.1007/BFb0054216�. �hal-00707940�

https://hal.science/hal-00707940
https://hal.archives-ouvertes.fr

CREWS Report Series 98

A COMPREHENSIVE VIEW OF PROCESS ENGINEERING

C. Rolland

University Paris-1 Sorbonne, 17, rue de la Sorbonne, 75005 Paris cedex 5,

FRANCE

email : rolland@univ-paris1.fr

Proceedings of the 10
th
 International Conference CAiSE'98, B. Lecture

Notes in Computer Science 1413, Pernici, C. Thanos (Eds), Springer.

Pisa, Italy, June 1998

A Comprehensive View of Process Engineering

Colette Rolland

University Paris-1 Sorbonne, 17, rue de la Sorbonne, 75005 Paris cedex 5,

FRANCE

email : rolland@univ-paris1.fr

Abstract. The paper proposes a faceted framework to understand and classify

issues in system development process engineering. The framework identifies

four different but complementary view-points. Each view allows us to capture a

particular aspect of process engineering. Inter-relationships between these

aspects allow us to show the influence that one aspect has on another.

In order to study, understand and classify a particular aspect of process

engineering in its diversity we associate a set of facets with each aspect.

The paper uses the framework to raise questions, problems and research issues

in the field.

1. INTRODUCTION

Process engineering is considered today as a key issue by both the software

engineering and information systems engineering communities. Recent interest in

process engineering is part of the shift of focus from the product to the process view

of systems development. Process engineering is a rather new research area.

Consequently there is no consensus on, for example, what would be a good

formalism to represent processes in, or, even, on what the final objectives of process

engineering are [Arm93] . However, there is already considerable evidence for

believing that there shall be both, improved productivity of the software systems

industry and improved systems quality, as a result of improved development

processes [Dow93], [Arm93] and [Jar94]. Studies of software development practices

[Lub93], however, demonstrate that we know very little about the development

process. Thus, to realise the promise of systems development processes, there is a

great need [Dow93] for a conceptual process engineering framework.

In this paper we consider process engineering from four different, but

complementary, view-points. Each view allows us to capture a particular aspect of

process engineering. Inter-relationships between these aspects allow us to show the

influence that one aspect has on another.

In order to study, understand and classify a particular aspect of process engineering in

its diversity we associate a set of facets with each aspect. For example, in the

development view, where the concern is with the way in which process models are

developed, it is possible to turn to (a) the facet called construction approach to

understand how a process model can be constructed, (b) the construction technique

facet to understand how it can be engineered, (c) the change support facet to see how

flexible the process model is etc..

Facets have been proposed by [Pri87] for classifying reusable components. They have

also been used by [Rol98] in requirements engineering for understanding and

classifying scenario based approaches. When used in process engineering, a facet

provides a means for classification. For example, the coverage facet of the system

world (see section 5 below) helps in classifying process models according to the

underlying paradigm used: activity-oriented, product-oriented, decision-oriented or

contextual. Each facet is measured by a set of relevant attributes. For instance, the

description facet is measured by two attributes, the form and the notation attributes.

Attributes have values which are defined in a domain. A domain may be a predefined

type (INTEGER, BOOLEAN ...), an enumerated type (ENUM {x, y, z}), or a

structured type (SET or TUPLE).

We use the four worlds framework as a baseline and attach (a) a view of process

engineering to each of its worlds and (b) a set of facets to each view. As a result, it is

possible to identify and investigate four major view points of process engineering:

what are processes, how are they represented, how can their representation be

developed and used, and, finally, what does process engineering achieve.

The multi-facet, multi-view approach adopted here makes it possible to look at

process engineering in a comprehensive manner:

- facets provide an in-depth description of each aspect of process engineering whereas

aspects give a view of process engineering in all its diversity.

- relationships between facets help in understanding the implications of one view on

another.

2. THE FOUR-WORLDS FRAMEWORK

The four worlds framework originally proposed for system engineering has proved its

efficiency in enhancing the understanding of various engineering disciplines,

information systems engineering [Jar92], requirements engineering [Jar93], and

method engineering [Rol97]. It can also help in understanding the field of process

engineering which consists of applying engineering approaches, techniques, and tools

to the construction of process models.

SUBJECT

WORLD

USAGE

WORLD

DEVELOPMENT

WORLD

SYSTEM

WORLD

How are processes

of the subject world

used

Justification of

development goals

User

interfaces

How does the process

model represent

the subject world

design

decisions

Fig. 1. The four worlds of process engineering

In the original system engineering framework (Fig. 1.), the subject world contains

knowledge of the domain about which the proposed IS has to provide information. It

contains real-world objects which become the subject matter for system modelling.

The system world includes specifications at different levels of detail of what the

system does. It holds the modelled entities, events, processes, etc. of the subject world

as well as the mapping onto design specifications and implementations.

The usage world describes the organisational environment of the information system,

i.e. the activity of agents and how the system is used to achieve work, including the

stakeholders who are system owners and users. The usage world deals with the

intentional aspects of the IS to be built whereas the subject world refers to the domain

it shall represent.

The development world focuses on the entities and activities which arise as part of the

engineering process itself. It contains the processes which create the information

system i.e. processes which involve analysis and understanding of knowledge

contained in the other worlds and representation of that knowledge.

For our purposes, we identify the subject world as the world of processes. The system

world deals with the representation of processes through process models. In the

usage world we will investigate the reasons, the rationale for process engineering and

relate the objectives of the users to the process models that can best meet these

objectives. The development world deals with the process of constructing process

models. This process is a meta-process in the sense that it supports the construction of

processes, which in turn, will support the development of systems. The way the

process might be supported by a tool environment is also a concern of this world.

The paper uses the four worlds to present the state of art in process engineering and to

raise questions, problems and research issues in the field. It comprises four sections,

each of these relating to one of the world. This allows us to discuss in a focused

manner the different concerns of process engineering : the definitions of processes,

their representations, the way of developing these representations, and the rationale

for using these representations. This is done in the subject, system, development, and

usage worlds respectively.

3. THE SUBJECT WORLD

Our Universe of Discourse is the world of processes. In this world, it is of interest to

look at the notion of a process and its nature.

A process is performed to produce a product. It has been described in the information

systems area [Oll88] as the route to be followed to reach a product. This basic notion

has been extended by [Poh93] who looks upon a product as a point in three-

dimensional space comprising of the agreement, specification, and representation

dimensions. Starting from some initial position in this space, the product moves

through a succession of locations before a final position is reached. This final position

corresponds to the desired product. The process then can be considered to be the

route starting from the initial product position and going through the succession of

intermediate positions till the final product position is reached.

The term process has been defined differently in different coverage (see section V

below for the notion of coverage). In the activity-oriented coverage it is defined as a

related set of activities conducted for the specific purpose of product definition. In

[Fei93] it is defined as "a set of partially ordered steps intended to reach a goal" and a

process step is itself an atomic action of a process that has no externally visible sub-

structure. In the product-oriented coverage, a process is a series of activities that

cause successive product transformations to reach the desired product. [Fra91],

[Hum89] and [Lon93] are three examples of definitions conforming to this view. In

the decision-oriented coverage, a process is defined as a set of related decisions

conducted for the specific purpose of product definition. This view has been

developed, for instance in IBIS [Pot89], DAIDA[Jar92] and [Ros91]. Finally, in the

coverage called context, a process is a sequence of contexts causing successive

product transformations under the influence of a decision taken in a context [Jar93].

More intrinsically processes can be of different kinds. These various definitions

reflect the multiple view points of the community about what is a process. However,

these view points correspond to the various ways in which a process can be modelled

and we will deal with in the system world.

Strategic processes are those that investigate alternative ways of doing a thing and

eventually, produce a plan for doing it. There are many ways of doing the same thing

and the best way, the one most suited to the situation at hand has to be found. Such

processes are creative and alternative generation and selection from an alternative are

very critical activities here.

Tactical processes are those which help in the achievement of a plan. As their name

implies they are more concerned with the tactics to be adopted for actual plan

achievement than with the development of a plan of achievement.

Implementation processes are the lowest level processes. They are directly concerned

with the details of the what and how of plan implementation.

Thus, the subject world can be characterised by a facet having only one attribute

called Nature defined as

Nature: ENUM{strategic, tactical, implementation}

As one can expect, we shall see below how the nature of the processes handled will

influence the choice of a model adequate for their representation.

4. THE USAGE WORLD

The usage world is where the goals of process use are established and, consequently,

the range of facilities required for process performance are determined. The usage

world can be viewed [Dow93] as composed of three interacting domains : a process

model domain, a process performance domain, and a process model enactment

domain (Fig. 2.).

Process Model Domain

Model

Fragments

Process Performance Domain

Enactement

Mechanism

Process Model Enactement

Domain

Enactement

CreationProcess

Improvement,

Capitalisation

of Experience

Guidance

Monitoring/Controling

Feedback

Human

agents,

Activities

Fig. 2. Process domains

The process model domain contains process models. A process model describes the

common properties of a class of processes having the same nature. The process

performance domain deals with the actual activities conducted by human agents and

machines, in the course of a project. Some will be executed by software tools; others

will consist of human thinking, writing, exchanging ideas, and taking decisions

through formal and informal interactions between members of the project team. All

these activities must be supported by the process model. The process model

enactment domain is concerned with the features needed to support process

performance governed by the process model. These features support, guide, or

enforce performance of the process in a way consistent with the process model.

The three domains interact with each other in different ways. Firstly, the process

model influences the way in which the process is performed. Actual performance then

corresponds to some extent to the model of how it should be performed. Secondly,

the course of enactment may need to be contingent on events arising from actual

process performance. Therefore, the actual process will be different from the

theoretical instantiation of the process model. This leads to the idea of feedback from

process trace to process model, thereby allowing its improvement.

This leads to a view of the usage world as imposing strong requirements on the way

processes will be performed, the nature of process models used and the way in which

these process models will be developed and changed. The purpose assigned to the

process model has to be determined by the usage world. This is captured below in the

facet, Purpose. Since the way processes are performed changes with time, it is the

duty of the organisation to define their process management policy. This is captured

in the facet, Process Management Policy.

4.1 PURPOSES

A synthesis of proposals from the software engineering field [Lon93], [Cur92], the

information system community [Bri90], [Pra97], [Rol96a], and the system design

community [Ram92], [Pot89], show three main aims of process models:

 - descriptive, to record trace what actually happens during a process,

 - prescriptive, to define desired processes and how they should/could/might

be performed,

 - explanatory, to provide explanations about the rationale of processes.

A descriptive purpose takes the point of view of an external observer who looks at the

way a process has been performed and determines the improvements that have to be

made to make it perform more effectively or efficiently.

The prescriptive purpose lays down rules, guidelines, and behaviour patterns which,

if followed, would lead to the desired process performance. The prescriptive purpose

lies in a range from strict enforcement to flexible guidance. In the former the

performance of the process must follow the prescription whereas in the latter the

prescription is such that it can accommodate a large number of ways in which the

process can proceed. Guidance shifts the emphasis away from task performance to

goal achievement. Therefore, there can be two types of guidance, point and flow

[Sis97]. Point guidance provides help in the achievement of a given goal whereas

flow guidance helps in identifying the next goal in order for the process to proceed.

The explanatory purpose is important in those processes where several possible

courses of action are open and each of these has to be explored and evaluated based

on rational arguments. Such traces establish an explicit link between processes and

the requirements that they are to fulfil.

The descriptive and explanatory purposes have been accorded a lot of attention in the

recent past. This is because of the need to keep track of process knowledge and to

support change [Got94], [Ram92]. To take this to the extreme, it is difficult to

visualise any process, strategic, tactical, or implementation (see Subject World),

without a descriptive and/or explanatory purpose behind them.

Specifically, if prescription is to be provided to strategic processes, then flexible

guidance is clearly more appropriate than process enforcement. This is because

strategic processes are often creative and require human co-operation. This makes

most software process models inappropriate for strategic processes because [Fin94]

their basic property is enforcement of constraints (prescriptions and even

proscriptions). However, in tactical or implementation processes of the Subject World

that follow plans relatively more strictly and which are less creative and mercurial,

varying shades of process enforcement ranging from mechanical enforcement with

limited guidance to complete automation may be found useful.

A process engineering approach can be classified according to the role it aims to play

in the facet called Purpose which has the three following attributes :

Prescriptive: ENUM {enforcement, guidance}

Descriptive: BOOLEAN

Explanatory: BOOLEAN

4.2 PROCESS MANAGEMENT POLICY

Processes change with time and so do the process models underlying them. Thus, new

processes and models may have to be built and existing ones improved. There is need

to have a well-defined organisational policy to handle this change. This policy can

either accept change continuously as it occurs or accept it as one-shot, radical

change. Radical change applies in situations where organisations need to define a

process management policy from scratch. The former applies when need is felt to

harmonise heterogeneous process practices or when a bottom-up approach is

systematically applied to move up in the levels of maturity in the CMM [Hum89]

framework. .

Strategic processes are highly unstable. The process proceeds by analogy with other

similar processes and reuses experience and knowledge of their stakeholders. This

reuse is continuous and operates so long as the process lasts. It is today implicitly

done by individual human agents performing the process but, perhaps, in future, it

shall be necessary to have reuse as a process management policy of the organisation.

However, it remains to be conclusively shown that process practice reuse is cost

effective in an organisational setting.

The foregoing is captured by the two attributes change and reuse of the Process

Management Policy facet

Change: ENUM{continuous, radical}

Reuse: BOOLEAN

5. THE SYSTEM WORLD

If the subject world is the world of processes then the system world is the one of their

representations. The interest in this world is in

a) what is to be represented

b) at what level of abstraction

c) how is it represented

d) what properties should the representation have.

The facet contents, of the system world deals with (a), the abstraction facet deals with

(b), the description facet deals with (c), and finally, the modularization facet captures

the properties of the representation. We develop each of these below.

5.1 ABSTRACTION

Processes of the same nature are classified together into a process model. Thus, a

process model is a description of a process at the type level. Since the process model

is at the type level, a process is an instantiation1 of it. The same process model is

used repeatedly for the development of many applications and thus, has many

instantiations. As stated in section 4, one possible use of a process model is to

prescribe "how things must/should/could be done" in contrast to the process itself

which is really what happens. A process model is more or less a rough anticipation of

what the process will look like. What the process shall, indeed, be will, however, be

determined during actual system development.

A process meta-model is a description at the type level of a process model. A process

model is, thus, an instantiation of a process meta-model. Obviously, a meta-model

can be instantiated several times in order to define various process models. A process

meta-model is at the meta-type level with respect to a process. It plays a role similar

to a theory in the Theory of Plans [Wil83] from which plans can be generated (the

process models) and executed (the processes).

The abstraction facet captures the levels at which the model is expressed and the

corresponding attribute takes on values from the enumerated domain { type, meta-

type}.

The well known models like the waterfall [Roy70] and spiral models [Boe88] are the

type level whereas the Nature process theory [Rol95] is at the meta-type level.

5.2 CONTENTS

The concern of this facet is with the contents of the process model/meta-model. These

contents are determined by the system of concepts in terms of which processes are

represented and by the granularity of these representations. These two aspects are

dealt with by the coverage and granularity attributes respectively.

5.2.1 Coverage

According to Dowson [Dow88], process models can be classified into three groups of

models:

- activity-oriented,

- product-oriented, and

- decision-oriented.

1
 A. Finkelstein in (Fin94) points out the various meaning of the widely used term

"instantiation" in the software engineering community. We relate here to the classical

idea of creating instances from a type/class definition

Since this classification was made, a new group called the contextual model has also

emerged.

Activity-oriented

The activity-oriented models concentrate on the activities performed in producing a

product and their ordering. These process models are sequential in nature and adopt

the Cartesian, functional decomposition approach. They provide a frame for manual

management of projects developed in a linear fashion. The first widely used process

model, the Waterfall model [Roy70], falls into this category. Its widespread

acceptance has led to life-cycle descriptions being most often treated as linear

sequences where crucial aspects of the process such as feedback loops and iteration

are not represented [Boe88], [Cur88] and [Cur92].

These models are well suited to model implementation processes. The strong

emphasis on an activity incurs some risks of neglecting the influence of product

structure on the process. Further, they are unable to support flexible prescriptive

guidance but only process model enforcement. The linear view of activity

decomposition seems inadequate to model creative processes because it is not

possible to consider all contingencies. Activity-oriented representations cannot

incorporate the rationale underlying the process and therefore do not permit reasoning

about engineering choices based on existing conditions. It is unrealistic to plan what

will happen in such a process in an entirely sequential manner. Finally, the linear

view is inadequate for process models which have to support backtracking, reuse of

previous designs and parallel engineering.

Product-oriented

Product-oriented process models, in a manner similar to activity-oriented ones, are

centred around the notion of activity but, additionally, link activities to their output :

the product. The ViewPoints model [Fin90] and the process model proposed in the

European Software Factory (ESF) project [Fra91] belong to this category.

Product-oriented models couple the product state to the activities that generate this

state. They visualise the process as a state transition diagram. Since product-oriented

models adopt the notion of an activity, they suffer from the same difficulties as the

activity-oriented models considered above. However, due to their product-activity

coupling they are useful for tracing the transformations performed and their resulting

products. However for strategic processes it is difficult, if not impossible, to write

down a realistic state-transition diagram.

Decision-oriented

The successive transformations of the product caused by a process are looked upon,

in decision-oriented models, as consequences of decisions. The process models of the

DAIDA project [Jar92], [Pot89] and [Ram92] fall into this category. These models

emphasise the concept of an "Intention " at the expense of an activity.

Decision-oriented models can be used for both, strategic as well as tactical processes.

The strength of the decision-oriented approach is its ability to cover more aspects of a

process than can be done by the two other kinds. Decision-oriented models are not

only able to explain how the process proceeds but also why it proceeds. Therefore,

decision-oriented process models are particularly well suited to strategic processes,

for supporting explanatory tracing and prescriptive guidance. This is because of their

ability to (a) guide the decision making process (b) help in reasoning about the

rationale behind decisions,(c) support the deliberation underlying the decision process

itself and (d) keep a trace of the happenings of a process and their rationale.

Contextual Models

Contextual models as found in the Nature process theory [Bub94], and in the F3

project [Rol94b] look upon each process as being in a subjectively perceived

situation upon which is looked upon with some specific intention. The work to be

done next depends on both the situation and the intention i.e. it depends on the

context existing at this moment.

Contextual process models strongly couple the context of a decision to the decision

itself. It makes the notion of a context, the coupling of a situation and the decision,

central to process modelling. Decisions are applied to the situation in which the

process currently is, in order to change that situation to the desired new one. In this

respect, the contextual approach has some similarity with the planning paradigm that

has emerged from Artificial Intelligence and with projects based on the planning

paradigm such as GRAPPLE [Huf89].

Since the contextual models adopt the notion of a decision, all the properties of

decision-oriented models mentioned earlier are applicable to them. Further, due to the

strong relationship between the situation and the decision, only those decisions which

are appropriate in the situation at hand are of interest. This helps in focusing

guidance, tracing and explanation to specific process situations.

Process models can be classified within the facet Contents, by giving values to the

attribute, coverage,

Coverage: ENUM{activity, product, decision, context}

5.2.2 Granularity

Most traditional process models are large-grained descriptions of the product life-

cycle. On the other hand, there are very fine-grained models. For example specifying

that after a source code file is edited, it should be recompiled [Kai88]. Recently,

hybrid formalisms that use different notations for large-grain and small-grain aspects

of process such as PROCESS WEAVER [Fer91], have been developed.

The nature of granularity needed is dependent on the situation at hand. Granularity

affects the kind of guidance, explanation and trace that can be provided. High

granularity limits these to a rather coarse level of detail whereas fine granularity

provides more detailed capability. Process models should, ideally, provide a wide

range of granularity. This shall allow a movement from large grains to fine grains

along a continuum.

Therefore, the granularity attribute takes on values from SET(ENUM{large, fine,

variable}).

5.3 THE DESCRIPTION FACET

The description facet is concerned with the form of the process representation and the

level of formality of the language used to describe the process model. These

correspond to the form and notation attributes of this facet.

5.3.1 Form

The form attribute is concerned with style of the process representation. There are

three identified forms, scripts, programs, and hypertext.

Osterweil [Ost87] has proposed the view that software process models should take the

form of a program as different from process scripts. Process scripts are interactively

used by humans as against process programs which are enacted by a machine

[Leh87]. They support non determinism whereas process programs can, at best,

support process deviation under pre-defined constraints [Cug96].

The hypertext style of process representation is a network of links between the

different aspects of a process, such as product parts, decisions, arguments, issues, etc.

A relationship can be established between form and the purpose facets of the Usage

World. Scripts and programs are two styles which may be applicable to prescriptive

purposes whereas hypertext is well suited to descriptive and explanatory purposes.

Strict enforcement of the prescriptive purpose can clearly be represented in process

programs whereas flexible guidance requires the process model to be represented in

process scripts. Descriptive and explanatory purposes require the establishment of

relationships between different elements of a process trace. These relationships are

well articulated as hypertext links.

The form attribute of the description facet takes on values from ENUM{script,

program, hypertext}

5.3.2 Notation

Process models underlying information systems practice have traditionally used

informal notations such as natural languages or diagrams with informal semantics. On

the other hand, in software engineering, more formal software process models (see

[Arm93], [Cur92], [Fin94] for an overview) have been used. This formality relates to

underlying programming languages : Smalltalk for E3 [Fin94], various Prolog

dialects for EPOS [Jac92], Oikos [Amb91], and PEACE [Fin94], PS-Algol for PWI

[Fin94].

A formal notation is required to support the verification of the expected properties of

the process model and validation of the process model using for instance, simulation

or enactment techniques. The use of informal notations has made it difficult for

process models to be followed systematically. Formal or semi-formal notations make

these efforts considerably more effective. Formal notations are necessary for

providing automatic enactment support.

The notation attribute helps classifying process models by one of the three values of

the following enumeration:

Notation: ENUM{formal, semi-formal, informal}

5.4 MODULARIZATION

Early processes were monolithic. However, there is a shift towards modular process

structure in this decade. We introduce a Boolean valued attribute called Presence in

the modularization facet to distinguish between monolithic and modular methods.

One proposal for modularization [Har94] is that of fragments. A fragment can be

either a product fragment or a process fragment. The drawback of the fragment based

approach is the over-emphasis on the product fragment resulting in under developed

meta-process modelling.

The proposal of [Rol93], [Rol94a], is to tightly couple the product and process

aspects of processes into contexts. A Context is a couple <situation, decision>, where

the decision part represents the choice an IS developer can make at a moment in the

engineering process and the situation is defined as the part of the product it makes

sense to make a decision on.

Process modules can be looked upon according to two other perspectives :

abstraction and aggregation. Rolland [Rol95] has defined aggregates called process

chunks as hierarchies of contexts. A chunk prescribes the way to proceed in the

situation identified by the context at the root of its context hierarchy. This allows the

decision of the root context to be taken in this situation. [Van96] proposes two kinds

of aggregated modules called route map and fragments respectively. A route map

refers to strategies such as delivery strategies, developmental strategies, realisation

strategies etc., activities and products concerning system development as well as

project management. The fragment is a coherent part of a process for system

development or project management. Fragments may be linked to a route map which

may establish a complete project approach.

Abstraction is used to capture generic laws governing the construction of different

but similar process modules. Generic process modules can take the form [Rol96a] of

framework or pattern. A framework models the commonality between modules of

different process models but for the same type of application. A pattern models a

common behaviour in process construction. It is generic in the sense that it is used

every time a process model is constructed. Both terms have been chosen by analogy

with reuse approaches in the object oriented area. Patterns are there defined as

solutions to generic problems which arise in many applications [Gam93], [Pre95]

whereas a framework is application domain dependent [Wir90], [Joh88].

Classification along the modularization facet comes down to giving values to the two

following attributes:

Presence: BOOLEAN

Nature: SET(ENUM{primitive, aggregate, generic}

6. THE DEVELOPMENT WORLD

The development world deals with two issues

- the process of constructing process models, and

- enactment of processes.

The process of constructing process models is a meta-process, it is the process behind

the process used to construct processes for building information systems products.

The development world deals with meta-processes so as to improve process models

and to make them evolve.

The second issue is that of process enactment. The development world is also

concerned with the way in which process models can be constructed and process

enactment support provided. That is, the tool environment needed to support process

performance is also a concern of this world. Thus, the facets of interest in this world

are construction approach, construction technique, enactment support, and change

support .

6.1 CONSTRUCTION APPROACH

In a manner analogous to that of Harmsen [Har94] one can organise construction

approaches in a spectrum ranging from 'low' flexibility to 'high'. At the 'low' end of

this spectrum are rigid approach whereas at the 'high' end is modular approach. Rigid

approaches lead to process models that are completely pre-defined and leave little

scope for adapting them to the situation at hand. On the other hand, contingency

approaches allow the modification and augmentation of models to make them fit to a

given situation.

There are at least two ways by which contingency approaches can be realised. The

first one is the production of contingency process models that is, situation-specific

models for certain types of organisational settings. This presents process engineering

as the selection of a model within a panel of contingency process models. In the

second one process engineering is used to support the selection and the assembly of

process components to construct process models ‘on-the-fly’.

The foregoing suggests that construction approach should be classified as :

Construction approach: ENUM{contingency, on-the-fly, rigid}

The construction approach adopted in the development world has a strong impact on

the modularization facet and granularity attribute of the system world. Whereas the

rigid approach can be associated to monolithic models, contingency and on-the-fly

approaches require modular process models. The contingency approach is well suited

to support capitalisation of ' good practice' into process chunks in a stable

environment. Instead ' on-the fly' approaches are adapted to the dynamic recognition

and use of chunks and patterns.

6.2 CONSTRUCTION TECHNIQUE

Within the broad construction approach adopted for constructing process models, a

number of techniques for construction are available. Construction techniques used in

the information systems area have developed independently of those in software

engineering. In information systems, construction techniques exploit the notion of a

meta-model and the two principal techniques used are those of instantiation and

assembly. In software engineering the main construction technique used today is

language-based. However, early techniques in both, information systems and

software engineering were based on the experience of process engineers and were,

therefore, ad-hoc in nature. We comment the attributes values in turn.

6.2.1 Instantiation

Given that new process models shall be constructed very often, the question is how

we can increase the productivity of process engineers and improve the quality of the

models they produce. One way of doing this is to identify the common, generic

features of process models and represent them in a system of concepts. Such a

representation has the potential to ' generate' all process models that share these

features. This potential is realised when a generation technique is defined whose

application results in the desired process model. Thus, there are two key issues here

- the identification of the system of generic concepts

- the instantiation technique.

The first of these is resolved by the definition of a process meta-model whereas the

second issue is resolved by deriving process models from this process meta-model

through instantiation. A number of advantages flows from this:

1) The exploitation of the meta-model helps us to define a wide range of process

models.

2) It makes the activity of defining process models systematic and versatile.

3) It forces us to look for and introduce, in the process meta-model, generic

solutions to problems and this makes the derived process models inherit the solution

characteristics. Under the instantiation approach, the crucial issue in process

modelling is no longer the process model but the process meta-model. This means

that the onus of providing a process model with the required characteristics shifts

from the process model developer to the process meta-model developer.

The instantiation technique has been used, for example, in NATURE [Rol93],

[Rol94], [Rol94a], [Rol96a]. The process engineer must define the instances of

contexts and relationships that comprise the process model of interest. It has been

utilised to build the repository of Computer Aided method Engineering environments

[Kel96], [Har95], [Mer91], [Sis96].

6.2.2 Language

The software engineering community has used different languages for expressing

process models like Smalltalk for E3 [Fin94], various Prolog dialects for EPOS

[Jac92], Oikos [Amb91], and PEACE [Fin94], PS-Algol for PWI [Fin94]. Different

computational paradigms have also been used, for example, Petri nets in EPOS

[Jac92] and SPADE [Ban93], rule based paradigm in MERLIN [Emm91], ALF

[Ben89], Marvel [Kai88], EPOS [Jac92], and triggers in ADELE [Bel89] and MVP-L

[Fin94].

There is a relationship between the construction technique and the form facet in the

system world. Indeed, languages are typically related to process programs whereas

instantiation techniques have been used to construct process scripts.

6.2.3 Assembly

The assembly technique relies on the availability of process components in a process

repository. Assuming that process components exist in a process repository, the

question now is "how to deliver the relevant process components to the user?" The

process community has been looking at this question in two ways : first, by

promoting a global analysis of the project on hand based on contingency criteria and,

secondly, by associating descriptors to components in order to ease the retrieval of

components meeting the requirements of the user. Therefore in the former the project

situation is at a very global level whereas in the latter the descriptors of process

components support local matching with the situation at hand.

[Van96] is an example of the first approach. This approach has been tried out in nine

non-standard projects of the systems development department of a bank organisation.

The second approach [Rol96b] uses the notion of descriptor [DeA91] as a means to

describe process chunks. It has been tried out to construct information systems

methods [Pli95] in NATURE and repository of scenario based approaches accessible

on Internet in the CREWS project [Rol98].

For the assembly technique to be successful, it is necessary that process models are

modular. If the assembly technique is combined with the instantiation technique then

the meta-model must itself be modular.

6.2.4 Ad-Hoc

Traditional process models are expressions of the experiences of their developers.

Since this experience is not formalised and is, consequently, not available as a fund of

knowledge, it can be said that these process models are the result of an ad-hoc

construction technique. This has two major consequences : it is not possible to know

how these process models were generated, and they become dependent on the domain

of experience. If process models are to be domain independent and if they are to be

rapidly generable and modifiable, then we need to go away from experience based

process model construction. Clearly, generation and modifiability relate to the

process management policy adopted (see Usage World). Instantiation and assembly,

by promoting modularization, facilitate the capitalisation of good practice and the

improvement of given process models.

The construction technique facet is defined as follows:

Construction technique: SET(ENUM{instantiation, language, assembly, ad-

hoc})

6.3 ENACTMENT SUPPORT

Enactment mechanisms have been mainly implemented by the software engineering

community as the core of Process Centred Software environments. An enactment

mechanism determines and controls the interactions between the agents performing

the process so as to trace, guide, and enforce performance of the process in a way

consistent with the process model.

Considerable effort has been put in to provide automated execution support,

automated monitoring and enforcement of software processes in process centred

software environments. The reader will find in [Fin94] a detailed presentation of ten

projects in the field as well as the results of a common assessment exercise performed

by the leaders of these projects.

Most process centred software environments [Jac92], [Bel94], [Ban93], [Kai88] are

in fact used to describe the activity of tools and to allow automatic invocation of tools

[Tom94]. Existing environments guide software engineers in the selection of the right

suite of tools but they do not guide the engineering activities themselves. On the

contrary, some attempts have been made in the information systems community for

implementing enactment mechanisms that focus on guiding engineering activities

[Sis96]

Whereas the foregoing deals with supporting the performance of application

processes, there is also need to support the process of constructing process models,

the meta-process. Just as other processes are represented by process models, the meta-

process shall have its own model, the meta-process model. Again, the meta-process

itself needs to be performed in accordance with the meta-process model and this

means that enactment support has to be provided for the performance of the meta-

process.

It is possible to build two separate enactment environments for dealing with process

and meta-process enactment respectively. However, if the meta-process is treated as

just another process then it is possible to use the same enactment mechanism to

support both, the process and the meta-process. In fact this has been demonstrated in

the Mentor environment[Sis96].

Enactment mechanisms must support processes that take the form (see System

World) of scripts, programs, or hypertext. When a process model is a script then the

enactment mechanism provides high flexibility so as to enable human agent

intervention during process performance. This intervention would be supported by

guidance mechanisms which may either, proactively provide suggestions on possible

decisions that could be taken or may support requests for help. In terms of the Usage

World, for models which are process programs, the enactment mechanism behaves

like the run-time support of programming languages. Process program enactment is

program execution whereas process script enactment is model interpretation. Finally,

when models are of the hypertext form then the enactment mechanism offers facilities

to create links between process decisions, their rationale, and the resulting product.

Since the meta-process is a process, it is possible to extend the foregoing remarks to it

as well. However, as it is unlikely to completely plan out the meta-process, it would

be the case that meta-process models are not treated as process programs but as

process scripts only.

This facet has two Boolean values attributes

Process support: BOOLEAN

Meta-process support: BOOLEAN

6.4 CHANGE SUPPORT

The traditional practice is that if a process model does not meet requirements of the

users then a new one is built. This practice causes loss of experimental knowledge

which could have been used to change process models. The development world must

therefore provide support for process model change.

There are two different ways in which this can happen

(a) process model change takes place even as the process proceeds: the process model

can be adapted to specific requirements as these emerge,

(b) the process model may need to be revised and improved at the end of the project:

this is to benefit from the experience gained in process model use.

The former is referred to as dynamic process change [Dow94] and the latter as

process improvement [Lon93].

Different positions are taken in the software process engineering community

concerning the need for dynamic changes. On the one hand, people claim that this is

an essential requirement and some software process centred environments EPOS

[Jac92], E3 [Fin94], SPADE [Ban93], ADELE [Bel89] try to provide solutions for it

[Fin94]. On the other hand, it can be argued that a prescriptive approach to process

modelling is at odds with dynamic process evolution [Hum92]. The notion of fitness

of the process has been defined in [Hum92] as the degree to which the agents

performing the process can faithfully follow the process steps it specifies. When this

fitness is low then process change occurs. Thus, process model change is an

indication of lack of flexibility of the model. Recent process models include the

concept of process deviation and therefore control the deviation of process

performance from that prescribed in the process model.

There are only initial experiments in improving the process model by experience-

based learning, as suggested in the literature [Hum89], [Oiv92], [Poh92]. They

suggest two ways of process improvement, by inductive or deductive learning.

Inductive learning is based on the analysis of process deviations that are recorded in

process traces. Induction improvement can be performed by a human agent who, on

his own, decides the change that is needed. The agent can be supported by

generalisation rules [Mic83] that can be part of a tool based inductive learning

environment [Pra96]. In order to do inductive improvement, there must exist a

mapping between elements of the trace and the concepts of the process model.

Deductive learning exploits Case-based reasoning. Thus, it solves new problems by

adapting solutions that have been utilised to resolve past problems [Rie89]. Case

based reasoning when applied to process performance calls for the existence of a

repository of cases. Deductive process improvement aims at adding new cases in the

repository by examining process performances. Deductive learning corresponds to the

retaining phase of the Case based reasoning cycle which traditionally consists of the

four phases (a) retrieve, (b) reuse, (c) revise, and (d) retain.

Dynamic process change and process improvement are the two techniques that the

Development World can offer to support the process management policies set in the

Usage world. Deductive process improvement is appropriate when an organisation

wants to promote the reuse of good practice in performing processes. Clearly, a

process model supporting aggregates (see Modularization facet in System World).

shall be well suited to provide these as cases to be stored in the repository.

Inductive improvement is well suited to situations where process models are used

repeatedly and can continuously be improved by learning from the deviation of actual

performances. A modular structure of process models helps in relating the observed

deviations to specific, localised parts of the process model components and therefore

facilitate inductive improvement.

The change support attribute takes one or several values among the following

enumerated domain :

Change support: SET(ENUM{dynamic process change, process

improvement})

7. CONCLUDING REMARKS

The subject and the usage worlds constitute the environment within which the

technical view of process engineering contained in the system and development

worlds lies. This embedding is the source of the inter-relationships between the facets

of the four views discussed in this paper.

The nature of processes and the purpose imposed by the usage world on the process

engineering solution determine, to a large extent, the type of contents and description

of the process models/meta-models. The choice of a particular type of content and

description based on the nature of the processes guarantees that the semantics of these

processes are well captured in process models/meta-models. On the other hand,

selection of a content and description to meet the purpose expressed by the usage

world guarantees that the process model/meta-model shall fulfil the requirements of

the process stakeholders. In fact, we suggest that selection based on purpose should

have primacy over that based on the nature of the process. This conclusion can be

drawn by analogy with ISE approaches where it has been recognised that user needs

are better met by understanding usage goals and not merely by using good semantic

conceptual model.

In fact, the usage world affects the system world through both, the purpose as well as

the process management policy. Of the three purposes, the explanatory and the

descriptive have been incorporated in process models that provide design rationale

and process traceability respectively. However, the issue of providing prescriptive

guidance is still open. The process management policy affects the abstraction facet as

it introduces the need for abstracting process models into process meta-models.

Before building meta-models which reflect old models but on a new level of

abstraction, one should question the old ones. The goal of meta-modelling is not only

to operationalise current process models but also to correct the general oversights and

limitations of these.

In a similar manner, we believe that the technical solution in the development world

has to be chosen according to the purpose and the process management policy

decided in the usage world. The influence of the former is clearly on the choice of the

enactment mechanisms. The implication of the latter is more diverse. The policy

recognises the need for managing processes in-the-large and their evolution in time.

The former sets the requirements of an automated enactment support and its

extension to the meta-process. The latter determines the choice of the change support

and of the construction approach. There are two implications of this, organisational

and technical. The absence today of organisation-wide process policies raises the

need for organisations to understand the crucial role played by these policies and to

define them. Such policies would, for example, encourage capitalisation of good

practice, learning from experience, and development of a reuse culture.

The capitalisation policy raises the technical question of how good practices can be

recognised, organised and reused. Such knowledge should be available in the form of

chunks for later assembly. This implies the modularization of process models/meta-

models. The modular approach represents a shift in the way of thinking about process

representations and is likely to emerge as a major research issue in the future.

The reuse culture raises the question of the genericity of process representations.

Perhaps, what is needed is a corpus of both, generic process and generic meta-process

knowledge in a modular form. A suggested research is therefore, the development of

a domain analysis approach to identify common properties of (a) different process

models and (b) different meta-process models.

The evolution of process models calls for the establishment of technical enactment

support for the meta-process. So far, work has concentrated on developing and

experimenting with process enactment mechanisms. The research issue here is of

making these mechanisms generic enough to handle both process and meta-process

enactment.

This paper has argued that process engineering should be usage driven. The

acceptance of process engineering in organisations is, however, not entirely

determined by the functionality that is needed but also by other non-functional factors

such as usability, availability, security etc. This aspect of process engineering has to

be addressed by the research community more vigorously.

8. REFERENCES

[Amb91] : V; Ambriola, M. L. Jaccheri, Definition and Enactment of Oikos software

entities, Proc. of the First European Workshop on Software Process Modeling, Milan,

Italy, 1991

[Arm93] P. Armenise, S. Bandinelli, C. Ghezzi, A. Morzenti, A survey and

assessment of software process representation formalisms Int. Journal of Software

Engineering and Knowledge Engineering, Vol. 3, No. 3, 1993.

[Ban93] S. Bandinelli, A. Fugetta, S. Grigoli, Process Modelling in the large with

SLANG, Proc. of the 2nd Int. Conf. on Software Process, Berlin, Germany, 1993, pp

75-93.

[Bel94] N. Belkhatir, W. L. Melo, Supporting Software Development Processes in

Adele2, in the Computer Journal, vol 37, N°7, 1994, pp 621-628..

[Ben89] K. Benali, N. Boudjlida, F. Charoy, J. C. Derniame, C. Godart, Ph. Griffiths,

V. Gruhn, Ph. Jamart, D. Oldfield, F. Oquendo, Presentation of the ALF project,

Proc. Int. Conf. on System Development Environments and Factories, 1989.

[Boe88] B. Boehm, A Spiral Model of Software Development and Enhancement,

IEEE Computer 21, 5, 1988.

[Boeh76] B. Boehm, Software Engineering, IEEE Transactions on Computers, Vol.

C-25, No. 12, 1976.

[Bri90] S. Brikemper, Formalisation of information systems Modelling, Ph. D. Thesis,

University of Nijmegen, Thesis Publishers, Amsterdam, 1990.

[Bub94] J. Bubenko, C. Rolland, P. Loucopoulos, V. De Antonellis, Facilitationg

Fuzzy to Formal Requirements Modelling, In the Proc. of the 1st ICRE Conf.,

Colorado Springs, USA, April, 1994

[Cug96] G. Cugola, E Di Nitto, A. Fuggetta, C. Ghezzi, A farmework for formalizing

Inconsistencies and deviations in human centred systems, ACM Transactions on

software engineering and methodology (TOSEM), Vol 5, N° 3, July 1996.

[Cur88] B. Curtis, M. Kellner, J. Over, A Field Study of the Software Design Process

for Large Systems, Com. ACM, Vol. 31, No. 11, 1988.

[Cur92] B. Curtis, M. Kellner, J. Over, Process Modeling, Communications of ACM,

vol 35 n°9, september 1992, pp 75-90.

[DeA91] De Antonellis V., Pernici B., Samarati P. (1991) F-ORM METHOD : A

methodology for reusing specifications, in Object Oriented Approach in Information

Systems, Van Assche F., Moulin B., Rolland C. (eds), North Holland, 1991

[Dow88] M. Dowson, Iteration in the Software Process, Proc 9th Int. Conf. on

Software Engineering, 1988.

[Dow93] M. Dowson, Software Process Themes and Issues, IEEE 2nd Int. Conf. on

the Software Process , pp 28-40, 1993.

[Dow94] M. Dowson, C. Fernstrom, Towards requirements for Enactement

Mechanisms, Proc. of the th European Workshop on Software Process Technology,

1994

[Emm91] : W. Emmerich, G. Junkermann, W Schafer, MERLIN : knowledge-based

process modeling, Proc. of the First European Workshop on Software Process

Modeling, Milan, Italy, 1991.

[Fer91] C. Fernström, L. Ohlsson, Integration Needs in Process Enacted

Environments, Proc. 1st Int. Conf. on the Software Process, IEEE computer Society

Press, October 1991.

[Fin90] : Finkelstein A. , Kramer J. , Goedicke M. : ViewPoint Oriented Software

Development; Proc. Conf Le Génie Logiciel et ses Applications, Toulouse, p 337-351,

1990.

[Fin94] A. Finkelstein, J. Kramer, B. Nuseibeh (eds), Software Process Modelling

and Technology, John Wiley (pub), 1994.

[Got94] O. C. Z. Gotel, A. C. W. Finkelstein, An analysis of the requirements

traceability problem, In Proc. Of Int. Conf. On Requirements engineering, ICRE’94.

[Fra91] M. Franckson, C. Peugeot, Specification of the Object and Process Modeling

Language, ESF Report n° D122-OPML-1. 0, 1991.

[Gam93] Gamma E., Helm R., Johnson R., Vlissides J., Design patterns : Abstraction

and Reuse of Object-Oriented Design, Proc. of the ECOOP' 93 Conf., Sringer Verlag,

1993

[Har94] : Harmsen A.F., Brinkkemper J.N., Oei J.L.H.; Situational Method

Engineering for information Systems Project Approaches, Int. IFIP WG8. 1 Conf. in

CRIS series : Methods and associated Tools for the Information Systems Life Cycle

(A-55), North Holland (Pub.), 1994.

[Har95] Harmsen F., Brinkkemper S., Design and implementation of a method base

management system for situational CASE environment. Proc. 2nd APSEC Conf.,

IEEE Computer Society Press, pp 430-438, 1995

[Huf89] : K. E. Huff, V. R. Lessor, A plan-based intelligent assistant that supports

the software development process, Proc. of the 3rd Software Engineering Symposium

on Practical Software Development Environments, Soft. Eng. Notes, 13, 5, 1989,

pp97-106

[Hum89] Humphrey, W. S. : Managing the Software Process, Addison-Wesley, 1989.

(verifier CMM)

[Hum92] Humphrey W. S, P. H Feiler, Software Process Development and

Enactment : Concepts and Definitions, Tech. Report SEI-92-TR-4, SEI Institute,

Pittsburgh, 1992

[Jac92] L. Jacherri, J. O. Larseon, R. Conradi, Sotware Process Modelling and

Evolution in EPOS, in Proc. of the 4th Int. Conf. on Software Engineering and

Knowledge Engineering (SEKE' 92), Capri, Italy, 1992, pp574-589.

[Jar92] M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vassiliou, DAIDA - An

Environment for Evolving Information Systems; ACM Trans. on Information Systems,

Vol. 10, No. 1, 1992.

[Jar93] M. Jarke, K. Pohl, Requirements Engineering: An Integrated View of

Representation, Process and Domain, Proc. 4th European Software Conf., Springer

Verlag, 1993

[Jar94] M. Jarke, K. Pohl, C. Rolland, J. R. Schmitt, Experienced-Based Method

Evaluation and Improvement : A Process Modeling Approach, Int. IFIP WG8. 1

Conf. in CRIS series : Method and associated Tools for the Information Systems Life

Cycle, North Holland (Pub.), 1994.

[Joh88] Johnson R. E., Foote B., Designing reusable classes, Journal of Object-

Oriented Programming, Vol 1, No3, 1988

[Kai88] G. E. Kaiser, N. S. Barghouti, P. H. Feiler, R. W. Schwanke, Database

Support for Knowledge-Based Engineering Environments, IEEE Expert, 3(2), 1988,

pp18-32.

[Kel96] Kelly S., Lyyttinen K., Rossi M., Meta Edit+: A fully configurable, multi-

user and multi-tool CASE and CAME environment, Proc. CAiSE' 96 Conf., Springer

Verlag, 1996

[Leh87] M. M. Lehman, Process models, process programming, Programming

support, Proccedings of the 9th Int. Conf. on software engineering, Monterey,

California, USA, 1987

[Lon93] J. Lonchamp, A structured Conceptual and Terminological Framework for

Software Process Engineering, Proc. Int Conf. on Software Process, 1993

[Lub93] M. Lubars, C. Potts, C. Richter, A Review of the State of the Practice in

Requirements Modeling, Proc. Int. Symposium on Requirements Engineering, 1993.

[Mer91] Merbeth G., Maestro II- das intergrierte CASE-system von Softlab, CASE

systeme and Werkzeuge (Ed. H. Balzert) BI Wissenschaftsverlag, pp 319-336,1991

[Mic83] R. S Michalski, A Theory and Methodology of Inductive Learning, Atificial

Intelligence, Vol 20, No 2, 1983

[Oiv92]M. Oivo, V. R. Basili, representing software engineering model : the TAME

goal oriented approach, IEEE Transactions on Software Engineering, Vol. 18 , N°

10, 1992.

[Oll88] T. W. Olle, J. Hagelstein, I. MacDonald, C. Rolland, F. Van Assche, A. A.

Verrijn-Stuart, Information Systems Methodologies : A Framework for

Understanding, Addison Wesley (Pub.), 1988.

[Ost87] L. Osterweil, Software processes are software too; Proc. 9th Int. Conf. on

Software Engineering, IEEE Computer Societ, Washington, DC, 1987, pp2-13

[Poh92] K. Pohl, Quality information systems : Repository for eveloving process

models, Aachen Informatik, Beichte 92-37-RWTH, Aachen.

[Poh93] K. Pohl, The three dimensions of Requirements engineering. In Proc. of the

5th Int. Conf. on advanced Information Systems Engineering, pp. 275-292, Paris,

France, June 1993. Springer-Verlag.

[Pli95] V. Plihon, C. Rolland, Modelling Ways-of-Working, Proc 7th Int. Conf. on

Advanced Information Systems Engineering (CAISE), Springer Verlag, 1995.

[Pot89] C. Potts, A Generic Model for Representing Design Methods, Proc. 11th Int.

Conf. on Software Engineering, 1989.

[Pra96] : N. Prat, Using Machine learning techniques to Improve Information

Systems Development Methods, 2nd AIS Americas Conf. on Information Systems,

Phoenix, USA, 1996.

[Pra97] N. Prakash, Towards a formal definition of methods, in Requirements

Engineering, Vol. 2 , N° 1, 1997.

[Pre95] Pree W., Design Patterns for Object-Oriented Software Development,

Addison Wesley, 1995

[Pri87] R. Prieto-Diaz, P. Freeman, Classifying Software for reusability, IEEE

Software, Vol. 4, N° 1, January 1987.

[Ram92] B. Ramesh, V. Dhar, Supporting Systems Development by Capturing

Deliberations During Requirements Engineering, IEEE Trans. on Software

Engineering, Vol 18, No6, 1992.

[Rie89]. C. riesbeck, R. Schank, Inside Case-based Reasoning, Erlbaum(ed.),

Northvale, New Jersey, USA, 1989

[Rol93] C. Rolland, Modeling the Requirements Engineering Process, Information

Modelling and Knowledge Bases, IOS Press, 1993.

[Rol94a] : Rolland C., A Contextual Approach to modeling the Requirements

Engineering Process, SEKE' 94, 6th Int. Conf. on Software Engineering and

Knowledge Engineering, Vilnius, Lithuania, 1994

[Rol94a] Rolland C., Grosz G., A General Framework for Describing the

Requirements Engineering Process, C. IEEE Conf. on Systems Man and Cybernetics,

CSMC94, San Antonio, Texas, 1994

[Rol94b] C. Rolland, Modelling the evolution of artifacts, In Proc. of the first Int.

Conf. on Requirements Engineering, April, 1994.

[Rol95] C. Rolland, M. Moreno, C. Souveyet, An approach for beginning ways of

working, In Information System Journal, Vol. 20, N° 4, 1995.

[Rol96a] Rolland C., Plihon V., Using generic chunks to generate process models

fragments in Proc.of 2nd IEEE Int. Conf. on Requirements Engineering, ICRE' 96,

Colorado Spring, 1996

[Rol96b] C. Rolland, N. Prakash, A proposal for context-specific method engineering,

IFIP WG 8.1 Conf. on Method Engineering, Chapman and Hall, pp 191-208, 1996.

[Rol97] C. Rolland, A Primer For Method Engineering, In Actes du congrès Inforsid

97, Toulouse, France, June 1997.

[Rol98] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M.

Maiden, M. Jarke, P. Haumer, K. Pohl, Dubois, P. Heymans, A proposal for a

scenario classification framework. To appear in Requirements Engineering Journal

3 :1, 1998.

[Ros91] T. Rose, M. Jarke, M. Gocek, C. Maltzahn, H. W. Nissen, A Decision-based

Configuration Process Environment, IEEE Software Engineering Journal, 6, 3, 1991

[Roy70] Royce W. W. : Managing the Development of Large Software Systems; Proc.

IEEE WESCON 08/1970

[Sis96] S. Si-Said, C. Rolland, G. Grosz, MENTOR :A Computer Aided Requirements

Engineering Environment, in Proc. of CAiSE' 96, Crete, GREECE, May 1996.

[Sis97] S. Si Said, Guidance for requirements engineering processes. Proc. of the 8
th

Int. Conf. and Workshop on Database and Experts System Application DEXA’97,

Toulouse, 1-5 September 1997.

[Tom94] K. Tominaga, T. Tokuda, Constraint-Centered Descriptions for Automated

Tool Invocation, IEEE Asia-Pacific Software Engineering Conf. (APSEC), 1994,

pp92-101.

[Van96] K. Van Slooten, B. Hodes, Characterising IS development project, IFIP WG

8.1 Conf. on Method Engineering, Chapman and Hall, pp 29-44, 1996.

[Wil83] Wilenski, Planning and Understanding, Addison Wesley (Pub.), 1983.

[Wir90] Wirfs-Brock J., Johnson R., Surveying current research in Object-Oriented

Design, Communications of ACM, Vol. 33, No9, 1990

[Fei93]P. H. Feiler, W. S. Humphrey, Software Process Development and Enactment:

Concepts and Definitions, Proc. 2nd Int. Conf. on "Software Process", 1993.

