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Abstract. The paper proposes a faceted framework to understand and classify 

issues in system development process engineering. The framework identifies 

four different but complementary view-points. Each view allows us to capture a 

particular aspect of process engineering. Inter-relationships between these 

aspects allow us to show the influence that one aspect has on another. 

In order to study, understand and classify a particular aspect of process 

engineering in its diversity we associate a set of facets with each aspect. 

The paper uses the framework to raise questions, problems and research issues 

in the field. 

 

1. INTRODUCTION 

Process engineering is considered today as a key issue by both the software 

engineering and information systems engineering communities. Recent interest in 

process engineering is part of the shift of focus from the product to the process view 

of systems development. Process engineering is a rather new research area. 

Consequently there is no consensus on, for example, what would be a good 

formalism to represent processes in, or, even, on what the final objectives of process 

engineering are [Arm93] . However, there is already considerable evidence for 

believing that there shall be both, improved productivity of the software systems 

industry and improved systems quality, as a result of improved development 

processes [Dow93], [Arm93] and [Jar94]. Studies of software development practices 

[Lub93], however, demonstrate that we know very little about the development 

process. Thus, to realise the promise of systems development processes, there is a 

great need [Dow93] for a conceptual process engineering framework.  

In this paper we consider process engineering from four different, but 

complementary, view-points. Each view allows us to capture a particular aspect of 

process engineering. Inter-relationships between these aspects allow us to show the 

influence that one aspect has on another. 

In order to study, understand and classify a particular aspect of process engineering in 

its diversity we associate a set of facets with each aspect. For example, in the 

development view, where the concern is with the way in which process models are 

developed, it is possible to turn to (a) the facet called construction approach to 

understand how a process model can be constructed, (b) the construction technique 

facet to understand how it can be engineered, (c) the change support facet to see how 

flexible the process model is etc.. 



 

Facets have been proposed by [Pri87] for classifying reusable components. They have 

also been used by [Rol98] in requirements engineering for understanding and 

classifying scenario based approaches. When used in process engineering, a facet 

provides a means for classification. For example, the coverage facet of the system 

world (see section 5 below) helps in classifying process models according to the 

underlying paradigm used: activity-oriented, product-oriented, decision-oriented or 

contextual. Each facet is measured by a set of relevant attributes. For instance, the 

description facet is measured by two attributes, the form and the notation attributes. 

Attributes have values which are defined in a domain. A domain may be a predefined 

type (INTEGER, BOOLEAN ...), an enumerated type (ENUM {x, y, z}), or a 

structured type (SET or TUPLE). 

We use the four worlds framework as a baseline and attach (a) a view of process 

engineering to each of its worlds and (b) a set of facets to each view. As a result, it is 

possible to identify and investigate four major view points of process engineering: 

what are processes, how are they represented, how can their representation be 

developed and used, and, finally, what does process engineering achieve. 

The multi-facet, multi-view approach adopted here makes it possible to look at 

process engineering in a comprehensive manner:  

- facets provide an in-depth description of each aspect of process engineering whereas 

aspects give a view of process engineering in all its diversity.  

- relationships between facets help in understanding the implications of one view on 

another.  

2. THE FOUR-WORLDS FRAMEWORK 

The four worlds framework originally proposed for system engineering has proved its 

efficiency in enhancing the understanding of various engineering disciplines, 

information systems engineering [Jar92], requirements engineering [Jar93], and 

method engineering [Rol97]. It can also help in understanding the field of process 

engineering which consists of applying engineering approaches, techniques, and tools 

to the construction of process models.  
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Fig. 1. The four worlds of process engineering 



 

In the original system engineering framework (Fig. 1.), the subject world contains 

knowledge of the domain about which the proposed IS has to provide information. It 

contains real-world objects which become the subject matter for system modelling. 

The system world includes specifications at different levels of detail of what the 

system does. It holds the modelled entities, events, processes, etc. of the subject world 

as well as the mapping onto design specifications and implementations.  

The usage world describes the organisational environment of the information system, 

i.e. the activity of agents and how the system is used to achieve work, including the 

stakeholders who are system owners and users. The usage world deals with the 

intentional aspects of the IS to be built whereas the subject world refers to the domain 

it shall represent. 

The development world focuses on the entities and activities which arise as part of the 

engineering process itself. It contains the processes which create the information 

system i.e. processes which involve analysis and understanding of knowledge 

contained in the other worlds and representation of that knowledge. 

 

For our purposes, we identify the subject world as the world of processes. The system 

world deals with the representation of processes through process models. In the 

usage world we will investigate the reasons, the rationale for process engineering and 

relate the objectives of the users to the process models that can best meet these 

objectives. The development world deals with the process of constructing process 

models. This process is a meta-process in the sense that it supports the construction of 

processes, which in turn, will support the development of systems. The way the 

process might be supported by a tool environment is also a concern of this world. 

 

The paper uses the four worlds to present the state of art in process engineering and to 

raise questions, problems and research issues in the field. It comprises four sections, 

each of these relating to one of the world. This allows us to discuss in a focused 

manner the different concerns of process engineering : the definitions of processes, 

their representations, the way of developing these representations, and the rationale 

for using these representations. This is done in the subject, system, development, and 

usage worlds respectively. 

3. THE SUBJECT WORLD 

Our Universe of Discourse is the world of processes. In this world, it is of interest to 

look at the notion of a process and its nature. 

A process is performed to produce a product. It has been described in the information 

systems area [Oll88] as the route to be followed to reach a product. This basic notion 

has been extended by [Poh93] who looks upon a product as a point in three-

dimensional space comprising of the agreement, specification, and representation 

dimensions. Starting from some initial position in this space, the product moves 

through a succession of locations before a final position is reached. This final position 

corresponds to the desired product. The process then can be considered to be the 



 

route starting from the initial product position and going through the succession of 

intermediate positions till the final product position is reached. 

 

The term process has been defined differently in different coverage (see section V 

below for the notion of coverage). In the activity-oriented coverage it is defined as a 

related set of activities conducted for the specific purpose of product definition. In 

[Fei93] it is defined as "a set of partially ordered steps intended to reach a goal" and a 

process step is itself an atomic action of a process that has no externally visible sub-

structure. In the product-oriented coverage, a process is a series of activities that 

cause successive product transformations to reach the desired product. [Fra91], 

[Hum89] and [Lon93] are three examples of definitions conforming to this view. In 

the decision-oriented coverage, a process is defined as a set of related decisions 

conducted for the specific purpose of product definition. This view has been 

developed, for instance in IBIS [Pot89], DAIDA[Jar92] and [Ros91]. Finally, in the 

coverage called context, a process is a sequence of contexts causing successive 

product transformations under the influence of a decision taken in a context [Jar93].  

 

More intrinsically processes can be of different kinds. These various definitions 

reflect the multiple view points of the community about what is a process. However, 

these view points correspond to the various ways in which a process can be modelled 

and we will deal with in the system world.  

 

Strategic processes are those that investigate alternative ways of doing a thing and 

eventually, produce a plan for doing it. There are many ways of doing the same thing 

and the best way, the one most suited to the situation at hand has to be found. Such 

processes are creative and alternative generation and selection from an alternative are 

very critical activities here. 

 

Tactical processes are those which help in the achievement of a plan. As their name 

implies they are more concerned with the tactics to be adopted for actual plan 

achievement than with the development of a plan of achievement. 

 

Implementation processes are the lowest level processes. They are directly concerned 

with the details of the what and how of plan implementation. 

 

Thus, the subject world can be characterised by a facet having only one attribute 

called Nature defined as 

Nature: ENUM{strategic, tactical, implementation} 

 

As one can expect, we shall see below how the nature of the processes handled will 

influence the choice of a model adequate for their representation. 

4. THE USAGE WORLD 

The usage world is where the goals of process use are established and, consequently, 

the range of facilities required for process performance are determined. The usage 



 

world can be viewed [Dow93] as composed of three interacting domains : a process 

model domain, a process performance domain, and a process model enactment 

domain (Fig. 2.). 
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Fig. 2. Process domains 

The process model domain contains process models. A process model describes the 

common properties of a class of processes having the same nature. The process 

performance domain deals with the actual activities conducted by human agents and 

machines, in the course of a project. Some will be executed by software tools; others 

will consist of human thinking, writing, exchanging ideas, and taking decisions 

through formal and informal interactions between members of the project team. All 

these activities must be supported by the process model. The process model 

enactment domain is concerned with the features needed to support process 

performance governed by the process model. These features support, guide, or 

enforce performance of the process in a way consistent with the process model.  

 

The three domains interact with each other in different ways. Firstly, the process 

model influences the way in which the process is performed. Actual performance then 

corresponds to some extent to the model of how it should be performed. Secondly, 

the course of enactment may need to be contingent on events arising from actual 

process performance. Therefore, the actual process will be different from the 

theoretical instantiation of the process model. This leads to the idea of feedback from 

process trace to process model, thereby allowing its improvement. 

 

This leads to a view of the usage world as imposing strong requirements on the way 

processes will be performed, the nature of process models used and the way in which 

these process models will be developed and changed. The purpose assigned to the 

process model has to be determined by the usage world. This is captured below in the 

facet, Purpose. Since the way processes are performed changes with time, it is the 



 

duty of the organisation to define their process management policy. This is captured 

in the facet, Process Management Policy. 

4.1 PURPOSES 

A synthesis of proposals from the software engineering field [Lon93], [Cur92], the 

information system community [Bri90], [Pra97], [Rol96a], and the system design 

community [Ram92], [Pot89], show three main aims of process models: 

 - descriptive, to record trace what actually happens during a process, 

 - prescriptive, to define desired processes and how they should/could/might 

be performed, 

 - explanatory, to provide explanations about the rationale of processes. 

 

A descriptive purpose takes the point of view of an external observer who looks at the 

way a process has been performed and determines the improvements that have to be 

made to make it perform more effectively or efficiently.  

 

The prescriptive purpose lays down rules, guidelines, and behaviour patterns which, 

if followed, would lead to the desired process performance. The prescriptive purpose 

lies in a range from strict enforcement to flexible guidance. In the former the 

performance of the process must follow the prescription whereas in the latter the 

prescription is such that it can accommodate a large number of ways in which the 

process can proceed. Guidance shifts the emphasis away from task performance to 

goal achievement. Therefore, there can be two types of guidance, point and flow 

[Sis97]. Point guidance provides help in the achievement of a given goal whereas 

flow guidance helps in identifying the next goal in order for the process to proceed. 

 

The explanatory purpose is important in those processes where several possible 

courses of action are open and each of these has to be explored and evaluated based 

on rational arguments. Such traces establish an explicit link between processes and 

the requirements that they are to fulfil. 

 

The descriptive and explanatory purposes have been accorded a lot of attention in the 

recent past. This is because of the need to keep track of process knowledge and to 

support change [Got94], [Ram92]. To take this to the extreme, it is difficult to 

visualise any process, strategic, tactical, or implementation (see Subject World), 

without a descriptive and/or explanatory purpose behind them. 

 

Specifically, if prescription is to be provided to strategic processes, then flexible 

guidance is clearly more appropriate than process enforcement. This is because 

strategic processes are often creative and require human co-operation. This makes 

most software process models inappropriate for strategic processes because [Fin94] 

their basic property is enforcement of constraints (prescriptions and even 

proscriptions). However, in tactical or implementation processes of the Subject World 

that follow plans relatively more strictly and which are less creative and mercurial, 



 

varying shades of process enforcement ranging from mechanical enforcement with 

limited guidance to complete automation may be found useful. 

 

A process engineering approach can be classified according to the role it aims to play 

in the facet called Purpose which has the three following attributes : 

Prescriptive: ENUM {enforcement, guidance} 

Descriptive: BOOLEAN 

Explanatory: BOOLEAN 

4.2 PROCESS MANAGEMENT POLICY 

Processes change with time and so do the process models underlying them. Thus, new 

processes and models may have to be built and existing ones improved. There is need 

to have a well-defined organisational policy to handle this change. This policy can 

either accept change continuously as it occurs or accept it as one-shot, radical 

change. Radical change applies in situations where organisations need to define a 

process management policy from scratch. The former applies when need is felt to 

harmonise heterogeneous process practices or when a bottom-up approach is 

systematically applied to move up in the levels of maturity in the CMM [Hum89] 

framework. . 

 

Strategic processes are highly unstable. The process proceeds by analogy with other 

similar processes and reuses experience and knowledge of their stakeholders. This 

reuse is continuous and operates so long as the process lasts. It is today implicitly 

done by individual human agents performing the process but, perhaps, in future, it 

shall be necessary to have reuse as a process management policy of the organisation. 

However, it remains to be conclusively shown that process practice reuse is cost 

effective in an organisational setting. 

 

The foregoing is captured by the two attributes change and reuse of the Process 

Management Policy facet 

Change: ENUM{continuous, radical} 

Reuse: BOOLEAN 

5. THE SYSTEM WORLD 

If the subject world is the world of processes then the system world is the one of their 

representations. The interest in this world is in 

a) what is to be represented 

b) at what level of abstraction 

c) how is it represented 

d) what properties should the representation have. 

 

The facet contents, of the system world deals with (a), the abstraction facet deals with 

(b), the description facet deals with (c), and finally, the modularization facet captures 

the properties of the representation. We develop each of these below. 



 

5.1 ABSTRACTION 

Processes of the same nature are classified together into a process model. Thus, a 

process model is a description of a process at the type level. Since the process model 

is at the type level, a process is an instantiation1 of it. The same process model is 

used repeatedly for the development of many applications and thus, has many 

instantiations. As stated in section 4, one possible use of a process model is to 

prescribe "how things must/should/could be done" in contrast to the process itself 

which is really what happens. A process model is more or less a rough anticipation of 

what the process will look like. What the process shall, indeed, be will, however, be 

determined during actual system development.  

 

A process meta-model is a description at the type level of a process model. A process 

model is, thus, an instantiation of a process meta-model. Obviously, a meta-model 

can be instantiated several times in order to define various process models. A process 

meta-model is at the meta-type level with respect to a process. It plays a role similar 

to a theory in the Theory of Plans [Wil83] from which plans can be generated (the 

process models) and executed (the processes). 

 

The abstraction facet captures the levels at which the model is expressed and the 

corresponding attribute takes on values from the enumerated domain { type, meta-

type}. 

 

The well known models like the waterfall [Roy70] and spiral models [Boe88] are the 

type level whereas the Nature process theory [Rol95] is at the meta-type level. 

 

5.2 CONTENTS 

The concern of this facet is with the contents of the process model/meta-model. These 

contents are determined by the system of concepts in terms of which processes are 

represented and by the granularity of these representations. These two aspects are 

dealt with by the coverage and granularity attributes respectively. 

5.2.1 Coverage 

According to Dowson [Dow88], process models can be classified into three groups of 

models: 

- activity-oriented,  

- product-oriented, and 

- decision-oriented.  

                                                           
1
 A. Finkelstein in (Fin94) points out the various meaning of the widely used term 

"instantiation" in the software engineering community. We relate here to the classical 

idea of creating instances from a type/class definition 

 

 



 

Since this classification was made, a new group called the contextual model has also 

emerged. 

 

Activity-oriented 

The activity-oriented models concentrate on the activities performed in producing a 

product and their ordering. These process models are sequential in nature and adopt 

the Cartesian, functional decomposition approach. They provide a frame for manual 

management of projects developed in a linear fashion. The first widely used process 

model, the Waterfall model [Roy70], falls into this category. Its widespread 

acceptance has led to life-cycle descriptions being most often treated as linear 

sequences where crucial aspects of the process such as feedback loops and iteration 

are not represented [Boe88], [Cur88] and [Cur92].  

 

These models are well suited to model implementation processes. The strong 

emphasis on an activity incurs some risks of neglecting the influence of product 

structure on the process. Further, they are unable to support flexible prescriptive 

guidance but only process model enforcement. The linear view of activity 

decomposition seems inadequate to model creative processes because it is not 

possible to consider all contingencies. Activity-oriented representations cannot 

incorporate the rationale underlying the process and therefore do not permit reasoning 

about engineering choices based on existing conditions. It is unrealistic to plan what 

will happen in such a process in an entirely sequential manner. Finally, the linear 

view is inadequate for process models which have to support backtracking, reuse of 

previous designs and parallel engineering.  

 

Product-oriented 

Product-oriented process models, in a manner similar to activity-oriented ones, are 

centred around the notion of activity but, additionally, link activities to their output : 

the product. The ViewPoints model [Fin90] and the process model proposed in the 

European Software Factory (ESF) project [Fra91] belong to this category.  

 

Product-oriented models couple the product state to the activities that generate this 

state. They visualise the process as a state transition diagram. Since product-oriented 

models adopt the notion of an activity, they suffer from the same difficulties as the 

activity-oriented models considered above. However, due to their product-activity 

coupling they are useful for tracing the transformations performed and their resulting 

products. However for strategic processes it is difficult, if not impossible, to write 

down a realistic state-transition diagram. 

 

Decision-oriented 

The successive transformations of the product caused by a process are looked upon, 

in decision-oriented models, as consequences of decisions. The process models of the 

DAIDA project [Jar92], [Pot89] and [Ram92] fall into this category. These models 

emphasise the concept of an "Intention " at the expense of an activity. 



 

 

Decision-oriented models can be used for both, strategic as well as tactical processes. 

The strength of the decision-oriented approach is its ability to cover more aspects of a 

process than can be done by the two other kinds. Decision-oriented models are not 

only able to explain how the process proceeds but also why it proceeds. Therefore, 

decision-oriented process models are particularly well suited to strategic processes, 

for supporting explanatory tracing and prescriptive guidance. This is because of their 

ability to (a) guide the decision making process (b) help in reasoning about the 

rationale behind decisions,(c) support the deliberation underlying the decision process 

itself and (d) keep a trace of the happenings of a process and their rationale. 

 

Contextual Models 

Contextual models as found in the Nature process theory [Bub94], and in the F3 

project [Rol94b] look upon each process as being in a subjectively perceived 

situation upon which is looked upon with some specific intention. The work to be 

done next depends on both the situation and the intention i.e. it depends on the 

context existing at this moment. 

  

Contextual process models strongly couple the context of a decision to the decision 

itself. It makes the notion of a context, the coupling of a situation and the decision, 

central to process modelling. Decisions are applied to the situation in which the 

process currently is, in order to change that situation to the desired new one. In this 

respect, the contextual approach has some similarity with the planning paradigm that 

has emerged from Artificial Intelligence and with projects based on the planning 

paradigm such as GRAPPLE [Huf89]. 

 

Since the contextual models adopt the notion of a decision, all the properties of 

decision-oriented models mentioned earlier are applicable to them. Further, due to the 

strong relationship between the situation and the decision, only those decisions which 

are appropriate in the situation at hand are of interest. This helps in focusing 

guidance, tracing and explanation to specific process situations. 

 

Process models can be classified within the facet Contents, by giving values to the 

attribute, coverage,  

Coverage: ENUM{activity, product, decision, context} 

5.2.2 Granularity 

Most traditional process models are large-grained descriptions of the product life-

cycle. On the other hand, there are very fine-grained models. For example specifying 

that after a source code file is edited, it should be recompiled [Kai88]. Recently, 

hybrid formalisms that use different notations for large-grain and small-grain aspects 

of process such as PROCESS WEAVER [Fer91], have been developed. 

 



 

The nature of granularity needed is dependent on the situation at hand. Granularity 

affects the kind of guidance, explanation and trace that can be provided. High 

granularity limits these to a rather coarse level of detail whereas fine granularity 

provides more detailed capability. Process models should, ideally, provide a wide 

range of granularity. This shall allow a movement from large grains to fine grains 

along a continuum. 

 

Therefore, the granularity attribute takes on values from SET(ENUM{large, fine, 

variable}). 

5.3 THE DESCRIPTION FACET 

The description facet is concerned with the form of the process representation and the 

level of formality of the language used to describe the process model. These 

correspond to the form and notation attributes of this facet. 

5.3.1 Form 

The form attribute is concerned with style of the process representation. There are 

three identified forms, scripts, programs, and hypertext.  

 

Osterweil [Ost87] has proposed the view that software process models should take the 

form of a program as different from process scripts. Process scripts are interactively 

used by humans as against process programs which are enacted by a machine 

[Leh87]. They support non determinism whereas process programs can, at best, 

support process deviation under pre-defined constraints [Cug96].  

 

The hypertext style of process representation is a network of links between the 

different aspects of a process, such as product parts, decisions, arguments, issues, etc. 

 

A relationship can be established between form and the purpose facets of the Usage 

World. Scripts and programs are two styles which may be applicable to prescriptive 

purposes whereas hypertext is well suited to descriptive and explanatory purposes. 

Strict enforcement of the prescriptive purpose can clearly be represented in process 

programs whereas flexible guidance requires the process model to be represented in 

process scripts. Descriptive and explanatory purposes require the establishment of 

relationships between different elements of a process trace. These relationships are 

well articulated as hypertext links. 

The form attribute of the description facet takes on values from ENUM{script, 

program, hypertext} 

5.3.2 Notation 

Process models underlying information systems practice have traditionally used 

informal notations such as natural languages or diagrams with informal semantics. On 

the other hand, in software engineering, more formal software process models (see 

[Arm93], [Cur92], [Fin94] for an overview) have been used. This formality relates to 



 

underlying programming languages : Smalltalk for E3 [Fin94], various Prolog 

dialects for EPOS [Jac92], Oikos [Amb91], and PEACE [Fin94], PS-Algol for PWI 

[Fin94].  

 

A formal notation is required to support the verification of the expected properties of 

the process model and validation of the process model using for instance, simulation 

or enactment techniques. The use of informal notations has made it difficult for 

process models to be followed systematically. Formal or semi-formal notations make 

these efforts considerably more effective. Formal notations are necessary for 

providing automatic enactment support. 

 

The notation attribute helps classifying process models by one of the three values of 

the following enumeration: 

Notation: ENUM{formal, semi-formal, informal} 

5.4 MODULARIZATION 

Early processes were monolithic. However, there is a shift towards modular process 

structure in this decade. We introduce a Boolean valued attribute called Presence in 

the modularization facet to distinguish between monolithic and modular methods.  

 

One proposal for modularization [Har94] is that of fragments. A fragment can be 

either a product fragment or a process fragment. The drawback of the fragment based 

approach is the over-emphasis on the product fragment resulting in under developed 

meta-process modelling.  

 

The proposal of [Rol93], [Rol94a], is to tightly couple the product and process 

aspects of processes into contexts. A Context is a couple <situation, decision>, where 

the decision part represents the choice an IS developer can make at a moment in the 

engineering process and the situation is defined as the part of the product it makes 

sense to make a decision on.  

 

Process modules can be looked upon according to two other perspectives : 

abstraction and aggregation. Rolland [Rol95] has defined aggregates called process 

chunks as hierarchies of contexts. A chunk prescribes the way to proceed in the 

situation identified by the context at the root of its context hierarchy. This allows the 

decision of the root context to be taken in this situation. [Van96] proposes two kinds 

of aggregated modules called route map and fragments respectively. A route map 

refers to strategies such as delivery strategies, developmental strategies, realisation 

strategies etc., activities and products concerning system development as well as 

project management. The fragment is a coherent part of a process for system 

development or project management. Fragments may be linked to a route map which 

may establish a complete project approach. 



 

 

Abstraction is used to capture generic laws governing the construction of different 

but similar process modules. Generic process modules can take the form [Rol96a] of 

framework or pattern. A framework models the commonality between modules of 

different process models but for the same type of application. A pattern models a 

common behaviour in process construction. It is generic in the sense that it is used 

every time a process model is constructed. Both terms have been chosen by analogy 

with reuse approaches in the object oriented area. Patterns are there defined as 

solutions to generic problems which arise in many applications [Gam93], [Pre95] 

whereas a framework is application domain dependent [Wir90], [Joh88]. 

 

Classification along the modularization facet comes down to giving values to the two 

following attributes: 

Presence: BOOLEAN 

Nature: SET( ENUM{primitive, aggregate, generic} 

6. THE DEVELOPMENT WORLD 

The development world deals with two issues 

- the process of constructing process models, and 

- enactment of processes. 

The process of constructing process models is a meta-process, it is the process behind 

the process used to construct processes for building information systems products. 

The development world deals with meta-processes so as to improve process models 

and to make them evolve.  

 

The second issue is that of process enactment. The development world is also 

concerned with the way in which process models can be constructed and process 

enactment support provided. That is, the tool environment needed to support process 

performance is also a concern of this world. Thus, the facets of interest in this world 

are construction approach, construction technique, enactment support, and change 

support .  

6.1 CONSTRUCTION APPROACH 

In a manner analogous to that of Harmsen [Har94] one can organise construction 

approaches in a spectrum ranging from 'low' flexibility to 'high'. At the 'low' end of 

this spectrum are rigid approach whereas at the 'high' end is modular approach. Rigid 

approaches lead to process models that are completely pre-defined and leave little 

scope for adapting them to the situation at hand. On the other hand, contingency 

approaches allow the modification and augmentation of models to make them fit to a 

given situation. 

 



 

There are at least two ways by which contingency approaches can be realised. The 

first one is the production of contingency process models that is, situation-specific 

models for certain types of organisational settings. This presents process engineering 

as the selection of a model within a panel of contingency process models. In the 

second one process engineering is used to support the selection and the assembly of 

process components to construct process models ‘on-the-fly’.  

 

The foregoing suggests that construction approach should be classified as : 

Construction approach: ENUM{contingency, on-the-fly, rigid} 
 

The construction approach adopted in the development world has a strong impact on 

the modularization facet and granularity attribute of the system world. Whereas the 

rigid approach can be associated to monolithic models, contingency and on-the-fly 

approaches require modular process models. The contingency approach is well suited 

to support capitalisation of ' good practice'  into process chunks in a stable 

environment. Instead ' on-the fly'  approaches are adapted to the dynamic recognition 

and use of chunks and patterns. 

6.2 CONSTRUCTION TECHNIQUE 

Within the broad construction approach adopted for constructing process models, a 

number of techniques for construction are available. Construction techniques used in 

the information systems area have developed independently of those in software 

engineering. In information systems, construction techniques exploit the notion of a 

meta-model and the two principal techniques used are those of instantiation and 

assembly. In software engineering the main construction technique used today is 

language-based. However, early techniques in both, information systems and 

software engineering were based on the experience of process engineers and were, 

therefore, ad-hoc in nature. We comment the attributes values in turn. 

6.2.1 Instantiation 

Given that new process models shall be constructed very often, the question is how 

we can increase the productivity of process engineers and improve the quality of the 

models they produce. One way of doing this is to identify the common, generic 

features of process models and represent them in a system of concepts. Such a 

representation has the potential to ' generate'  all process models that share these 

features. This potential is realised when a generation technique is defined whose 

application results in the desired process model. Thus, there are two key issues here 

- the identification of the system of generic concepts 

- the instantiation technique. 

The first of these is resolved by the definition of a process meta-model whereas the 

second issue is resolved by deriving process models from this process meta-model 

through instantiation. A number of advantages flows from this: 

1) The exploitation of the meta-model helps us to define a wide range of process 

models. 



 

2) It makes the activity of defining process models systematic and versatile.  

3) It forces us to look for and introduce, in the process meta-model, generic 

solutions to problems and this makes the derived process models inherit the solution 

characteristics. Under the instantiation approach, the crucial issue in process 

modelling is no longer the process model but the process meta-model. This means 

that the onus of providing a process model with the required characteristics shifts 

from the process model developer to the process meta-model developer.  

 

The instantiation technique has been used, for example, in NATURE [Rol93], 

[Rol94], [Rol94a], [Rol96a]. The process engineer must define the instances of 

contexts and relationships that comprise the process model of interest. It has been 

utilised to build the repository of Computer Aided method Engineering environments 

[Kel96], [Har95], [Mer91], [Sis96]. 

6.2.2 Language 

The software engineering community has used different languages for expressing 

process models like Smalltalk for E3 [Fin94], various Prolog dialects for EPOS 

[Jac92], Oikos [Amb91], and PEACE [Fin94], PS-Algol for PWI [Fin94]. Different 

computational paradigms have also been used, for example, Petri nets in EPOS 

[Jac92] and SPADE [Ban93], rule based paradigm in MERLIN [Emm91], ALF 

[Ben89], Marvel [Kai88], EPOS [Jac92], and triggers in ADELE [Bel89] and MVP-L 

[Fin94]. 

 

There is a relationship between the construction technique and the form facet in the 

system world. Indeed, languages are typically related to process programs whereas 

instantiation techniques have been used to construct process scripts. 

6.2.3 Assembly 

The assembly technique relies on the availability of process components in a process 

repository. Assuming that process components exist in a process repository, the 

question now is "how to deliver the relevant process components to the user?" The 

process community has been looking at this question in two ways : first, by 

promoting a global analysis of the project on hand based on contingency criteria and, 

secondly, by associating descriptors to components in order to ease the retrieval of 

components meeting the requirements of the user. Therefore in the former the project 

situation is at a very global level whereas in the latter the descriptors of process 

components support local matching with the situation at hand.  

 

[Van96] is an example of the first approach. This approach has been tried out in nine 

non-standard projects of the systems development department of a bank organisation. 

The second approach [Rol96b] uses the notion of descriptor [DeA91] as a means to 

describe process chunks. It has been tried out to construct information systems 

methods [Pli95] in NATURE and repository of scenario based approaches accessible 

on Internet in the CREWS project [Rol98]. 



 

 

For the assembly technique to be successful, it is necessary that process models are 

modular. If the assembly technique is combined with the instantiation technique then 

the meta-model must itself be modular. 

6.2.4 Ad-Hoc 

Traditional process models are expressions of the experiences of their developers. 

Since this experience is not formalised and is, consequently, not available as a fund of 

knowledge, it can be said that these process models are the result of an ad-hoc 

construction technique. This has two major consequences : it is not possible to know 

how these process models were generated, and they become dependent on the domain 

of experience. If process models are to be domain independent and if they are to be 

rapidly generable and modifiable, then we need to go away from experience based 

process model construction. Clearly, generation and modifiability relate to the 

process management policy adopted (see Usage World). Instantiation and assembly, 

by promoting modularization, facilitate the capitalisation of good practice and the 

improvement of given process models. 

 

The construction technique facet is defined as follows: 

Construction technique: SET(ENUM{instantiation, language, assembly, ad-

hoc}) 

6.3 ENACTMENT SUPPORT 

Enactment mechanisms have been mainly implemented by the software engineering 

community as the core of Process Centred Software environments. An enactment 

mechanism determines and controls the interactions between the agents performing 

the process so as to trace, guide, and enforce performance of the process in a way 

consistent with the process model. 

 

Considerable effort has been put in to provide automated execution support, 

automated monitoring and enforcement of software processes in process centred 

software environments. The reader will find in [Fin94] a detailed presentation of ten 

projects in the field as well as the results of a common assessment exercise performed 

by the leaders of these projects. 

Most process centred software environments [Jac92], [Bel94], [Ban93], [Kai88] are 

in fact used to describe the activity of tools and to allow automatic invocation of tools 

[Tom94]. Existing environments guide software engineers in the selection of the right 

suite of tools but they do not guide the engineering activities themselves. On the 

contrary, some attempts have been made in the information systems community for 

implementing enactment mechanisms that focus on guiding engineering activities 

[Sis96]  

 

Whereas the foregoing deals with supporting the performance of application 

processes, there is also need to support the process of constructing process models, 



 

the meta-process. Just as other processes are represented by process models, the meta-

process shall have its own model, the meta-process model. Again, the meta-process 

itself needs to be performed in accordance with the meta-process model and this 

means that enactment support has to be provided for the performance of the meta-

process.  

 

It is possible to build two separate enactment environments for dealing with process 

and meta-process enactment respectively. However, if the meta-process is treated as 

just another process then it is possible to use the same enactment mechanism to 

support both, the process and the meta-process. In fact this has been demonstrated in 

the Mentor environment[Sis96]. 

 

Enactment mechanisms must support processes that take the form (see System 

World) of scripts, programs, or hypertext. When a process model is a script then the 

enactment mechanism provides high flexibility so as to enable human agent 

intervention during process performance. This intervention would be supported by 

guidance mechanisms which may either, proactively provide suggestions on possible 

decisions that could be taken or may support requests for help. In terms of the Usage 

World, for models which are process programs, the enactment mechanism behaves 

like the run-time support of programming languages. Process program enactment is 

program execution whereas process script enactment is model interpretation. Finally, 

when models are of the hypertext form then the enactment mechanism offers facilities 

to create links between process decisions, their rationale, and the resulting product. 

 

Since the meta-process is a process, it is possible to extend the foregoing remarks to it 

as well. However, as it is unlikely to completely plan out the meta-process, it would 

be the case that meta-process models are not treated as process programs but as 

process scripts only. 

 

This facet has two Boolean values attributes 

Process support: BOOLEAN 

Meta-process support: BOOLEAN 

6.4 CHANGE SUPPORT 

The traditional practice is that if a process model does not meet requirements of the 

users then a new one is built. This practice causes loss of experimental knowledge 

which could have been used to change process models. The development world must 

therefore provide support for process model change. 

 

There are two different ways in which this can happen 

(a) process model change takes place even as the process proceeds: the process model 

can be adapted to specific requirements as these emerge,  

(b) the process model may need to be revised and improved at the end of the project: 

this is to benefit from the experience gained in process model use.  



 

The former is referred to as dynamic process change [Dow94] and the latter as 

process improvement [Lon93]. 

 

Different positions are taken in the software process engineering community 

concerning the need for dynamic changes. On the one hand, people claim that this is 

an essential requirement and some software process centred environments EPOS 

[Jac92], E3 [Fin94], SPADE [Ban93], ADELE [Bel89] try to provide solutions for it 

[Fin94]. On the other hand, it can be argued that a prescriptive approach to process 

modelling is at odds with dynamic process evolution [Hum92]. The notion of fitness 

of the process has been defined in [Hum92] as the degree to which the agents 

performing the process can faithfully follow the process steps it specifies. When this 

fitness is low then process change occurs. Thus, process model change is an 

indication of lack of flexibility of the model. Recent process models include the 

concept of process deviation and therefore control the deviation of process 

performance from that prescribed in the process model.  

 

There are only initial experiments in improving the process model by experience-

based learning, as suggested in the literature [Hum89], [Oiv92], [Poh92]. They 

suggest two ways of process improvement, by inductive or deductive learning. 

Inductive learning is based on the analysis of process deviations that are recorded in 

process traces. Induction improvement can be performed by a human agent who, on 

his own, decides the change that is needed. The agent can be supported by 

generalisation rules [Mic83] that can be part of a tool based inductive learning 

environment [Pra96]. In order to do inductive improvement, there must exist a 

mapping between elements of the trace and the concepts of the process model. 

 

Deductive learning exploits Case-based reasoning. Thus, it solves new problems by 

adapting solutions that have been utilised to resolve past problems [Rie89]. Case 

based reasoning when applied to process performance calls for the existence of a 

repository of cases. Deductive process improvement aims at adding new cases in the 

repository by examining process performances. Deductive learning corresponds to the 

retaining phase of the Case based reasoning cycle which traditionally consists of the 

four phases (a) retrieve, (b) reuse, (c) revise, and (d) retain. 

 

Dynamic process change and process improvement are the two techniques that the 

Development World can offer to support the process management policies set in the 

Usage world. Deductive process improvement is appropriate when an organisation 

wants to promote the reuse of good practice in performing processes. Clearly, a 

process model supporting aggregates (see Modularization facet in System World). 

shall be well suited to provide these as cases to be stored in the repository. 

 

Inductive improvement is well suited to situations where process models are used 

repeatedly and can continuously be improved by learning from the deviation of actual 

performances. A modular structure of process models helps in relating the observed 



 

deviations to specific, localised parts of the process model components and therefore 

facilitate inductive improvement. 

The change support attribute takes one or several values among the following 

enumerated domain : 

Change support: SET(ENUM{dynamic process change, process 

improvement}) 

7. CONCLUDING REMARKS 

The subject and the usage worlds constitute the environment within which the 

technical view of process engineering contained in the system and development 

worlds lies. This embedding is the source of the inter-relationships between the facets 

of the four views discussed in this paper. 

 

The nature of processes and the purpose imposed by the usage world on the process 

engineering solution determine, to a large extent, the type of contents and description 

of the process models/meta-models. The choice of a particular type of content and 

description based on the nature of the processes guarantees that the semantics of these 

processes are well captured in process models/meta-models. On the other hand, 

selection of a content and description to meet the purpose expressed by the usage 

world guarantees that the process model/meta-model shall fulfil the requirements of 

the process stakeholders. In fact, we suggest that selection based on purpose should 

have primacy over that based on the nature of the process. This conclusion can be 

drawn by analogy with ISE approaches where it has been recognised that user needs 

are better met by understanding usage goals and not merely by using good semantic 

conceptual model. 

 

In fact, the usage world affects the system world through both, the purpose as well as 

the process management policy. Of the three purposes, the explanatory and the 

descriptive have been incorporated in process models that provide design rationale 

and process traceability respectively. However, the issue of providing prescriptive 

guidance is still open. The process management policy affects the abstraction facet as 

it introduces the need for abstracting process models into process meta-models. 

Before building meta-models which reflect old models but on a new level of 

abstraction, one should question the old ones. The goal of meta-modelling is not only 

to operationalise current process models but also to correct the general oversights and 

limitations of these. 

 

In a similar manner, we believe that the technical solution in the development world 

has to be chosen according to the purpose and the process management policy 

decided in the usage world. The influence of the former is clearly on the choice of the 

enactment mechanisms. The implication of the latter is more diverse. The policy 

recognises the need for managing processes in-the-large and their evolution in time. 

The former sets the requirements of an automated enactment support and its 

extension to the meta-process. The latter determines the choice of the change support 

and of the construction approach. There are two implications of this, organisational 



 

and technical. The absence today of organisation-wide process policies raises the 

need for organisations to understand the crucial role played by these policies and to 

define them. Such policies would, for example, encourage capitalisation of good 

practice, learning from experience, and development of a reuse culture. 

 

The capitalisation policy raises the technical question of how good practices can be 

recognised, organised and reused. Such knowledge should be available in the form of 

chunks for later assembly. This implies the modularization of process models/meta-

models. The modular approach represents a shift in the way of thinking about process 

representations and is likely to emerge as a major research issue in the future. 

  

The reuse culture raises the question of the genericity of process representations. 

Perhaps, what is needed is a corpus of both, generic process and generic meta-process 

knowledge in a modular form. A suggested research is therefore, the development of 

a domain analysis approach to identify common properties of (a) different process 

models and (b) different meta-process models.  

 

The evolution of process models calls for the establishment of technical enactment 

support for the meta-process. So far, work has concentrated on developing and 

experimenting with process enactment mechanisms. The research issue here is of 

making these mechanisms generic enough to handle both process and meta-process 

enactment. 

 

This paper has argued that process engineering should be usage driven. The 

acceptance of process engineering in organisations is, however, not entirely 

determined by the functionality that is needed but also by other non-functional factors 

such as usability, availability, security etc. This aspect of process engineering has to 

be addressed by the research community more vigorously. 
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