
HAL Id: hal-00707895
https://hal.science/hal-00707895v2

Submitted on 15 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Final Report on the Evaluation of StratusLab Products
Charles Loomis, Christophe Blanchet, Henar Muñoz Frutos, Evangelos Floros

To cite this version:
Charles Loomis, Christophe Blanchet, Henar Muñoz Frutos, Evangelos Floros. Final Report on the
Evaluation of StratusLab Products. 2012. �hal-00707895v2�

https://hal.science/hal-00707895v2
https://hal.archives-ouvertes.fr

Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

Final Report on the Evaluation

of StratusLab Products

Deliverable D2.5 (V1.2)

14 June 2012

Abstract

Over the course of the project, the project’s software releases have been evaluated

against identified requirements and against the needs of real users. Most of the for-

mal requirements have been satisfied, with work in the second year concentrating

on extentions to commercial applications, multi-platform support and sandboxing.

Feedback from applications running on the StratusLab cloud can be grouped into

four broad categories: Ease of Use, Integration & Operation, Better Informaton

Flow, and High-Level Services. These categories provide a broad roadmap for the

evolution of the StratusLab cloud distribution past the end of the project.

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.

The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2012, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 26

http://creativecommons.org/licenses/by/3.0/

Contributors

Name Partner Sections

Charles Loomis CNRS-LAL All

Christophe Blanchet CNRS-IBCP 3.1, 3.2

Henar Muñoz TID 3.3

Vangelis Floros GRNET 4.2

Document History

Version Date Comment

0.1 30 April 2012 Initial skeleton.

1.0 11 June 2012 Mostly complete version for review.

1.1 14 June 2012 Final draft after review.

1.2 14 June 2012 Minor corrections to bioinformatics sections.

3 of 26

Contents

List of Tables 5

1 Executive Summary 6

2 Introduction 8

3 Use Cases 9

3.1 Bioinformatics Web Services. 9

3.1.1 Lessons Learned . 9

3.2 TOSCANI. 10

3.2.1 Lessons Learned . 10

3.3 nTier Web Application Prototype 11

3.3.1 Lessons Learned . 11

3.4 Software Engineering PaaS 12

3.4.1 Lessons Learned . 12

3.5 EGI Integration . 13

3.5.1 Lessons Learned . 14

3.6 Feedback from Other Applications and Deployments 14

3.6.1 Lessons Learned . 16

3.7 Summary . 17

4 Previously Identified Requirements 19

4.1 Gaps . 19

4.2 Performance Improvements 20

4.3 Summary . 20

References 26

4 of 26

List of Tables

3.1 EGI Scenarios. 15

4.1 Requirements (I) . 22

4.2 Requirements (II) . 23

4.3 Requirements (III) . 24

5 of 26

1 Executive Summary

Both the scientific and commercial adoption of the StratusLab cloud distribution

attest to the utility of its feature set and to the quality of the implementation. The

broad range of scientific applications, including astrophysics, meterology, bioin-

formatics, and others, shows the broad applicability and interest in the project’s

software.

Using functional requirements collected at the beginning of the project as a

yardstick, it is not surprising that the system has been well received. Most of the

functional requirements were satisfied in the first year of the project with release

v1.0. In addition to general service improvements, the second year concentrated

on extentions to commercial applications, multi-platform support, and sandbox-

ing. Moreover, identified performance bottlenecks related to network and disk

bandwidth have been rectified.

The experiences from users and administrators have, however, identified areas

in which further improvements and extensions can be made. At a macroscopic

level, they can be grouped into four broad categories.

Ease of Use A recurring theme is simplifying the overall use of the cloud. The

command line client has been well received by the community; however, they also

desire a unified web interface. Requests to enhance the use-of-use have been made

for other services as well, like enhanced search capabilities in the Marketplace.

Integration & Interoperation Cloud deployments occur in pre-existing environ-

ments and must adapt to the contraints of those environments, such as limited IP

addresses and existing authentication mechanisms. One can also consider the need

for standard OCCI and CDMI interfaces as a need to fit into a larger, federated

cloud infrastructure.

Better Information Flow The exchange of information between the cloud provider

and the cloud user needs to be improved, both at the operational level (e.g. noti-

fication of operational problems) and at the service level (e.g. providing compre-

hensive, synthesized accounting and billing statements).

High-Level Services Capturing usage patterns by offering high-level services

makes the system more powerful. Areas where high-level services have been

demonstrated are auto-scaling, federation, sandboxing, and multi-service deploy-

ment. These services can be further improved and expanded, for example by pro-

viding full multi-service workflows and orchestration.

6 of 26

As the project partners intend to continue working together on the StratusLab

cloud distribution after the project’s end, these four areas serve as a broad roadmap

for the future evolution of the StratusLab software.

7 of 26

2 Introduction

Over the course of the project, the project’s software releases have been evaluated

against identified requirements and against the needs of real users. Basic tasks and

workflows are documented in the project’s tutorials and tested routinely as part of

the build process, as well as regular certification of releases (see Infrastructure Op-

erations Final Report (D5.5) [3]) This document concentrates on a more subjective

evaluation based on deployed applications and on the requirements defined at the

beginning of the project.

“Lessons learned” are extracted from a variety of applications deployed on the

cloud infrastructure; these provide a set of refined requirements and recommenda-

tions that can be used to guide the further development of the StratusLab software

after the end of the project. The applications themselves are described in the com-

panion document Final Report on StratusLab Adoption (D2.4) [4].

The document also contains an evaluation of the software against the require-

ments collected at the beginning of the project. Many of the functional require-

ments were met with the v1.0 release. Work in the second year included im-

provements in stability and reliability, multi-platform support, and the scientific

and commercial applications mentioned in the above document.

A complete description of the StratusLab cloud distribution itself can be found

in the StratusLab Toolkit 2.0 (D4.5) [2] document.

8 of 26

3 Use Cases

Seven use cases to evaluate the StratusLab service functionality and implemen-

tations had been previously defined. Five of the seven use cases have been im-

plemented. These are described in the following sections along with the lessons

learned from these implementations.

The unimplemented use cases concerned parallel and commercial computa-

tional chemistry applications on the cloud. Feedback on parallel applications and

on the need for restricted applications (e.g. from a commercial license) have been

collected from other scientific domains. Lessons learned from those applications

and others are provided in the last section of this chapter.

To keep this document as concise as possible, the full descriptions of each

use case have not been duplicated here. Please refer to the Survey of Targeted

Communities Concerning StratusLab (D2.3) [1] for the full descriptions.

3.1 Bioinformatics Web Services
The adoption of clouds for bioinformatics applications will be strongly correlated

to the capability of cloud infrastructures to provide ease-of-use and access to refer-

ence biological databases and common bioinformatics tools. This use case involves

building customized appliances for this community and keeping them up-to-date.

In addition, it is also necessary to integrate with the process (e.g. authentication)

used with existing infrastructures to allow federation of these resources.

3.1.1 Lessons Learned

The deployment of these bioinformatics web services on the CNRS/IBCP infras-

tructure has highlighted missing functionality in the StratusLab cloud distribution.

As these people are also directly involved in the project, they have also worked to

provided solutions to fill these gaps.

• Port Address Translation: Many smaller sites have very few allocated public

IP addresses, making the standard configuration of allocating each virtual

machine a public IP address unworkable. Port Address Translation (PAT) for

the ssh and http ports of virtual machines allows the machines to use local

addresses but remain accessible from the outside. This has been developed

and added to the distribution.

• Web Interface: Scientists want a simple web interface to the cloud that is

9 of 26

adapted to their needs. Such a portal was created that provides authenti-

cation mechanisms adapted to the community, specialized view of bioinfor-

matics virtual machines, and control over cloud resources, showing that such

customized interfaces can be created easily over the StratusLab services.

• Authentication: Each community has its own authentication mechanisms.

For the bioinformatics infrastructure in France, Shibboleth can be used easily

due to the national identity federation comprising all the universities and

research institutes. Direct integration of Shibboleth in StratusLab turned out

to be difficult. However, a deployment of a Short-Lived Credential Service

(SLCS) from the grid world, allowed users to obtain short-lived certificates

for use with the cloud from their Shibboleth credentials.

3.2 TOSCANI
TOSCANI: TOwards StruCtural AssignmeNt Improvement is a project to improve

the determination of protein structures based on Nuclear Magnetic Resonance (NMR)

information. The programs ARIA [6] and ISD [7, 8] are used to calculate the struc-

tures, which are computationally intensive. This application demonstrates the flexi-

bility of the cloud to deploy the different bioinformatics tools required to accelerate

such a procedure.

3.2.1 Lessons Learned

Different specific points have been identified with the TOSCANI use case. Some

are about missing functionalities and others have highlighted important features

that are already developed in StratusLab and that will ease the access of scientists

to future e-infrastructures.

• Legacy Virtual Machines: Bioinformaticians may have their own, pre-built

appliance that they want to use on the StratusLab infrastructure. If this ap-

pliance already uses KVM, then using it with StratusLab is quite simple;

only the StratusLab contextualization tools and a reference in the Market-

place need to be added. However, pre-built appliances created with other

virtualization systems are typically more difficult to integrate.

• Easy Platform Deployment: With the usual StratusLab interfaces (command-

line client and web interface) users can launch multiple virtual machines that

will be used as a platform for a particular bioinformatics analysis. The ‘aria-

clouder’ script has been installed in the lastest release of the ARIA appliance

to help users to configure ARIA parameter files to adapt to the created virtual

infrastructure. This development helps the access of scientists to the cloud

but should be made easier to allow such deployments from the web interface.

• Network Isolation: Having network isolation (dynamic VLANs) between

the machine in a deployed platform, would simplify the creation and use of

10 of 26

the platform. For example, the platform may include an NFS file system,

which is much easier to secure via network isolation than by configuration

of the individual nodes.

• Pay as You Go: A structural biology laboratory not specially involved in

bioinformatics likely would not invest in building a cluster (∼100 nodes) to

run NMR structure calculations occasionally. Thus, there is a strong interest

in providing such tools, hosted at other institutes, to structural biologists

on a ‘pay as you go’ basis. Adding comprehensive billing and accounting

features to StratusLab framework would make the ARIA application more

widely available and usable in the bioinformatics community. In France

with the future French Institute for Bioinformatics, a mix of academic and

commercial services is the foreseen model.

3.3 nTier Web Application Prototype
Modern internet applications are complex software implemented in several layers

(tiers). In addition to the usual computing, storage, and networking resource ex-

pected in any IaaS cloud, they also require high-level services. These include: use

of Key Performance Indicators (KPIs) to maintain a specific Quality of Service

(QoS), auto-scalability, multi-tier management to manage the coupling between

layers, and enhanced security.

3.3.1 Lessons Learned

The experimentation with this e-business application has provided a set of conclu-

sions:

• Stateless Tiers: Scalability by the simple addition or removal of machines is

only possible for tiers without state. By separating the data from the applica-

tion itself, efficient scaling of applications can be more easily accomplished.

• Balancers for Scalability: Scaling a tier implies having a load balancer to

control the number of replicas and to balance the load among them. Different

balancing algorithms can be used and configuration of these balancers is

required.

• Multi-tier Management: The application is deployed in different tiers each

comprised of particular type of virtual machine. This complex structure in-

cluding all of the tiers and the associated load balancers requires high-level

deployment, configuration and management services. Claudia along with

the StratusLab contextualization mechanism have allowed deployment of the

different virtual machines and dynamic configuration of those virtual ma-

chines and load balancers. With just a click it is possible to have the whole

service running.

11 of 26

• Persistent Application Data: Scaling down replicas means shutting down the

associated virtual machines. To avoid data loss, data must be separated from

the virtual machines in the tiers and stored persistently. In StratusLab, data

are stored in the persistent disk services, so that, although virtual machines

are deleted, the data are maintained.

• KPI-Based Scalability: The scalability focuses on service indicators; for in-

stance, response time or number of users are good indicators about the ser-

vice demand. Concretely in this use case, there have been scalability of each

tier based on the same KPIs: number of simultaneous connections and the

time to execute the request.

• Multi-Cloud Deployment: When using multiple cloud infrastructures, it is

possible to request an “infinite” number of virtual machines. If the necessary

resources are not available at one site, they can be found at another site (by

federation or brokering), transparently for the user.

Current Cloud providers only offer VM deployment, but with StratusLab’s ad-

vanced capabilities, as demonstrated by this multi-tier application use case, an or-

ganization can provision e-business applications (mainly composed by front-end,

business-logic and database), automatically scale them based on service KPIs, en-

sure security and isolation, and maximize the available resources.

3.4 Software Engineering PaaS
Efficient software development requires a large number of supporting services–

code versioning systems, bug trackers, and continuous integration servers, for ex-

ample. StratusLab itself is an example for use of cloud services in software engi-

neering. The initial scope was to see if StratusLab could become “self-supporting”

to provide feedback to the project itself about the stability of its software and how

easily they can be used to manage services.

3.4.1 Lessons Learned

The StratusLab’s entire software engineering platform was not fully realized as

a virtual platform running in the cloud, mainly to minimize disruption with the

main development activities of the project. Nonetheless, tests were done with each

part of the software engineering chain to see how easily cloud resources can be

incorporated.

• Common Authentication: Having a consistent authentication system between

all of the tools (in our case LDAP) is critical for creating a unified software

engineering platform.

• Persistent Block Storage: Such a service makes it easy to isolate critical

service state (e.g. service database) and to ensure it is persistent between

virtual machine instances. Within the project, this was done with the LDAP

12 of 26

server, git repository, and JIRA. This would have been trival to use for other

standalone services like Nexus, an artifact repository.

• Virtual Build Machines: Use of customized virtual appliances for build ma-

chines works very well, offering a wide variety of different platforms precon-

figured with the required service dependencies. The multiplatform support

for StratusLab was achieved this way.

• Autogenerated Build Appliances: The build machines were based on the

base appliances generated by the project. It would have been easier if the

build appliances were also generated automatically, saving the time to recre-

ate the correct environment each time and having the procedure documented

and stored.

• Build Appliance Instantiation: A StratusLab cloud plugin was created for

Hudson (a continuous integration server) to automate the instantiation of

build machine instances. The plugin worked, demonstrating auto-instantiation

of build instances. However, this was never really used in production because

the plugin API was fragile between Hudson releases, the Hudson control

logic was too rudimentary, and the startup times too long (largely because

prepared build instances were not available).

• Workflows Needed: Although Hudson allows for dependencies between jobs,

this proved to be very fragile for the various build and test workflows re-

quired to create and to validate the StratusLab distribution. SlipStream prob-

ably would have helped somewhat here, but what is really needed is a data-

based (in our case artifact and/or package based) workflow mechanism.

• Hypervisor Testing Bottleneck: Releases of KVM in mainstream operating

systems do not allow KVM to be used within KVM1. Because of this phys-

ical nodes were required for testing the StratusLab software. This formed a

bottleneck in the testing where all tests went through a single system. More-

over, this allowed us to test only a single cloud configuration.

In summary, individual software engineering services can easily be virtualized.

Creating a platform requires common authentication as well as attention to details

like providing build appliances to maintain agility of the entire system. The tools

need to be improved to allow complete systems testing workflows to be maintained

and run efficiently. Excepting rare cases where physical machines must be used,

the cloud is an excellent basis for a software engineering platform.

3.5 EGI Integration
EGI defined a minimal set of six scenarios that provide a basis for use of vir-

tualization and cloud technologies within the infrastructure and that promote an

1This is a restriction for nearly all full virtualizaton hypervisors.

13 of 26

incremental and evolutionary transition from the current infrastructure. These six

scenarios are defined in the EGI Cloud Integration Profile document [5]. Table 3.1

lists these scenarios along with comments on the StratusLab implementation.

3.5.1 Lessons Learned

• IaaS Functionality Provided: The StratusLab functionality for instantiating

virtual machines and interacting with storage provides the necessary basis

for an Infrastructure-as-a-Service (IaaS) cloud.

• OCCI and CDMI in Default Deployments: Several OCCI implementations

compatible with StratusLab are now available (OpenNebula, Venus-C, and

EGI). They should be provided in the default StratusLab deployments and

tested as part of the wider EGI testing effort to highlight any architectural

and technical deficiencies.

• Extended Accounting: The accounting utilities should be extended to other

StratusLab services (e.g. storage) to provide a comprehensive view of re-

source utilization. Messaging mechanisms should be provided to allow this

information to be integrated into larger systems.

• “Billing”: Users tend to forget about their virtual machines and allocated

storage, leaving resources unused but also unavailable for others. Even sim-

ple reminders for users about their consumed resources would help enforce

good behavior.

• Alarms: Often users were the first to spot problems on the StratusLab refer-

ence infrastructures. Proactive, periodic testing of the reference infrastruc-

tures, possibily with alarms, should be implemented. The existing use case

tests serve as a basis for automating the necessary functionality tests.

• Expand Notification: The message-based notification prototype informs users

when a machine changes state. This should be expanded to include email.

A broader range of notification events, including for example unexpected

changes of state and security alerts, should be implemented.

Overall the functionality corresponds well to the requirements for integrat-

ing cloud services in the EGI infrastructure. However, StratusLab should provide

and/or improve the APIs, accounting information, and notification mechanisms to

make tighter integration easier.

3.6 Feedback from Other Applications and Deploy-

ments
A companion document Final Report on StratusLab Adoption (D2.4) [4] provides

descriptions of the major applications that have be used on the StratusLab refer-

ence infrastructures. It also provides a list of deployments of StratusLab-based

14 of 26

Table 3.1: EGI Scenarios

Running a pre-defined

VM image

Functionality provided by StratusLab, although

the chosen APIs (OCCI and CDMI) are not

currently supported by StratusLab.

Running my VM image

(with my data)

Provided by StratusLab through the Marketplace.

Deciding which

virtualized resource to

use

A brokering scenario is provided by Claudia,

although the LDAP-based EGI registry is not

currently supported.

Accounting across

resource providers

Partially provided by OpenNebula accounting;

accounting not available for other services.

Collection of this information between providers

is outside the scope of StratusLab services.

Reliability/availability

of the resource

Defined use cases can be used as templates for

Nagios tests to test the reliability and availability

of services.

State change notification

from the VM manager

Prototype implementation provided by

StratusLab.

15 of 26

cloud infrastructures. Scientists, engineers, and system administrators have pro-

vided feedback, which has been synthesized into the points below.

3.6.1 Lessons Learned

• Licenced/Restricted Software: Many software packages have restrictions on

their use. Because of this, the software cannot be included in the public

appliance files without some protection. Initial investigations have shown

that adding the software in an encrypted volume is one possible solution.

The decryption keys are then controlled by the image creator and only given

to those with the permission to run the software.

• Parallel Applications: Astrophysics and meterology applications have shown

that the performance of parallel application on the cloud have significantly

degraded performance. Some of this is due to the latencies and compara-

tively low bandwidth of 1-10 Gb/s networks compared to, for example In-

finiBand. However, the performance should be studied systematically and

use of paravirtualized drivers may help considerably.

• Propagating Errors: When problems occur with virtual machines in the cloud,

it is often very difficult for a user to determine the cause. The client provides

some error reporting, but often the errors are cryptic or non-existant. Im-

provements have been made as the software evolved, but this still remains a

frustration for users.

• Operational Situation: At several points in time, there were operational prob-

lems with either the GRNET or LAL cloud infrastructures. Although a mail-

ing list was created to inform people of these problems, this was not sys-

tematically used. A better mechanism of notifying cloud users needs to be

devised.

• Improved Marketplace Searching: As the number of appliances in the Mar-

ketplace has grown, it has become more difficult to find an appropriate im-

age. Further improvements should be made to the search features to allow

users to more quickly find appliances of interest. The metadata should also

be improved to encourage better descriptions of the appliances.

• Unified Web Interface: Although the command line client is simple to install

and works well, many users would prefer a unified web-based interface. All

of the StratusLab RESTful interfaces have a web interface. However these

need to be integrated to provide a single endpoint for users.

• Documentation: The users have found that the documentation is still sparse,

difficult to navigate, and often not up-to-date. More effort must be put into

keeping the documentation organized and consistent with the current soft-

ware releases.

16 of 26

• Roadmap: The Scrum development methodology was extremely productive

for the project. But for those from the outside who are not following the

process closely, it is extremely difficult to discern the overall roadmap. This

is important as the software begins to be used more in production as system

administrators need to plan upgrades and users need to understand when

features will be available.

• Concentrate on Cloud Services: Although GRNET’s production grid site

running in the StratusLab cloud provides an excellent example of the cloud’s

potential, nearly all of the current deployments are to provide cloud ser-

vices directly to users. Hence, the focus for future developments should be

squarely in the cloud domain.

3.7 Summary
The variety of applications using the StratusLab cloud infrastructures has lead to a

similarly rich set of recommendations or “Lessons Learned”. These can be grouped

into four broad categories.

Ease of Use A recurring theme is simplifying the overall use of the cloud. The

python-based command line client has been well received by the community; how-

ever, they also desire a unified web interface to further simplify use of the sys-

tem. Similarly, users have requested better capabilities for annotating appliance

metadata descriptions and in parallel, easier and more targeted searching of the

Marketplace database.

Integration and Interoperation Cloud deployments occur in pre-existing en-

vironments and must adapt to the contraints of those environments. Examples

include the need for Port Address Translation (PAT) for sites with few public ad-

dresses and the need for Shibboleth (or other authentication mechanisms). One can

also consider the need for standard OCCI and CDMI interfaces as a need to fit into

a larger, distributed infrastructure like EGI.

Better Information Flow The exchange of information between the cloud provider

and the cloud user needs to be improved. At the lowest level, providing more and

better error feedback to the users would improve the user experience. Automat-

ing the information exchange through notification of cloud service problems and

virtual machine state changes would further improve the administrator-user inter-

actions. At the highest level, comprehensive, synthesized accounting and billing

statements would provide a basis for discussions of resource provisioning, utiliza-

tion, and allocation, potentially improving the platform for everyone.

High-Level Services Infrastructure-as-a-Service clouds provide very basic ser-

vices that require a good understanding of system administration to use effectively.

However, many usage patterns exist and providing high-level services correspond-

ing to those patterns would make the system more powerful. Areas where high-

level services have been demonstrated are with auto-scaling, federation, sandbox-

17 of 26

ing, and multi-service deployment. These services can be further improved and

expanded, for example by providing full multi-service workflows and orchestra-

tion.

These four areas serve as a broad roadmap for the future evolution of the

project’s software. The detailed feedback provides a good basis for the improve-

ment of individual StratusLab services.

18 of 26

4 Previously Identified Requirements

Near the beginning of the project, a survey of researchers and system adminis-

trators identified 25 requirements and recommendations. Tables 4.1–4.3 list these

requirements concisely, indicate whether each is satisfied and provide detailed ex-

plainations. The full description of the requirements can be found in the document

Review of the Use of Cloud and Virtualization Technologies in Grid Infrastruc-

tures [9].

4.1 Gaps
This document also identified four gaps that needed to be addressed in the second

year. The work to fill each of these gaps is described below.

• Performance and scalability: As the project has done with testing use cases,

it also needs to develop an infrastructure to run performance and scalability

metrics and to track these as the distribution evolves.

The project maintained the application benchmarks (which also contain per-

formance benchmarks) in the second year. In addition, initial work was done

to allow scalability testing on the Grid’5000 infrastructures. Unfortunately,

other priorities such as identifying and supporting outside users left too little

effort to implement systematic performance and scalability testing.

• Storage: Services that provide storage must evolve into production-level ser-

vices and expanded to include file-based access as well.

The prototype storage services in the v1.0 release were improved to fully

production quality services in the second year. Moreover, these services

were integrated into the image caching system to provide low-latency startup

of virtual machines. They also provide the ability to customize and save im-

ages. File-based services were judged to be out-of-scope for the StratusLab

distribution itself.

• Network Services: These need to expand to provide better sandboxing of

virtual machines, particularly via dynamic VLANs and dynamic firewalls.

These networking services were provided in the OpenNebula 3.2 release in-

tegrated with the StratusLab distribution. However, these services are not

yet exposed through the StratusLab client and API.

19 of 26

• Commercial users: More effort needs to be made to contact commercial

users to ensure that their needs are met and to see if they are interested in

adopting the StratusLab distribution.

SixSq has made significant progress in demonstrating the commercial possi-

bilities of the StratusLab cloud distribution through its SlipStream product,

the DS-Cloud Ready Pack (turnkey IaaS cloud), SCOS-2000 deployment

with ESA contractors, and Atos Helix Nebula deployment. See the compan-

ion document [4] describing StratusLab adoption for details.

4.2 Performance Improvements
Although systematic performance monitoring was not implemented, specific per-

formance problems were investigated and corrected.

For the network, one user noticed that the maximum bandwidth that he could

achieve on the reference cloud was 100Mb/s. Initial measurements showed a

slightly better bandwidth of 150 Mb/s, but still far short of the theoretical maxi-

mum for a 1 Gb/s Ethernet interface. Further investigation revealed that the cause

of the problem is that the VM appliances are not configured with the virtio par-

avirtualized driver. Therefore, the network requests from the guests are emulated,

which results in poor I/O performance. By activating virtio net on both VM and

hosting node the network bandwidth increases up to 680 Mb/s, more consistent

with the interface’s maximum.

Similarly, the access to the local disk passes through the native IDE driver

and not through the paravirtualized virtio blk driver. In this case, however, the

performance differences are not significant.

As a result of this investigation, the project has ensured that all of the appliances

created by the project contain the paravirtualized drivers. In addition, the client

has been updated to allow users to specify the use of these drivers for better IO

performance.

4.3 Summary
As can be seen from the tables, most of the functional requirements were satisfied

in the first year of the project. The second year concentrated on extentions to

commercial applications, multi-platform support, and sandboxing. In parallel, the

service and client implementations were extended and improved.

Significant progress was made on all of the previously identified gaps. Two ar-

eas that need more work are the performance measures and integration of sandbox-

ing features. The project did investigate and improve identified problems related to

network and disk bandwidth. Advances in the sandboxing capabilities need to be

fully integrated into the system and exposed through the client.

Although the remaining unimplemented and partially implemented require-

ments remain valid, the experience and feedback from real applications presented

in the previous chapter and the previously identified gaps provide a better basis for

20 of 26

continued evolution of the StratusLab distribution after the project.

21 of 26

Table 4.1: Requirements (I)

Requirement Year 1 Year 2 Comment

Effort to contact commercial

enterprises

Full SixSq has demonstrated commercial viability of StratusLab through its SlipStream product, the

DS-Cloud Ready Pack (turnkey IaaS cloud), SCOS-2000 deployment with ESA contractors, and

Atos Helix Nebula deployment.

Multiplatform support (RedHat &

Debian)

Full Three RedHat-based platforms are supported: CentOS, Fedora, and OpenSuSE. Support for

Debian-based systems was determined not to be a priority.

Integration with site mgt. tools Full Integration with Quattor site management tools has been demonstrated (and used) since the first

releases.

Demonstrate core grid services Full A production grid site over a StratusLab cloud has been maintained since early releases in the first

year.

Base images for common OSes Full Extended In the first year base images were provided for Ubuntu, CentOS, and ttylinux. Generation of these

images was automated in the second year.

Cloud independent of VM OS Full Use of full virtualization allows complete independence of the guest and host operating systems.

CPU-intensive benchmarks Full Provided in application benchmark suite.

Workflow and master/worker

benchmarks

Partial The application benchmarks use the Kepler workflow system. A master/worker benchmark was not

implemented.

IO oriented benchmarks Full Application benchmarks include standard tools for measuring disk and network bandwidth.

Access control Partial Access control based on user identity is provided by all services. Group and role access control is

not exposed through StratusLab client or APIs.

2
2

o
f

2
6

Table 4.2: Requirements (II)

Requirement Year 1 Year 2 Comment

File and block access to data Partial The persistent disk service provides block access to data. The project decided file/object storage

was out of scope, as services from other cloud stacks (e.g. OpenStack Swift) could be used for this.

Access to object/relational

databases

Specific services not implemented as part of StratusLab. Deployment of standard databases can be

done with user appliances.

Year 1 concentrate on cloud

development

Full Most functional requirements were satisfied in Year 1 with improvements and extentions in the

second year of the project.

Year 2 concentrate on cloud usage Full Most of the defined use cases [1] were implemented in year 2 with many additional example of

StratusLab adoption [4].

Cloud service installation by

end-users

Although the project has put significant effort in simplifying cloud installation by system

administrators, the minimum resource requirements and required expertise means that this will still

be difficult for end users.

Allow both full and

para-virtualization

Partial Full virtualization is support. In principle, para-virtualization is support, but there have been no

requests for this and it is not tested by the project.

Command line interface and API Full Extended A python command line interface is provided. All services except OpenNebula provide a RESTful

API; OpenNebula exposes an XML-RPC interface. The command line interface and APIs were

extended and refined in the second year.

Cloud must support broad range of

services

Full The project demonstrated production grid services running over the cloud in the first year.

Quantitative performance

evaluations

Although the application benchmarks can be used for performance evaluations, the project did not

use them systematically to evaluate the performance of services.

Mechanisms to trust machine

images

Full Extended The Marketplace was provided in the first year of the project. This manages appliance metadata to

facilitate trust between various actors. The site acceptance policy mechanisms were extended in the

second year.

2
3

o
f

2
6

Table 4.3: Requirements (III)

Requirement Year 1 Year 2 Comment

Consider all features in surveys Full Full All of the requirements from the surveys were considered valid, although necessary prioritization

means that some (as evident from this list) were not implemented.

Integration with site mgt. tools Full Extended The integration with Quattor was demonstrated in the first year. The configuration was extended

and modified to keep up with changes in cloud services implementations in the second year.

Cloud impl. must scale to

O(10000) VMs

Scaling to this order has not been tested. A deployment on the Grid’5000 infrastructure was

demonstrated as a prerequisite for scalability testing but was not completed because of other

priorities.

Sandboxing of running VMs Partial Partial The use of full virtualization provides a level of sandboxing on the physical machine (Y1). WP6

has developed services for dynamic firewalling and VLANs in the second year, but these are not yet

visible through the StratusLab client.

Complete performance

benchmarks

Partial Application benchmarks also provide performance measures. Metrics based on these were not

collected and analyzed regularly.

Use existing performance

benchmarks

Partial Application benchmarks use standard disk and network IO benchmarks. Metrics based on these

were not collected and analyzed regularly.

2
4

o
f

2
6

Glossary

Appliance Virtual machine containing preconfigured software or services

CDMI Cloud Data Management Interface (from SNIA)

EGI European Grid Infrastructure

Hybrid Cloud Cloud infrastructure that federates resources between

organizations

IaaS Infrastructure as a Service

KPI Key Performance Indicator

OCCI Open Cloud Computing Interface

OVF Open Virtualization Format

Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization

Private Cloud Cloud infrastructure accessible only to the provider’s users

TCloud Cloud API based on vCloud API from VMware

VM Virtual Machine

XML-RPC XML-based Remote Procedure Call

25 of 26

References

[1] M. Airaj, C. Blanchet, C. Loomis, T. Malliavin, H. Munoz, M. Nilges, and

M. Sterzel. Survey of Targeted Communities Concerning StratusLab. http:

//stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.3-v1.0.pdf.

[2] M.-E. Bégin and K. Skaburskas. StratusLab Toolkit 2.0. http://stratuslab.eu/

lib/exe/fetch.php/documents:stratuslab-d4.5-v1.0.pdf.

[3] E. Floros, S. Kenny, M. Airaj, G. Philippon, G. Tézier, R. Montero, and

C. Loomis. Infrastructure operations final report. http://stratuslab.eu/lib/

exe/fetch.php/documents:stratuslab-d5.5-v1.1.pdf.

[4] C. Loomis, M. Airaj, M.-E. Bégin, C. Blanchet, V. Floros, and C. Gauthey.

Final Report on StratusLab Adoption. http://stratuslab.eu/lib/exe/fetch.php/

documents:stratuslab-d2.4-v1.1.pdf.

[5] S. Newhouse and M. Drescher. EGI Cloud Integration Profile. https://www.

egi.eu/indico/materialDisplay.py?materialId=1&confId=415.

[6] W. Rieping, M. Habeck, B. Bardiaux, A. Bernard, T. Malliavin, and M. Nilges.

ARIA2: automated NOE assignment and data integration in NMR structure

calculation. Bioinformatics, 23:381–382, 2007.

[7] W. Rieping, M. Habeck, and M. Nilges. Inferential structure determination.

Science, 309:303–306, 2005.

[8] W. Rieping, M. Nilges, and M. Habeck. ISD: a software package for Bayesian

NMR structure calculation. Bioinformatics, 24:1104–1105, 2008.

[9] StratusLab. Review of the Use of Cloud and Virtualization Technologies

in Grid Infrastructures. http://stratuslab.eu/lib/exe/fetch.php/documents:

stratuslab-d2.1-v1.2.pdf.

26 of 26

http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.3-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.3-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d4.5-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d4.5-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d5.5-v1.1.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d5.5-v1.1.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.4-v1.1.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.4-v1.1.pdf
https://www.egi.eu/indico/materialDisplay.py?materialId=1&confId=415
https://www.egi.eu/indico/materialDisplay.py?materialId=1&confId=415
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.1-v1.2.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.1-v1.2.pdf

	List of Tables
	Executive Summary
	Introduction
	Use Cases
	Bioinformatics Web Services
	Lessons Learned

	TOSCANI
	Lessons Learned

	nTier Web Application Prototype
	Lessons Learned

	Software Engineering PaaS
	Lessons Learned

	EGI Integration
	Lessons Learned

	Feedback from Other Applications and Deployments
	Lessons Learned

	Summary

	Previously Identified Requirements
	Gaps
	Performance Improvements
	Summary

	References

