Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes

Abstract : We present a new method of magnification for textured images featuring scale invariance properties. This work is originally motivated by an application to astronomical images. One goal is to propose a method to quantitatively predict statistical and visual properties of images taken by a forthcoming higher resolution telescope from older images at lower resolution. This is done by performing a virtual super resolution using a family of scale invariant stochastic processes, namely compound Poisson cascades, and fractional integration. The procedure preserves the visual aspect as well as the statistical properties of the initial image. An augmentation of information is performed by locally adding random small scale details below the initial pixel size. This extrapolation procedure yields a potentially infinite number of magnified versions of an image. It allows for large magnification factors (virtually infinite) and is physically conservative: zooming out to the initial resolution yields the initial image back. The (virtually) super resolved images can be used to predict the quality of future observations as well as to develop and test compression or denoising techniques.
Liste complète des métadonnées

Littérature citée [55 références]  Voir  Masquer  Télécharger
Contributeur : Pierre Chainais <>
Soumis le : mercredi 13 juin 2012 - 11:11:57
Dernière modification le : mardi 29 mai 2018 - 12:51:07
Document(s) archivé(s) le : vendredi 14 septembre 2012 - 02:25:29


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00707631, version 1


Pierre Chainais, Emilie Koenig, Véronique Delouille, Jean-François Hochedez. Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes. Journal of Mathematical Imaging and Vision, Springer Verlag, 2011, 39 (1), pp.28-44. 〈hal-00707631〉



Consultations de la notice


Téléchargements de fichiers