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Abstract— Developing high quality systems depends on 

developing high quality models. An important facet of model 

quality is their consistency with respect to their meta-model. 

We call the verification of this quality the conformance 

checking process. We are interested in the conformance 

checking of Product Line Models (PLMs). The problem in the 

context of product lines is that product models are not created 

by instantiating a meta-model: they are derived from PLMs. 

Therefore it is usually at the level of PLMs that conformance 

checking is applied. On the semantic level, a PLM is defined as 

the collection of all the product models that can be derived 

from it. Therefore checking the conformance of the PLM is 

equivalent to checking the conformance of all the product 

models. However, we would like to avoid this naïve approach 

because it is not scalable due to the high number of models. In 

fact, it is even sometimes infeasible to calculate the number of 

product models of a PLM. Despite the importance of PLM 

conformance checking, very few research works have been 

published and tools do not adequately support it. In this paper, 

we present an approach that employs Constraint Logic 

Programming as a technology on which to build a PLM 

conformance checking solution.  The paper demonstrates the 

approach with feature models, the de facto standard for 

modeling software product lines. Based on an extensive 

literature review and an empirical study, we identified a set of 

9 conformance checking rules and implemented them on the 

GNU Prolog constraints solver. We evaluated our approach by 

applying our rules to 50 feature models of sizes up to 10000 

features. The evaluation showed that our approach is effective 

and scalable to industry size models. 

Keywords-product line models, feature models, conformance 

checking, verification, constraint logic programming. 

I.  INTRODUCTION 

Information Systems Engineering highly depends on 

conceptual modeling. As a result, developing high quality 

systems depends on developing high quality models [23]. 

Verifying the quality of models has recently been a 

prominent topic for many researchers in the community. 

Different kinds of checking have been studied: 

─ consistency checking [31] consists in “analyzing 

models to identify unwanted configurations defined by 

the inconsistency rules”; 

─ model checking [20] consist in verifying “correctness 

properties of safety-critical reactive systems”; 

─ domain specific properties verification [16,17,18,26] 

consists in “finding undesirable properties, such as 

redundant or contradictory information”; 

In this paper, we are interested in the conformance 
checking of Product Line Models (PLMs). As many works 
show it [1,10,24,26], product lines engineering is a specific 
topic of Systems Engineering that requires adequate models, 
meta-models, methods, and tools. We are particularly 
interested in a kind of consistency verification called 
conformance checking where “it is checked that a model 
satisfies the constraints captured in the meta-model, i.e., that 
the model is indeed a valid instance of the meta-model” [32]. 
The problem in the context of product lines is that 
verification cannot be achieved at the level of products 
because these product models are not instantiated from their 
meta-models, but by configuration of PLMs. The expectation 
is that conformance checking is achieved at the PLM level, 
with the assumption that any product model that can be 
configured from a correct PLM is itself correct. On the 
semantic level, a product line model is defined as the 
collection of all the product models that can be derived from 
it. Therefore checking the conformance of the product line 
model is equivalent to checking the conformance of all the 
product models in stage configuration [47]. However, we 
would like to avoid verifying all the product models because 
their number can be simply too high [17]. The naïve 
approach that consists in carrying out product model 
verification by checking late their conformance with the 
product line meta-model is also not scalable to real world 
constraints. We believe that scalable methods, techniques 
and tools are needed to deal with this important issue [32], 
which, to the best of our knowledge, is not properly handled 
by tools. Our literature study revealed that (a) conformance 
checking approaches that check all the product models of the 
PLM do not scale to real size models [6], and (b) the 
checking of larger models is sometimes even unrealizable 
due to the impossibility to configure all products [16, 17].  

To overcome these limitations, we propose an approach 
to check the conformance of product line models. In this 
paper, the approach is applied on feature models. The idea of 
our approach is to test only the elements that are within the 
scope of each particular conformance rule [6]. The tests are 
implemented in a declarative way using Constraint Logic 
Programming (CLP). Conformance rules can be seen as 
white-boxes allowing special declarations and manipulations 
(such as the scope-elements in our case). Nine of the rules 



defined in our approach were evaluated on 50 models of 
sizes up to 10000 features. The evaluation of each rule 
demonstrates excellent scalability with performance results 
being, in any case, less than 140 milliseconds. 

Section 2 presents the related work and provides an 
overview of our approach. Sections 3, 4, and 5 present in a 
more detailed way how the approach works with feature 
models. Section 6 presents the implementation and the 
evaluation of the precision, scalability and usability of our 
approach. Future works are discussed in section 7. 

II. RELATED WORKS 

There is to our knowledge very few works on the topic of 

conformance checking, for instance [32] in the UML 

domain. However, conformance is considered as a kind of 

consistency [31]. Therefore, this section starts by discussing 

some of the most well known consistency checking methods 

that were applied in the PL context, in the light of the 

conformance checking concern.  
Egyed proposed a framework to incrementally detect 

inconsistencies in UML models [6] and in DOPLER models 
[25].  This framework first uses inconsistency rules specified 
with OCL. Each rule starts by identifying the model 
elements to analyze. Then, all the model elements for which 
an inconsistency is detected are inserted in a “rule scope” in 
order to keep track of them. The rule scope consists in a 
relation between an inconsistency detection rule and the 
collection of model elements that need to be re-analyzed 
after they have been corrected. The next time the rule is 
executed, the check will only be made over the elements in 
the “rule scope”, and not over the complete model. This 
allows reducing the execution time after the first checking. 
Egyed presents very efficient performance charts for his 
approach, but also observes that this approach may not be 
efficient for all kinds of consistency rules (on a product line 
domain or others).  

In [30] Cabot et al present an object constraint language 
(OCL) incremental checker. Each time incorrect model 
elements are identified, a new rule is generated to check that 
the consistency constraint is satisfied over these specific 
elements after their correction. However, Blanc et al observe 
that “OCL description language has a limited usage as it can 
only describe mono-contextual inconsistencies; in the 
context of software architecture models it is advocated to 
target multi-context/multi-paradigm inconsistencies” [31]. 
This issue is important in the context of conformance 
checking, as shown in rule 4 (presented in section 5), which 
is an example of a multi-context conformance rule.  

Blanc et al. also propose an incremental inconsistency 
checker for UML models. Their approach is to use 
declarative programming-based rules that “analyze the 
modifications performed on a model in order to identify a 
subset of inconsistency rules that need to be re-checked” 
[31]. The analysis uses an impact matrix to represent 
dependencies between the operations modifying a class and 
inconsistency rules. With the information provided by the 
impact matrix users can decide whether and when to execute 
the incremental check of impacted rules. The problem in the 

product line context is that modifying a single part of a 
model can challenge the consistency of all the other elements 
in the model. In contrast, the impact matrix is efficient only 
when a few model elements are impacted. 

In the domain of databases, one of the aims of 
consistency checking is to guarantee data integrity and to 
detect whether data violate integrity constraints. Even if the 
works in databases are not focused on conformance 
checking, the approaches used to solve the integrity 
problems are similar to ours.  For example, Kowalski et al. 
[34] and Olivé [33] proposed declarative-based approaches 
to check the integrity of deductive databases. These 
examples show the omnipresence of inconsistencies during 
the modeling process, the pertinence of declarative 
programming as a solution to detect inconsistencies in 
different domains and encourage us to find solutions in order 
to deal with inconsistencies in new domains as product line 
engineering.  

One of the most popular tools for automatic analysis of 
software models is Alloy [32]. Alloy works by transforming 
the model into an instance of SAT (satisfiability of a boolean 
formula). The need to represent product line models as 
Boolean formulae limits the usefulness of this approach. 
Indeed, other kinds of constraints (e.g., arithmetic or 
symbolic constraints over integer or real variables) are 
needed in product line models, and cannot be specified with 
simple Boolean formulae, as Salinesi et al. show in [12, 45]. 
This is typically the situation in our case where we have to 
deal with models that contain arithmetic and symbolic 
constraints.  

In the product line domain, there are some tools that 
provide consistency checking functions. ToolDAy [27] is a 
product line management tool that guides activities such as 
scope definition, domain modeling, documentation, 
consistency checking, and product derivation. SPLOT [9] is 
a Web-based reasoning and configuration system for 
cardinality-based feature models. The system maps feature 
models into propositional logic formulas and uses boolean-
based techniques such as binary decision diagram and SAT 
solvers to reason on PL models. Unfortunately, none of these 
tools supports conformance checking.  

A tool to check conformance of a model with regards to 
the corresponding meta-model is the EMF Validation 
Framework which provides a means to evaluate and ensure 
the well-formedness of EMF models but its use for  product 
line models has not been assessed [46]. 

In our previous works [29], we presented a tool for the 
automatic verification of structural correctness of cardinality-
based feature models. This tool implemented verification 
operations such as the identification of redundant features, 
inconsistent constraints, cyclic relationships and poorly 
defined cardinalities. The tool used graph navigation 
algorithms to evaluate each verification criteria, which was 
effective, but raised major scalability, language-dependency 
and extensibility issues. The purpose of this paper is to 
present a new approach that overcomes these issues. 

Our new approach belongs to a family of methods [31] 
[33] and [34], that use CLP to implement model checking. 
The principle is that rules are implemented with a mix of 



logic programming (namely with Prolog), and constraint 
programming, which is embedded in the Prolog code. This 
paper is the first one that applies the CLP approach to check 
conformance of product line models, namely of feature 
oriented models. 

 

III. FEATURE MODELS IN A NUTSHELL 

A feature is a prominent or distinctive user-visible 

aspect, requirement, quality, or characteristic of a software 

system [19]. A Feature Model (FM) defines the valid 

combinations of features in a software product line, and is 

depicted as tree-like structure in which nodes represent 

features, and edges the relationships among them [24]. All 

the nodes are the children of the root node, which is called 

root feature and identifies the product line.  

FMs were first introduced in 1990 as a part of the 

Feature-Oriented Domain Analysis (FODA) method [19], as 

a means to represent the commonalities and variabilities of 

software product lines. Since then, feature modeling has 

become a de facto standard adopted by the software product 

line community and several extensions have been proposed 

to improve and enrich their expressiveness. Two of these 

extensions are cardinalities [11,28] and attributes [8,13,15]. 

Although there is no consensus on a notation to define 

attributes, most proposals agree that an attribute is a variable 

with a name, a domain and a value (by instance, 

Intensity and Type are two attributes of the feature 

Vibration of our running example of Figure 1). Note 

that the value of attributes is not specified in the product line 

model. Instead, the value of each attribute is assigned for 

each particular configuration, (when these attributes are 

attached to features that belong to the configurations). In 

this paper, we are interested into these two extensions.  

In order to handle the semantic of these formalisms, we 

reason using the abstract syntax instead of the concrete 

syntax (what the user sees), as recommended by [10]. The 

outcome is more simplicity and less error-prone analyses. 

Indeed “the abstract syntax ignores the visual rendering 

information that is useless to assign a formal semantics to a 

diagram, e.g., whether nodes are circles or boxes, whether 

an operator is represented by a diamond shape or by joining 

the edges departing from a node, etc” [10]. There are two 

common ways to provide the abstract syntax information 

[37]: (1) mathematical notation or (2) meta-model.  In this 

paper, we use the second kind of notation because we 

believe it is the most adequate to our goal of checking 

conformance of FMs with respect to their meta-model. 

According to their meta-model (formalized in section 

IV) a FM is a DAG (directed acyclic graph) composed of 

features as nodes and various kinds of relationships: 

─ Mandatory: Given two features F1 and F2, where F1 

is the father of F2, a mandatory relationship between 

F1 and F2 means that if F1 is selected in a product, 

then F2 must be selected too, and vice versa. 

─ Optional: Given two features F1 and F2, where F1 is 

the father of F2, an optional relationship between F1 

and F2 means that if F1 is selected in a product, then 

F2 may be selected or not. However, if F2 is selected 

then F1 must also be selected. 

─ Requires: Given two features F1 and F2, a 

relationship F1 requires F2 means that if F1 is 

selected in a product then F2 has to be selected as 

well. Additionally, it means that F2 can be selected 

even when F1 is not selected.  

─ Exclusion: Given two features F1 and F2, a 

relationship F1 excludes F2 means that F1 and F2 

cannot be selected in the same product.  

─ Group cardinality: A group cardinality is an interval 

denoted <n..m>, with n as lower bound and m as 

upper bound limiting within a group of features the 

number of features that can be part of a product. All 

the features in the group must have the same parent 

feature, and none can be selected if the parent is not 

itself selected.  

As a running example, we illustrate FMs and our work with 

the example of the Movement Control System (MCS) of a 

car [12]. In order to illustrate our approach, we intentionally 

introduced errors in the original model. As the resulting 

model presented in Figure 1 shows it, a MCS is composed 

(within others) of sensors and feedback devices that 

respectively detect movements and position of the vehicle, 

and sends specific signals to the driver. These features are 

denoted as mandatory (depicted with a filled circle) called 

Sensor and Feedback, respectively. A Sensor can 

measure vehicle movement in two ways: speed and position. 

These are identified in the model by means of two optional 

features (depicted with an empty circle) called Speed 

Sensor and Position Sensor, respectively. These 

two features are related in a group cardinality <1..3> 

where 1 is the lower bound and 3 the upper bound limiting 

the number features that can be selected in a configuration. 

Of course, the upper bound (3) is incorrect, as there are only 

two features in the group cardinality. Feedbacks to the 

driver can be of two types: audio and vibration. These are 

represented by the mandatory feature Audio and the 

optional feature Vibration. The audio feedback consists 

of a warning sound in a defined Volume, and the vibration 

feedback refers to small mechanical oscillations (with 

Intensity and of a certain Type) of the steering wheel. 

Features Audio and Vibration are related in a group 

cardinality <1..1> where only one feature can be selected 

in a configuration. In addition, if Speed Sensor is 

activated, the feedback cannot be by vibration, due to 

security reasons, thus Speed Sensor and Vibration 



are modeled as mutual excluded features. Finally, if the 

Vibration feature is selected, its father, the Feedback 

feature must be selected as well due to the requires-type 

relationship between Vibration and Feedback. 

Example of Figure 1 will be used in the remains of the paper 

in order to illustrate our approach. It is because, we induced 

three errors on this model: one upper bound cardinality 

(1..3), the repeated name of two attributes (Volume) and one 

redundant relationship (Vibration requires Feedback). 

Sensor Feedback

Speed 

Sensor

Position 

Sensor

Audio

1..11..3

Volume: Integer

Volume: [0..10]

m..n

Mandatory

Optional

Requires

Excludes

Group cardinality 

with m..n boundaries

Movement Control System

Vibration

Type: String

Intensity: Integer

 
Figure 1.  Extract of a car movement control system represented as a 

feature model.  

The FM meta-model used in this paper, see Figure 2, is 
based on the abstract syntax [37] of SPLOT models [9] 
augmented with concepts from [10] and [8]. The former 
adaptation was necessary for allowing attributes in FMs, 
which are used in our industrial FMs. The FM meta-model is 
represented as meta-facts as we explain in the rest of this 
section.

attribute

IdAttribute
Name

Domain

groupCardinality

Min
Max

feature

Feature Model

root

mandatoryoptional excludesrequires

1..*2

1

0..*

1
2..*

1..*

2..*

0..1

{complete, disjoint} {complete, disjoint}

IdFeature
Name

dependency

IdDependency

root(IdFeature).

feature( IdFeature, Name, IdAttributes).

attribute( IdAttribute, Name, Domain).

dependency(IdDependency, IdFeature1, IdFeature2).
optional (IdDependency).
mandatory (IdDependency).
requires(IdDependency).
excludes(IdDependency).

groupCardinality(IdDependencies, Min, Max).

(b)

(a)

 
Figure 2.  (a) Feature model meta-model and (b) its representation as 

meta-facts. 

In the meta-model depicted in Figure 2(a), FM‟s 
elements are modeled by meta-classes, and relationships 
between these elements are modeled by meta-associations. In 
CLP, FM‟s elements and its relationships are called meta-
fact and are implemented as CLP facts. In other words, a 
meta-fact is the CLP structure that represents a fact.  In order 
to define a meta-fact it is necessary to define its name, its 
parameters and its arity (in case of equal names, the number 
of parameters make two meta-fact different). The mapping 

between the FM meta-model as a class diagram in Figure 
2(a) and the FM meta-model represented as meta-facts in 
Figure 2(b) are explained in the rest of this section. Each 
meta-fact has an attribute that uniquely identifies each 
instance of the meta-fact. Identifiers are represented as 
strings (Prolog‟s atoms) and the references to other FM‟s 
entities are represented as lists of identifiers; in both cases, 
the name of the corresponding variable is preceded by the 
label Id.   

Meta-fact 1: feature(IdFeature, Name, 

IdAttributes). 

Name is a string representing the feature‟s name and 

IdAttributes is a list of attribute identifiers 

[IdAtt1,...,IdAttN], where [] represents an empty 

list. 

Meta-fact 2: root(IdFeature). 

The root feature (i.e. Movement Control System) 

identifies the product line. In this meta-fact the attribute 
IdFeature references to the root feature.   

Meta-fact 3: attribute(IdAttribute, Name, 

Domain). 

An attribute has an identifier, a name and a domain. 
Name is a string representing the name of the attribute 

instantiated with this meta-fact. Domain is a collection of 

values that can take the attribute. For example ['read'] 

means that the value of the corresponding attribute can be 
only 'read'; [1..5] means that the value of the 

corresponding attribute can be an integer between 1 and 5; 

[integer] means that the value of the corresponding 

attribute must be an integer.  

Meta-fact 4: dependency(IdDependency, IdFeature1, 

IdFeature2). 

Meta-fact 5: optional(IdDependency). 

Meta-fact 6: mandatory(IdDependency). 

Meta-fact 7: requires(IdDependency). 

Meta-fact 8: excludes(IdDependency).  

Relationships between two features are represented by 
meta-fact 4. In this meta-fact, IdFeature1 and 

IdFeature2 respectively represent the identifiers of the 

initial and target features intervening in the dependency. 
Dependencies can be of four types:  mandatory, 

optional, requires, or excludes, respectively 

represented by meta-facts 5, 6, 7 and 8. Each meta-fact from 
5 to 8 references the corresponding dependency. For 
example, an optional dependency references the 

corresponding dependency having the identifiers of the 
parent and child features (IdFeature1 and IdFeature2 

respectively) intervening in the optional dependency. In 



requires dependencies IdFeature1 is the requiring feature 

and IdFeature2 represents the required feature. 

Meta-fact 9: groupCardinality(IdDependencies, Min, 

Max). 

Cardinality is a relationship between several features 
constrained by a Min and a Max value. Cardinalities can be 

represented by instantiation of meta-fact 9, where 
IdDependencies is a list of dependency‟s identifiers 

related in the group cardinality. 
The relationship between the meta-fact and the derived 

facts respects the basic principle of meta-modeling. In our 
case, the instantiation of a meta-fact consists in giving 
constant values to the parameters of this meta-fact. We show 
this instantiation with our running example. Note that in the 
following representation of the car MCS as CP facts, each 
feature, attribute and dependency is identified by a natural 
number preceded by the label fea, att and dep, 

respectively. 
 

(1) root(fea1).  

(2) feature(fea1, 'Movement Control System',[]).  

(3) feature(fea2, 'Sensor', []).  

(4) feature(fea3, 'Speed Sensor', []).  

(5) feature(fea4, 'Position Sensor', []).  

(6) feature(fea5, 'Feedback', []).  

(7) feature(fea6, 'Audio', [att1,att2]).  

(8) feature(fea7, 'Vibration', [att3, att4]).  

(9) attribute(att1, 'Volume', [integer]).  

(10) attribute(att2, 'Volume', [0..10]).  

(11) attribute(att3, 'Type', [string]). 

(12) attribute(att4, 'Intensity', [integer]).  

(13) dependency(dep1, fea1, fea2).  

(14) dependency(dep2, fea1, fea5). 

(15) dependency(dep3, fea2, fea3). 

(16) dependency(dep4, fea2, fea4).  

(17) dependency(dep5, fea5, fea6).  

(18) dependency(dep6, fea5, fea7).  

(19) dependency(dep7, fea7, fea5).  

(20) dependency(dep8, fea3, fea7). 

(21) mandatory(dep1).  

(22) mandatory(dep2).  

(23) optional(dep3).  

(24) optional(dep4).  

(25) mandatory(dep5).  

(26) optional(dep6).  

(28) requires(dep7).  

(29) excludes(dep8).  

(30) groupCardinality([dep3, dep4], 1, 3).  

(31) groupCardinality([dep5, dep6], 1, 1).  

 
Lines 1 and 2 define root feature Movement Control 

System with no attributes. Lines 3, 4, 5 and 6 define 

respectively features Sensor, Speed Sensor, 

Position Sensor and Feedback with no attributes. 

Line 7 defines feature Audio with two attributes (att1 and 

att2) respectively defined in lines 9 and 10. Line 8 defines 

feature Vibration with the attributes att3 (Type) and 

att4 (Intensity), respectively defined in lines 11 and 

12. Lines 13 and 21 define one mandatory dependency 
between the features fea1 (Movement Control 

System) and fea2 (Sensor). In the same way, lines 14 to 

20 define dependencies between two features of the product 
line and lines 22 to 29 are facts representing the type of each 
of these dependencies. Line 30 defines the group cardinality 
<1,3> for dependencies dep3 and dep4. Finally, line 31 

defines the group cardinality <1,1> for dependencies dep5 

and dep6. 

IV. CONFORMANCE CHECKING IN FEATURE MODELS 

The conformance of feature model is essential for 
deriving correct products and enables safe automated 
reasoning operations such as variability analysis, 
transformation and code generation [10]. In this way, quality 
assurance of FMs is essential for successful PL engineering 
and, due to the ability of FMs to derive a potentially large 
number of products; any error on the FM will inevitably 
affect many products of the product line. Besides, the proven 
benefits of a PL (e.g. reduced time to market, better reuse 
and therefore reduced development costs and increase in 
software quality [1,2]) can be compromised by the poor 
quality of FMs. Therefore, engineers need to be supported in 
detecting conformance errors during feature modeling. 

In this paper we use nine conformance rules that are 
based on the FM meta-model presented in Figure 2. Our 
purpose in this paper was not to present an exhaustive list of 
rules. Rather it was to show how a few relevant rules can be 
extracted from the meta-model and checked automatically. 
In this manner, a user of our approach can extend the 
conformance checking rules according to her/his particular 
needs. These nine rules were developed based on our 
experience with verification of product line models of 
various sizes [38] and the rules found in our literature 
review. A conformance rule can be seen as a query that will 
be executed over a FM. If the rule is evaluated true in a 

model, its output is a set of elements that make true the 

evaluation of the rule and by using the backtracking 
mechanism of CLP solvers we get rest anomaly‟ sources if 
any exists. Next we present and formalize our nine rules. 
Note that in each formalization we (i) specify the scope 
(elements that need to be analyzed to evaluate this rule) in a 
general manner, and (ii) specify the case where the 
conformance rule is evaluated true, so, we are not just 

identifying the presence of an anomaly but also the sources 
of the anomaly; and (iii) are exhaustive in our search to 
guarantee completeness of our approach.  

 
Rule 1: A feature should not have two attributes with the 

same name. In our running example, feature Audio is 

violating this conformance rule because its two attributes 
have the same name (Volume). In the next formula, we are 

searching two different attributes, of the same feature, with 
the same name.  

 

Rule 2: Two features should not have the same name. 
The fact that several features share the same name can imply 
ambiguity problems in product configuration and 
maintenance stages.  





Rule 3: In our feature-based formalism, product line 
models should not have more than one root [11, 14, 19, 28]. 
If a feature model has more than one root feature and our 
particular feature model formalism allows only one, this rule 
identifies these root features.  



Rule 4: Features intervening in a group cardinality 
relationship should not be mandatory features. By definition, 
a cardinality relationship is about the selection of a certain 
number of elements among a set of them. In this selection 
each element must have the same possibility to be chosen 
than others, that is why elements must be optional features. 
We consider this rule, presented in [11], as a good practice to 
avoid errors and redundancies. To illustrate this, let us 
consider the case of our running example, where Audio is a 

mandatory feature intervening in the <1..1> group 

cardinality. The <1..1> means that only one feature can be 

selected, so, if Audio is mandatory, Vibration can never 

be selected. 
 
Rule 5: One feature must not be optional and mandatory 

at the same time. If a feature is optional, by definition (see 
section 3.1) it cannot be mandatory and vice versa. In the 
meta-model, optional and mandatory are complete 

and disjoint dependencies. This rule has two cases. In 

the first case, rule 5 evaluates if a feature is constrained two 
times by the same father by means of optional and 
mandatory relationships. In the second case, rule 5 evaluates 
if a feature is mandatory towards one parent and optional 
towards other, directly or indirectly (through other features). 

 
Rule 6: In a group cardinality <Min..Max> restricting 

a set of N dependencies (or its associated features), the Min 

and Max values must be integers satisfying: 0 ≤ Min ≤ 

Max ≤ N. In our running example SpeedSensor and 

PositionSensor are participating in the group 

cardinality <1..3>. Note that as only two features are 

related in the cardinality, the upper value of the cardinality 
can never be attained. If we apply rule 6 to this particular 
group cardinality, then Min = 1, Max = 3 and N = 2. 

According to Czarnecki et al. [11], rule 6 constraints that 
values of Min, Max and N must be integer numbers and 

that 0 ≤ Min ≤ Max ≤ N. But in our running example, 

we have Max > N.   

 
Rule 7: Two features cannot be required and mutually 

excluded at the same time. If two features are related in 
requires and excludes relationships, the model is non-
conformant. Rule 7 is applicable in the cases in which 
features are related directly (i.e., F1 requires F2 and F1 
excludes F2) and transitively (i.e., F1 requires F2, F2 requires 

F3 and, F1 excludes F3) in mutual exclusion and requires. 

 

Rule 8: A root element should not be excluded. If the 
root feature of a FM is excluded by other feature, the FM 
becomes void because it does not define any product. 

 
Rule 9: A feature should not require itself or one of its 

ancestors. In a FM, feature A is ancestor of feature B if A is 

in the path from the root to B. In our running example, 

Vibration is requiring its father Feedback, what is a 

redundancy because Vibration can only be selected by 

the way of Feedback. 

V. IMPLEMENTATION AND EVALUATION OF THE FM 

CONFORMANCE CHECKING RULES  

Our conformance rules are implemented as CLP queries 
[22, 5], in a way to guarantee termination and exhaustive 
search [5] using GNU Prolog. Due to space limitations, we 
do not present the code source of all rules but only of the 
first one. All the rules are available for download from the 
tool website1. 

 
(1) conformance_1(FeatureName,AttId1,AttId2,AttName) :-  

(2) feature(_, FeatureName, LAttId), 

(3) chose(LAttId, AttId1, LAttId1), 

(4) member(AttId2, LAttId1), 

(5) AttId1 \== AttId2, 

(6) attribute(AttId1, AttName, _), 

(7) attribute(AttId2, AttName, _). 

 

Line 1 uses four output variables to return the name of 
the feature that has the repeated attributes, their two 
identifiers and the name of the repeated attributes. These 
variables will take the values of one feature where two of its 
attributes have the same name. Usually in Prolog other 
solutions can be obtained thanks to the underlying non-
determinism mechanism. The source of non-determinism are 
in line 2 that chooses one feature, line 3 that chooses a first 
attribute of the current feature and line 4, which chooses a 
second attribute of the current feature. Then line 5 
constraints the fact that both features must be different and 
lines 6 and 7 constraint the fact that the two attributes must 
have the same name. It is worth noticing the declarative 
formulation of this conformance check and the fact that we 
only use relevant elements for the conformance rule (e.g., in 
this rule we are interested in comparing attributes of a same 
feature, so, we only consider features with a list of attributes 
(LAttId) and do not use dependencies or cardinalities 

because they are not relevant for this rule). The research 
strategy we use to find anomalies with each conformance 
rule is exhaustive because we do not avoid evaluating any 
case even if in our research we consider only relevant 
elements according to the scope of each conformance rule.  

 
We assessed the feasibility, precision and scalability of 

our approach with 50 models, out of which 48 were taken 
from the SPLOT repository [9]. The other two models were 

                                                           
1 _FeatureModelDiagnosis.pl available at: 

https://sites.google.com/site/raulmazo/ 



developed during industry collaboration projects [41,42]. 
The sizes of the models are distributed as follows: 30 models 
of sizes from 9 to 49 features, 4 from 50 to 99, 4 from 100 to 
999, 9 from 1000 to 9999 and 3 of 10000 features. The 
domains tackled span from insurance to entertainment, web 
applications, home automation, search engines, and 
databases. Note that SPLOT models neither support 
attributes nor multi root features. Therefore artificial 
attributes (a variable followed by a domain, for example 
A:String) were introduced in a random way, in order to 

have models with 30%, 60% or 100% of their features with 
attributes. Following the same logic, we introduced one 
artificial root on the 50% of the SPLOT models.  In order to 
do that, we created a simple tool2 that translates models from 
SPLOT format to facts and automate the assignation of 
artificial attributes, allowing repeated attributes inside each 
affected feature (between 1 and 5 features per affected 
feature), and roots. Evaluation was made in the following 
environment: Laptop with Windows Vista of 32 bits, 
processor AMD Turion 64 bits X2 Dual-Core Mobile RM-74 
2,20 GHz, RAM memory of 4,00 GB and GNU Prolog 1.3.0. 

A. Precision of the detection 

One example of the effectiveness of our approach is the 
56 conformance anomalies of the models taken from 
SPLOT, violating rules 2, 7 or 9. For example, in the Model 
transformation taxonomy feature model [35], features like 
Form, Semantically_typed, Interactive, 

Source, Syntactically_typed, Target and 

Untyped appear twice. In addition, we found 1553 

conformance defects with rules 1 and 3. These came from 
the attributes and root features that we intentionally 
introduced in the SPLOT models. A manual inspection on a 
sample of 56 conformance defects showed that our approach 
identify the 100% of the anomalies with 0% false positive, as 
expected due to the completeness of GNU Prolog. 

B. Computational Scalability 

The execution times of our tool during the experiment 
show that our approach is able to support a smooth 
interaction during a conformance checking process. Indeed, 
each conformance rule was executed within milliseconds. 
Figure 3 shows the execution time of each one of the nine 
conformance rules in the 50 models. In Figure 3 each plot 
corresponds to a conformance rule: Figure 3(1) corresponds 
to rule 1, Figure 3(2) corresponds to rule 2 and so on. Times 
in the Y axis are expressed in milliseconds (ms) and X axis 
corresponds to the number of features. 

Initial analyses showed us that 74,2% of the queries take 
0 ms, which actually means that the execution time is less 
than 1 ms (the GNU Prolog solver does not offers times in 
microseconds and please note that the timer granularity of 
GNU Prolog under Windows is 5 ms). Give the lack of 
reliability of measures of very short execution times, we 
executed five times each of the nine rules for each of the 50 

                                                           
2 parserSPLOTmodelsToCP.rar available at: 

https://sites.google.com/site/raulmazo/  

models, which means  a total of 2250 (9X50X5) queries. The 
time measures presented in the paper are the average of the 
five executions of each rule on each model (450 consolidated 
results). In small models (9 to 100 features) the worst rule 
execution time was 32 ms. In large models (100 to 10000 
features), execution time of each rule was less than 140 ms. 
The maximal time taken by the tool to execute all nine 
conformance rules on complete models was 265 ms (a ¼  of 
a second).  

Table 1 shows the correlation coefficient (R²) between the 

number of features in the models and the time that each rule 

takes to be executed. Of course, the R² does not prove 

independency between these variables. However, it gives a 

good indication of their dependency/independency. In the case 

of rules 1, 2, 3, 4, 6, and 8, the correlation coefficient is next to 

0. This means that, despite the NP complexity of this kind of 

problems associated with CSP (Constraint Satisfaction 

Problems), these rules seem to be scalable to large models with 

the application of our approach. This is also shown in Figure 3 

that indicates that every rule can be checked in a linear (seven 

rules) and polynomial (rules 5 and 7) time. We believe this is 

due to the fact that our approach does not evaluate the whole 

models but only the elements concerned by the rule.  

Table 1. Correlation coefficients between “number of features” 

and “rules execution time” per each rule and over the 50 models. 

Rule 1 2 3 4 5 6 7 8 9 

R² 0,01 0,15 0,01 0,04 0,74 0,02 0,87 0,01 0,35 

 

C. Usability 

Our approach was also implemented to check the 
conformance of DOPLER variability models. We used two 
industrial cases and the DOPLER variability meta-model 
proposed by Dhungana et al. [39]. In this experience we 
implemented the DOPLER meta-model, models and 
conformance rules using SWI-Prolog3.  Using our approach, 
engineers could check conformance of product line models 
specified in other languages, write their own conformance 
rules and use another declarative language different from 
GNU Prolog. We believe these are important features for 
usability. 

This paper does not address how to best visualize 
conformance anomalies. Much of this problem has to do 
with human-computer interaction and future work will study 
this. Another important issue that is not addressed in this 
paper is the downstream economic benefits. For example, 
one could raise the question how does fast detection of 
conformance anomalies really benefit software engineering 
at large? How much does it cost to fix an error early on as 
compared to later on? These complex issues have yet to be 
investigated. 

                                                           
3 http://www.swi-prolog.org/ 
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Figure 3. Execution time, of the 9 conformance rules, per number of features.

VI. PERSPECTIVES AND CONCLUSION 

In this paper we proposed a conformance checker that 
uses parameterizable rules to detect non-conformance in 
extended feature models. Our approach consists in 
representing FMs as CLPs, namely with sets of meta-facts. 
Conformance rules are parameterizable query functions 
expressed in a declarative manner. In addition, our 
experience has shown that these rules, implemented as 
queries, are something that a modeling tool could easily 
enforce. The result of the query is a collection of elements 
that do not conform with the meta model. As the experiment 
demonstrates, our approach to conformance checking is 
correct, useful, and our tool implementation is fast and 
scalable.  

Future works include the following items. First, we 
envision to implement an incremental checker with rule 
scopes such as the one proposed by Egyed in [6]. We expect 
this will reduce the execution time of some of our 
conformance rules. Also, we plan to devise a classification of 
conformance rules according to their severity and 
complexity. We will explore how to fix non-conformances in 
an automated way. We believe that the classification can 

serve as a guide to define strategies to fix non-conformances 
and better exploit the capabilities of Egyed's incremental 
conformance checking technology. It is also our intention to 
explore the question of how to best present feedback to the 
engineer. The efficiency of our approach depends on how 
conformance rules are written, because in each rule we make 
explicit the elements of the model that will be evaluated. 
Since conformance rules are typically written manually (by 
engineers), it is future work to investigate how to 
automatically optimize conformance rules and if possible 
how to automatically generate conformance rules directly 
from the product line model‟s meta-model. 

Our approach has been applied to feature models. 
However, we argue that it is also applicable to other 
variability formalisms (e.g. OVM, goals, UML, etc) [43]. 
Our experience with DOPLER already showed us that the 
meta-models share some common concepts such as 
variability and that the resulting conformance checking rules 
are very similar, when not identical. A significant scientific 
result would be to define generic rules that could be adapted 
to any meta-model in a fully automatic way in a similar way 
to Salinesi et al. [44]. 
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