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A Dedicated Solver
for Fast Operational-Space Inverse Dynamics

N. Mansard

Abstract— The most classical solution to generate whole-body
motions on humanoid robots is to use the inverse kinematics
on a set of tasks. It enables flexibility, repeatability, sensor-
feedback if needed, and can be applied in real time on-
board the robot. However, it cannot comprehend the whole
complexity of the robot dynamics. Inverse dynamics is then a
mandatory evolution. Before application as a generic motion
generator, two important concerns need to be solved. First,
when including in the motion-generation problem the forces
and torques variables, the numerical conditioning can become
very low, inducing undesired behaviors or even divergence.
Second, the computational costs of the problem resolution is
much more important than when considering the kinematics
alone. This paper proposes a complete reformulation of the
inverse-dynamics problem, by cutting the ill-conditioned part
of the problem, solving in a same way the problem of numerical
stability and of cost reduction. The approach is validated by a
set of dynamic whole-body movements of the HRP-2 robot.

I. INTRODUCTION

Designing the whole-body motion of a humanoid rob

objectives [1]. A dedicated task space (also called opmrali

space [2]) is chosen, in which the control law driving the
robot to the objective is easy to write. Transposing therabnt
law from the task space to the whole-body joint space is the

simply a matter of resolving a linear system [3].

On humanoid robots, there is typically several objectives
to be accounted at the same time. Two approaches 8
be considered to fuse several tasks in a single contr
law. It is possible to sum several tasks in a single task
by performing a Cartesian product of the task spaces [4].
The tasks are generally weighted to give some respectiv

importance between objectives when it is not possible

fulfill all of them. On the opposite, it is possible to define
a strict hierarchy between tasks (called a stack of tasRs [5
by using the redundancy projectors [6], [7]. The couplin

between concurrent tasks is then artificially nullified. dinc

be shown that a stack of tasks is the limit of a weightefie
tasks composition, when the weight magnitude orders rea
the infinity [8]. In the following, we focus on hierarchy, as

weighted composition is a special case of it.

The task-function approach is valid when considering onl
the robot kinematics [9], [10], but can be extended similarl
to the robot dynamics [2], [11]. Hierarchy of tasks ca
also be generalized to inverse dynamics [12]. Connections
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directly in the joint space is a very tedious task, requirin
a lot of trials and errors. On the opposite, the task-fumctio
approach provides an elegant way to formulate the moti

n

Fig. 1.

Reaching “Standing Lotus”: dynamic motion from motiapture

between the two inverses can be found in [13]. Basically,
inverse kinematics consists in finding the robot joint véloc
that fits with the references velocity in the given task space
On the opposite, inverse dynamics consists in finding the
joint accelerations and torques along with the external con
tact forces, that fit the reference accelerations and fdarces
the given task spaces. If mathematically, both problems can
be written under a similar shape, the number of parameters
in the second case is much more important: two times more

our times more for classical cases on a humanoid robot.

ince the inversion methods have a quadratic cost in the

iariables in the case of a robot without contact, and up to

c;?]umber of parameters, inverse dynamics involves much more

computation than inverse kinematics [14].
The computation cost is composed on one side of the
cost of the numerical resolution, and on the other side, of
Ee cost of the problem formulation (typically, computing
the numerical quantities, Jacobians, inertia matrices). et
A complete resolution of the inverse dynamics requires to
gmpute explicitly all the variables (accelerations, terg
8|'1d forces). However, at the end, only the control variables
re needed. A first solution to reduce the cost is to refor-
ulate the problem to hide the unnecessary variables and
é(oid their computations. This is typically what is done in
eneral in the work of Khatilet al. [2], [12], [15] (detailed
In Section 1I-B). This solution enables to reduce the cost
f the inversion. However, the formulation of the numerical
uantities of the reduce problem induces a supplementary
omputation cost, and a supplementary design cost as the
duction is not automatic. Moreover, it is not possible to
gxpress constraints that requires explicitly the hiddexefo
and acceleration variables (e.g. center of pressure).

A very appealing solution is to reduce together the for-
mulation and inversion costs, as done for non-contacting
¥r1anipulator robot [16] (detailed in Section II-A). Howeyer
%uch a solution seems impossible to generalize.

On the opposite, in [4], [13] (detailed in Section 1I-C), a
quadratic-problem (QP) solver is used that can solve litera
the whole set of variable. In that case, no reformulation at
all is needed. The interest of this method is its genericity:



the whole dynamics is taken into account, and constrainhe control law is obtained by inverting; A~
(equality or inequality) can be expressed on any part, accel ke .

ation, torque or forces. However, computation-cost ovathe 7= (LAT)T(E" = Jig+ L ATTD) @)

is very important and do not allow to obtain real-time cohtro  Any weight can be used to define the inverge[11]. In
Moreover, since there is no artificial decoupling between th[z]’ it is generally chosen to weight by the inertia matrix. In
spaces of actuation and movement, low condition nuUMbgkst case unrolling (5) gives:

can appear, that are not acceptable on a control scheme. )

In this paper, we propose to keep this last approach by T=J1 A(6* — Jig+ JL A7) (8)
enabling a generic solver working on all the variables of the . _ T4 . . .
system. However, following the spirit of [12], we propose toW.Ith Iﬁl _n (I’J1|Ai{1i )b ttth(: fO[:etrhanonnar:]-sEacle |Inerrti|ta;l n:nr;t
automatically reduce the variables spaces along the null fo' general, 1t 1S better Tor the numerical algo 0

ill-conditioned spaces, in order to both save computatast c Cglmepuéici';qecgg.;gﬁ F;Sre:goe”:gﬁrss.gn(?(')?‘ ujmr?te?j S.:]ngefézr
and improve the condition number of the numerical proble yau position, X ! welg nv

. . . T
We first recall the previous approaches in Section |l Ou-2): Father than inverse the quadratic shapé’.X = whose

original solution is presented in Section Ill. The method iscord'ti%n rjtu_mber IS ve(;ytlow whexi( IS |Illctc_)nd|||t|otrr11ed_. "
validated on the humanoid robot HRP2 in Section IV. n [16], it is proposed to compute analytically the inertia

A4, directly from the robot model. The computation cost of
[l. OPERATIONAL-SPACE CONTROL the problem formulation is then reduced, since instead of

The robot configuration is denoted bY. The joint torque computingA, only A, of smaller size is needed. Moreover,

is denoted byr. The dynamic equation of the system is thenthe inversion cost is also reduced, since no explicit invers
algorithm is called, and the cost is finally reduced to the

Ag+b=7 @) multiplication of two matrices. This approach has only been

where A is the generalized inertia matrix, aridis the applied for controlling the position and orientation of a
dynamic drift (gravity and Coriolis forces summed). TheCartesian point of the robot. Its generalization to othgety
robot objective is given under the shape of a task functioff tasks (controlling the robot gaze for example) is not

e1(q). The Jacobian of this function is denoted Jy= %@;; immediate. Moreover, a dedicated algorithm to compute
is needed for each type of task, which is not tractable for

ér=J1g (2)  humanoids with a wide range of possible tasks.

The image space of;(¢) is called the task space. In this
task space, a control law that bring the system to an stablé

position is given byé1*2. The operational-space inverse EQ. (1) is limited to non-contacting robots. For humanoid
dynamics is to findj and such thaté; = ¢;*. The size of robots, two other constraints have to be accounted: thet robo

7 is denoted byn., while the size ofe; is denoted byn; IS in contact with the world, and it cannot actuate its free-

Projected inverse dynamics

(generally,n; < n,). floating basis. In general, the contact study is limited ¢edri
] ] ) ] contacts. The dynamic equations are thus:
A. Basic operational-space inverse dynamics - -
A first solution is to findj from the derivative of (2): Aj+b+J f=5'r ©)
Ji+Jg=10 (10)

é1 =i+ Jig ®3)

Inverting (3) gives a minimalj respectingé;*. Then, us-
ing (1), 7 is obtained:

with f the contact forces] the Jacobian of the contact point.
In case of multiple contacts, the forces are simply stacked
. in the vectorf. The size off is denoted byn;. Due to the
T=ALT (" — Ji4) + b (4) under actuation, the size gfis nown, + 6.

where.# is any generalized inverse [14], typically the pseudo 1) For onetas Now, the problem is 1o find the parameter

inverse.™ or a left-weighted inverse*"V defined by z = (§,7,f) such that the task constraig} = &, is
fulfilled. However, as previously, only the control input

X —wxT(Xwx )T (5) is needed/ and do not have to be explicitly computed in
where W is any user-defined positive definite symmetricapeneral' A f|r_st SO'U‘“OT‘ was.proposed n [12.1 to .reduce the
matrix. This solution only results in a minimaj, while whole dynamics to a single link be}weerandel. F'TSt’ 'the
minimal 7 is generally preferred. For that, a torque-base on:)ac;itl)iges c;n b? C(_)mptl;]ted frquilr;)dr,lkz)y.multlplylng
equation is obtained by multiplying (1) by, A~!, and ) by and replacing the result by (10):
inserting (3): (JATYINf=JASTr —JA o+ J5  (11)

é1—Jig+ LA b = LA T 6) 1f (JA-1JT) is invertible, (9) can be projected into the null

1For mobile robots, the first part of the configuration is theeffieating space of (10) by reP""‘C'”Q (11) in (9). Th|§ produces a force-
configurationz ;. The first part ofg is the free-floating velocity s, which ~ free dynamic equation with a pattern similar to (1):
is not integrable. The vectay is abusively used in the paper.

2The notationz* will always designate the reference valueof Aj+ Nb+b.=NSTr (12)



where N = I — (JA~1H)#JA~! is the projector in the null Another interest of the QP formulation is that it enables
space of JA™!, and b, = (JA*l)#Jq. Using the same directly the use of inequality constraints, which was not
method as in the non-contact case, the dynamics is theonssible with the solutions based on the pseudo-inverse
projected in the task space to hide the acceleration variabldescribed above. For example, it is easy to add the joint-
. A araT limit constraints in the problem (17) [4].
it =JATNS T (13) The contact model (10) is partial. Indeed, when consider-
with py = —J1¢+ JJ A~ (Nb+b.). The minimal torque is ing a point contact where the robot position along the cdntac
obtained by inverting/; A'NST. In [15], it is proposed to normal is denoted by, the entire model is:
useW = SA'NST to weight this last inverse:

;>0 L ft>o0 (18)
7= (LATINST#W (& + 1) (14) : , -
. o _ The motion along the normal is null or the force is null. A
The pattern of this last solution is similar to (7). It issjmilar constraint can be written for the tangential diiews,
even possible to rewrite the equation to obtain a shape wiifhich will not be considered here. By writing (10), we
a pseudo inertia matrbd. However, it is not possible to jmplicitly chose the solution to be in the second case: psit
obtain a nice simplification of it that allows an analyticalnormal forces. This constraint is never explicitly checked

computation of the inertia, or of any part of the inverse. the previous methods, while it can be directly taken into
Consequently, this solution involves the cost of the inveryccount by the QP formulation:

sion of the size of- (o(n.n?)). However, the corresponding

formulation implies a cost: computingy implies a cost of =0 (19)

o((n, + 6)3), with similar costs forl¥ and.J; A=1NST. Lol
2) Extension to a stack of tasks: Until now, we have where f~ = S~ [ are the normal components ¢f

only considered a single task. The equations can be easm/iﬂo;her dg]ference betweetn ?I;’hand gsegdo-lnvzrse-bafﬁd
generalized to a hierarchized set of tagks ...e,,,). Indeed, cthods 1s the management of the regundancy. Among the

(14) is the minimallW-norm solution. The generic solution possible solution (14) will chose the one that minimizes
involves a secondary input: the torque variable. This choice acts as a third level of

constraints, the dynamic equations being the first level and
7= (JATINST)Y#W (&, 4+ 1) + Pimy (15) the task reference at the second level. Such a behavior is not

. . . AT possible with a standard QP. Similarly, it is not possible to
with P the projector in the null space of A~ NS along account for a secondary task, except by fusing it withe,,

W, and » any secondary input. This secondary input can . .
be used to fulfill a second task, by replacingn (12), and loosing the notion of hierarchy.

projecting the resulting dynamics in the second task spacez) H|erarch|ze_d QP: _In [13], we have proposed to use
¢. The resolution of the secondary task is: an extended hierarchical QP (HQP) solver to solve the

operational-space inverse dynamics. A classical QP can be
7o = (JLATTPINS T )#W (€3 + o)1) + Pors (16) seen as a hierarchy of two levels, the first one, having

kpriority, used to constraint the dynamic consistency, the

second one being used for the task reference. A HQP is
simply a generalization of the classical QP to an arbitrary

number of hierarchy levels. The task hierarchy is denoted
%y <. A dynamic stack ofn tasks is (9)< (10) < (19) <

(3.1) < ... < (3.m) < (20), where the last constraint level

where i), is the task drift due to the dynamics of the tas
e1, P is the projector corresponding to the inverse, apd
is a third input used to propagate the recurrencerttasks.
This solution costs the inversion of a stack of task
(o(n,n?*m) =~ o(n2). There is no additional costs of for-
mulation compared to the solution for only one task.
C. Explicit QP formulation =0 (20)
1) For one task: Formulating the whole dynamics into enforces a minimization of the motor torques.
the task space by (13) is appealing, first by its similarity This control scheme generalizes the QP-based inverse-
with the classical inverse kinematics, and by its concisenedynamics solver, and has been proved equivalent to the
that spares computation during the inversion. However, thgseudo-inverse based solvers in [13] when not considering
formulation is tedious and costly. On the opposite, it i@ny inequalities. Its formulation is free of overhead, riegd
possible to formulate directly the inverse-dynamics peabl only the direct quantities (Jacobians, inertia matrix) wHo
as a QP, that is straight forward to formulate and inverever, its resolution for a full stack (when all the degrees of
Basically, the problem can be written: find the variablesreedom -DOF- of the robot are used)d§2n., + 6 +ny)?)
¢, 7, f that are consistent with the dynamic equations and 3) Ill-condition of motion-actuation coupling: Apart from

minimize the distance to the task reference: its cost, a second problem can be noticed with the explicit
. . e HQP formulation. Due to the dynamic equations, the variable
J1G+ Jig — €% ]2 17 - : i
zII{ITI,I}H 14+ hd = el (17) spacex = (¢, f,7) can be divided theoretically in two

sub spaces: the motion space, where the acceleration can
_ be chosen freely (setting accordingly the necessary force
JG+Jg=0 and torque variables), and the actuation space, where the

subject toAG+b+J f=S5Tr



acceleration is fixed (practically 0) and only forces can b&he second term is constant with respect to the variables

chosen. However, in practice, the distinction betweenomoti (¢, 7, f) sinceJ§ = J. The third term is null by definition

and actuation is equivalent to the problem of deciding if ®f P. The dynamic evolution under constraint of contact is

value is null: it relies on a fixed threshold. This is a generithen:

problem, that has to be solved explicity when computing B '+ PB"b+GtJG=PB"Sr (25)

the projector (12) for pseudo-inverse based methods. This o ) . )

problem is linked to the decision of the singularity of a task0!» by multiplying by 3~ and using the classical notations:
However, when accounting for inequality constraint in .. T T

a QP solver, the threshold cannot be arbitrarily selected: AGENb+ B GG = NS T (26)

it is fixed and depends on the precision of the solvewith N = B~ TPBT the projector (12).

generallyle—®. The consequence is that three subspaces of )

the variables have to be considered: the motion and actuatif- Contact constraint

spaces, and amotion space, where motion variables are free Alternatively, the contact constraint can be rewritten by

in theory, but in exchange of impractical force values. multiplying (22) by G

D. Conclusion GG f+GB b—Jj=Gx (27)
Two classes of solutions for operational-space inverse, ToT . . _ .
dynamic have been described. The first class is based on #fi" # = 55 7. Computingr is equivalent to computing
pseudo inverse. The cost for a full stack of tasks is(in?). the variablez. When conS|der|ng the last equatlon onit
The drawbacks are the impossibility to account for inequaﬁIearly appears that.a sub manifold of p_ossnblealues has ,
ities, and the specific treatment to formulate the problenﬂo effect on the motion, but only on the internal forces. This

tedious to write and costly. On the other hand, QP are easi#2c€ is then useless since it is already considered irf the

to formulate, and can account for more generic constraint\é?”ables' To reduce the space wheie searched, we simply

involving hidden variables and inequalities. However, the@ve o search it under a shape that is consistent with (27):

cost is more important and the simultaneous treatment of s =G T f+Vu+BTb+a, (28)
contact and tasks can involve ill-conditioned subspaces. )
In the next section, we will propose to automaticallywhered, = —G*.J¢, V is a basis of the null space @f

formulate of a reduced HQP, where the actuation space (& = VVT) andu is any vector in this kernel. Introducing
explicitly distinguished from the motion space. This formu z in (22) gives:
lation keeps the possibility to have generic constraints, b B li=Vu+94. (29)

for a cost lower than both classes of solution, and with an ) L . .
explicit and arbitrary condition threshold. This very simple equation is the reduced motion dynamics

implied by contact constraints. It is fully decoupled from
[Il. DECOUPLED DYNAMICS the force dynamics, and reduced to the lower dimension
The idea is to explicitly separate the variable spacespace. The possible motions are then directly given by the
between motion and actuation. Then, instead of keepirgybspacé B~!. The projection of the reference motion into
the explicit variables we will rely on the basis of the twothe subspace of possible motion is simply:
decoupled, that are of lower dimension than the coupled

_ T (p-1ls_
original variables. However, due to the consistency with th u=V (B7{—0) (30)
inertia matrix, the decoupling is not trivial. C. Forces resolution
A. Motion-force decoupling Consider that a reference feasible motion is given under

The inertia matrix is decomposed into an inverse Choleskif€ shape of a reduced'. It is now necessary to compute
the actual necessary torques and forces. As said upper, in

A7'=BB" A=B B! (21)  most cases, there is a redundancy of actuation. Therefore,

where B, the square-root oft~—, is invertible triangular (no there is not a single possible pair of,7), but a set of

zero term on the diagonal). Using the decomposition, tHROSSible values. However, the necessary external foraes ca
dynamics can be rewritten: be explicitly expressed in the null space of the selection

. o . S matrix. The selection of the floating part is denoted y
B>¢+B J f+B b=B S'1 (22) (S =[10], SST = 0). Multiplying (28) by SB~T gives:
plying Yy g

For shortcuts, we denot& = JB. The projector into the S f+8b+8B T8, =—-SB TVu (31)
null space ofG is denoted byP. Using the pseudo-inverse
constructive definition: In the case of a single contact with reduced forcgd,”
Pol_cta (23) is 6x6 invertible, and the contact forces can be computed
- uniquely. Otherwise, any forces satisfying the previousagq
Multiplying (22) by P gives: ity are admissible. The torques are obtained by subtraction

B Yi—GtJj+ PG f+PB"b=PB'STr (24) =8 f+B "Vu+b+ B T4,) (32)



If searching for a particulag respecting some linear with p,. When the contact happens on three points or more
constraints/y, e;, under inequality constraint ofy, the opti- of the same bodyX is full column rank. This property is

mization problem will be written: then used to reduce the computation costof ker(Jg).
min [J:BVu — e||? (33) F. Conclusion

st. ST f+Sb+SBT6.=-85B TVu (34) Finally_, the_ solv_er is reduced to the variabte= [u,w_],
Lo (35) whose size is typically equal te. + 6. The computation
= cost for a full stack of tasks is thus o{(n, + 6)3), similar
The problem of this formulation is that there is still manyto the cost of the pseudo-inverse based solution. If using a
0 on the cost function due to the invarianceftcand many 0 Proper solver, like the one proposed in [17], it should even
on the inequality part due to the invariancewoMoreover, be faster in practice, as shown in the experiments.
f is possibly still of large size, while only a reduced space The formulation of the problem is reduced to the compu-
acts on the problem. tation of V ando.. The two quantities are computed from a
) ] QR decomposition of the matrix,, for a total cost ob(k?),
D. Reduction of the force variable with & the number of joints of the robot that are linked with
Due to the underactuation, the only constraint on the forc& contact (typicallyk = ¢ * 6 + 6, each contacts occurring
is to ensure the full actuation of the floating DOF. Theon an end-effector after a 6-joint limb, plus 6 for the free
constraint can be written: flyer). The cost of’ can be neglected, since this computation
=T S T T is only needed once in a while. Having the decomposition
ST f=-8(B" Vu+b+ B~ 0) (36) corresponding td<, the computation off, is negligible.
The variablef can be searched under the following shape: The proposed solution offers a versatile implementation of
. —(SJT)JFS(B*TVU bt BTs VLK (37) _the dynamic stack of tasks. The dynamic balanceT of the robot
- ¢ is ensured by (40), that can be shown to be equivalent to the
whereK is a basis of the null space of mati$/ ' . Because classical zero-momentum point (ZMP) condition in the case
B is triangular, the previous equality can be reduced to: Of coplanar contacts. The classical task functions can then

s T be added to manipulate the robot motion.
f=—(SGHY*S(Vu+B'b+6.)+ K (38)

o IV. EXPERIMENTS
The optimization problem can be reformulated consequently

The control law presented above is theoretically strictly
min | BVu — e |? (39) equivalent to the explicit HQP proposed in [13], that was
’ - - reviously shown equivalent to [15] if limited to equalie
st —(SGT)*SVut K¢ > fo (40) 'rlJ'he objei/:tive is thl?s not to val[ida]te the motionsqthat it is
with f, any solution ofSGT f, = BTb + 6. , for example possible to generate, but to compare the computation times.
fo=(SGNH*(BTb+d,.). The motions presented below consist in dynamic reaching of
The problem is directly generalized to a stack of task8 robot pose that is defined by various set of tasks on the
using the following HQP: (40)< (3.1) < ... < (3.m). A end-effector positions and orientation, a set of contabts,
last stage can be added to minimize the torques. Howeverf@bot gaze, or some joint positions. The tasks are the same
is generally better for the system stability to add suffitienas those used in [18]. The task sequence is defined by hand.
tasks to fill up the stack. Then, there is no more redundancy Three motions are presented below. They all have been
to minimize the torques. In the case where the stack is ndesigned for a dissemination event, where the robot is
full, a last task of friction or posture (see Section IV) isinteracting with dancers. They are dynamic motions, in the
generally added to complete it. sense that considering only the center of mass position is
. ) not sufficient to ensure the feasibility by the real robot:
E. Spatial-force reduction due to large accelerations or quantities of motion, the trobo
In practice, each contact is defined by a finite set ofan loose contact if the ZMP constraint is not properly
convex points where 3D point contacts occurs. The pointsatisfied. The first motion is a simple but fast motion: with
are fixed with respect to one of the robot body. The contaghe two feet on the ground, the robot moves mainly its
forces summed into a 6D spatial force (linear and angulavaist while keeping its hands fixed at a given position. The
components), expressed in the body coordinates systera at §acond movement requires to balance the robot body while
central point. From the forces at the contact points denoteflaking large upper-body movements standing on one foot.
fi, the force f = >°"" | f; and torquer = > p; X fi The last motion involves a large step while keeping the
at the central points can be computed. The Jacobian of thalance using a contact of the hand. The two last motions
contact can by written: involves variations of the contact set during the sequence.
J = XJg The movies corresponding to each motion can be found at
honepages. | aas. fr/ nnmansard/i cra2012 .
where Jg is the 6D Jacobian of the frame attached to the For each motion, the three solvelBINV based on the
body, and X is a@n x 6 matrix involving the cross product pseudo inverse (Sec. II-BHQP based on the explicit HQP
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Fig. 2. Experiment A: COM and ZMP position: the COM fluctuatesng  Fig. 3. Experiment A: formulation time (bold) and solver time rfrzold)
the Y axis, while the ZMP is limited in the defined support polygo

The COM and ZMP position are displayed on Fig 2. The
formulation (Sec. 1I-C), andRED based on the reduced dy- computation times are shown on Fig. 3. The computation cost
namic HQP (Sec. IIl-D) are compared. Since BBV solver  of the PINV solver only depends on the number of tasks in
cannot handle inequalities, the ZMP can not be constramedthe stack: it is very stable through the time. On the opppsite
PINV: the resulting motion can be dynamically inconsistenthe cost of theHQP varies each time a limit is reached. Due
In Simulation, it is then necessary to al’tlfICIally enforce th to the mentioned numerical prob|ems (here caused by the |eg
foot contact, in order to compare the computation timegjosed kinematic chain), limits are very often hit, that sms
of each method. For the same reasonsPINV, the joint-  some variations in the computation time. The variationsrwhe
limit constraint has been removed, and the eventual floatinge stack size varies is also visible. In average, @P
COM transform to a fix attractor. To prove the validity ofsglver costs 30% more than tiReNV. The cost of theRED
the obtained dynamics, the motion generatedRED for  solver is around four times less. The major costs is due to
the experiments A and B has been realized by the robghe friction task, that implies a large multiplication 3.
However, all the time-computation comparisons have beefherefore, its computation cost is nearly constant.
run on the same computer in simulation. The computation cost of the formulation QP is null as

For each execution, two computation costs are measuredipected. The size of the formulation RED is mainly due
on the one side the cost of the solver, i.e. the time spent iy the computation of/. It is thus constant in this motion,
the numerical resolution (call to the QP program MQP  since the contact set do not vary. Similarly BINV, the
and RED, call to the pseudo inverse operator BINV),  computation cost is nearly constant. In both cases, the cost
and on the other side the formulation cost, i.e. all the othejf the formulation is equivalent to the cost of the solveelits
computation (Jacobian, projectors, etc).
B. Experiment B: standing lotus

The robot starts with the two feet on the ground, then

The robot hands are controlled to reach a fixed point iaps its right foot and moves it near its left knee, while
front of the robot shoulders. They are then constrained taringing both hand close to contact in front of its shape,
keep this position, and to keep the rotation along the robotaching thus the positiostanding lotus. The position is
X axis (front axis). Another task is then added to movenaintained during 2 secs, and the robot finally moves back
the robot waist position. The waist is successively driveto the initial position. The arms and right leg trajectories
to the four corners of a rectangle set along the Y-Z planare captured from a real human demonstration, as well as
(perpendicular to the front axis), whose coordinates gpe tothe overall posture, as proposed in [18]. During the control
left corner: (0,0.1,0.65) to bottom-right corner: (0,50.B5). the trajectories are simply tracked by the classical tasks.
The robot COM is constrained to stay along the segmefithe stack is (40)< (right-hand) < (left-hand) < (COM)
linking the two robot feet. Finally, the friction task is wse < (waist) < (gaze)< (friction).
to limit the robot velocity without constraining the postur  Snapshots of the motion on the robot are given on Fig. 1.
The set of contact is constant during all the motion: the twdhe times are given in Fig. 4. The same observation as
feet are flat on the ground. To account for the flexibility inpreviously can be noticed. Additionally, the change in the
the ankles, the ZMP should be kept close to the center of tltentact set appears: the cost of the formulation for IRED
foot. The support polygon is then a rectanglesefn x 3em and PINV diminish. The cost of thdRED solver increases
centered on the vertical the last ankle motor. The stack sfnce the variable space is bigger during simple suppor. Th
tasks is (40)< (joint-limits) < (right-hand)~< (left-hand)<  cost of bothPINV andHQP solvers remains invariant while
(COM) < (waist) < (friction). the contact set changes.

A. Experiment A: waist rotation
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C. Experiment C: arm-contact step [3] A. Liégeois, “Automatic supervisory control of the configtion and
. . . . . behavior of multibody mechanismslEEE Trans. on Systems, Man
This last motion is a typical example of the interest of  and Cybernetics, vol. 7, no. 12, pp. 868-871, Dec. 1977.

considering the dynamics. It was already demonstrated if¢] C. Collette, A. Micaelli, C. Andriot, and P. Lemerle, “Dgmic balance

- . control of humanoids for multiple grasps and non coplanatidmal
[17], [19]. The robot first contacts its left arm on a table. contacts,” inlEEE-RAS International Conference on Humanoid Robots

Then, it performs a large step with the right leg. The step is  (Humanoid' 07), Dec. 2007.
sufficiently small to be realized by the robot kinematics; bu [5] N. Mansard and F. Chaumette, “Task sequencing for sessed

not when considering ZMP and joint limits. When the arm is gggt;o" IEEE Trans. on Robotics, vol. 23, no. 1, pp. 60-72, Feb.

in contact with the table, the ZMP is not defined anymore,[6] J. Rosen, “The gradient projection method for nonlineaogpam-
but the constraint (40) is still valid. This motion presents  mimg, part ii, nonlinear constraints3AM Journal of Applied Math-

o - ematics, vol. 9, no. 4, pp. 514-532, Dec. 1961.
several variations of the contact set (from 1 to 3 bodies). [7] B. Siclliano and J.J. Slofine, “A general framework for maging

The computation times are given in Fig. 5. The same ~ multiple tasks in highly redundant robotic systems 1BEEE Int. Conf.
observations as previously can be made. During this motion, —on Advanced Robot. (ICAR'91), Pisa, Italy, June 1991.

: . : : 8] C. Van Loan, “On the method of weighting for equality-ctrained
ill-conditioned spaces appears during the triple conthasp, ] leastsquares problemsgIAM Journal e rerical Ané’lysisl o,

due to the quasi-null respective orientation of the feet. gs51-864, 1985.
The contact forces estimated by thQP solver reaches [9] B. Espiau, F. Chaumette, and P. Rives, "A new approach soali

impossible values 1¢°). e forces chosen ’ e
bl | 1€7). The f h by thBRED ﬁgrvg,lnpgp{nsrfgzt;gé,’lELIJErI‘EeTrlagr;)sz .on Robotics and Automation, vol. 8

solver remain consistent. [10] P. Baerlocher, “Inverse kinematics techniques for titeractive pos-
ture control of articulated figures,” Ph.D. dissertatioHE, 2001.
V. CONCLUSION [11] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. StH@perational

. . _ _ space control: A theoretical and empirical comparisdimg Interna-
In this paper, we have first compared QP- and pseudo tional Journal of Robotics Research, vol. 27, no. 6, pp. 737-757, June

inverse- based dynamic motion generators, in term of for-  2008.
mulation and computation cost. QP are more generic, ahtf] J. Park, “Control strategies for robots in contact,”.Phdissertation,

. . . . Stanford University, California, USA, March 2006.
eaSIer to set up, but more exP_e”S'Ve and \_N'th possible numﬁré] L. Saab, N. Mansard, F. Keith, J. Fourquet, and P. Ssy€Beneration
ical problems. On the opposite, pseudo-inverse methods are of dynamic motion for anthropomorphic systems under prioritize
cheaper, but more complex to set up, and cannot comprehend equality and inequality constraints,” iHEEE Int. Conf. on Robot.&
inequalities, in particular the classical ZMP constraint Automation (ICRA'11), May 2011.

q ’ p . ’ [14] G. Golub and C. Van LoanMatrix computations. ~John Hopkins

We have then proposed a new formulation of the problem, ~ university Press, 1996.
to reduce its dimensionality, while keeping the capalditi [15] L. Sentis, “Synthesis and control of whole-body bebasiin hu-

of the QP solver. This solution allows fast resolution (axtu ?O%nfid systems,” Ph.D. dissertation, Stanford UniversigAUJuly

4ms for typical HRP2 problems), and is numerically stablgie] K. Chang and O. Khatib, “Efficient algorithm for extentieperational
The control scheme can comprehend the whole robot dynam- space inertia matrix,” ifEEE/RSJ Int. Conf. on Intelligent Robots and

. . o . " . Systems (IROS 99), Kyongju, South Korea, Oct. 1999.
ics with complex set of equalities and inequalities comstsa {17] A. Escande, S. Miossec, and A. Kheddar, “Continuousdigr
e

in real time at 200Hz. The solution was tested to generate proximity distances for humanoids free-collision optimizesstures

dynamic movements on the real robot. generation,” in |[EEE/RAS International Conference on Humanoid
Robots, Pittsburgh, USA, Nov. 2007.
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