
HAL Id: hal-00707078
https://hal.science/hal-00707078

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An assembly process model for method engineering
Jolita Ralyte, Colette Rolland

To cite this version:
Jolita Ralyte, Colette Rolland. An assembly process model for method engineering. International
Conference on Advanced information Systems Engineering, 2001, Switzerland. pp.1. �hal-00707078�

https://hal.science/hal-00707078
https://hal.archives-ouvertes.fr

 1

An assembly process model for method engineering

Jolita Ralyté, Colette Rolland

Centre de Recherche en Informatique

Université Paris 1 Sorbonne

90, rue de Tolbiac, 75013 Paris, France

e-mail : ralyte, rolland@univ-paris1.fr

Abstract
The need for a better productivity of system engineering teams, as well as a better quality of
products motivates the development of solutions to adapt methods to the project situation at
hand. This is known as situational method engineering. In this paper we propose a generic
process model to support the construction of a new method by assembling method chunks
generated from different methods that are stored in a method base. The emphasis is on the
guidance provided by the process model, as well as on the means underlying guidelines such
as similarity measures and assembly operators. The process model is exemplified with a case
study.

1 Introduction

We are concerned with Situational Method Engineering (SME). SME aims at defining
information systems development methods by reusing and assembling different existing
method fragments. The term method fragment was coined by Harmsen in [Harmsen 94] by
analogy with the notion of a software component. Similarly to the component driven
construction of software systems, SME promotes the construction of a method by assembling
reusable method fragments stored in some method base [Seaki 93], [Harmsen 97], [Rolland
98a], [Ralyte 99b]. As a consequence SME, favours the construction of modular methods that
can be modified and augmented to meet the requirements of a given situation [Harmsen 94],
[Slooten 93]. Therefore, a method is viewed as a collection of method fragments that we
prefer to call method chunks [Rolland 96], [Ralyte 99b] to emphasise the coherency and
autonomy of such method modules. New methods can be constructed by selecting
fragments/chunks from different methods which are the most appropriate to a given situation
[Brinkkemper 98], [Plihon 98]. Thus, method fragments/chunks are the basic building blocks
which allow to construct methods in a modular way.

The objective of our work is to propose a complete approach for method engineering based on
a method chunk assembly technique. In previous papers [Rolland 98a], [Ralyte 99b] we
presented a modular method meta-model allowing to represent any method as an assembly of
the reusable method chunks. In this paper we are dealing with the method chunk assembly
process. We present a generic process model, the Assembly Process Model (APM), to guide
the assembly of method chunks using different strategies depending on the type of situation in
which the assembly activity has to be carried out. Chunk assembly is the support of situational
method engineering and therefore we propose a Method Engineering Process Model (MEPM)
providing several different ways to assemble chunks with the objective of constructing new
methods or enhancing the existing methods by new models and/or new ways of working.
Whereas the APM views the assembly of method chunks ‘in the small’, the MCPM takes a
broader view where assembling method chunks is part of a larger method engineering
process. As a consequence, the APM is embedded in the MEPM.

 2

Both process models, namely the APM and the MEPM, are expressed using the same
notations provided by a process meta-model. A process meta-model is an abstraction of
different process models, i.e. a process model is an instance of a process meta-model. In this
paper, we use the strategic process meta-model presented in [Rolland 99] and [Benjamen 99].
Following this meta-model, a process model is presented as a map and a set of associated
guidelines. Such representation of the process model allows us to provide a strategic view of
different processes. Indeed, this view tells what can be achieved - the intention, and which
strategy can be employed to achieve it. We separate the strategic aspect from the tactical
aspect by representing the former in the method map and embodying the latter in the
guidelines. By associating the guidelines with the map, a smooth integration of the strategic
and the tactical aspects is achieved.

This paper is organised as follows: section 2 highlights the need for different strategies for
assembling method chunks to form a new method and motivates different ways of method
engineering based on method chunk assembly. The former is encapsulated in the APM
whereas the latter is captured in the MEPM. In section 3, we take the view of method
engineering ‘in the large’ and present the method engineering process (MEPM). The MEPM
includes the assembly process model which is presented in section 4. In section 4, we present
the assembly process model (APM) and discuss the various techniques that support it in order
to carry out the assembly activities in a guided way. Section 5 illustrates the approach with an
example demonstrating the process step by step. Section 6 draws some conclusions and
discussions around our future work. Finally, a brief remainder of the notion of a method
chunk is given in the Appendix.

2 Chunk assembly and method engineering

2.1 Chunk assembly

The attempts to define assembly processes [Brinkkemper 98], [Punter 96], [Song 95]
highlight the assembly of method fragments as rather independent and supplementary to one
another. A typical example would be to adding a given way of working some new activity
borrowed from another method and/or adding to the product model of one method a new
concept borrowed from another method. In such a case, the assembly mainly consists in
establishing links between the ‘old’ elements and the ‘new’, added ones. We found cases
quite different where elements to assemble are overlapping. This led us to the identification of
two assembly strategies :

1) the assembly by association strategy and

2) the assembly by integration strategy.

C1 C2 C1

C2

Integration strategyAssociation strategy

Figure 1 : Strategies to assemble method chunks

As shown in Figure 1, the first strategy is relevant when the method chunks to assemble do
not have elements in common. This might occur when the end product of one chunk is used as
a source product by the second chunk. For example, the chunk producing use cases and the

 3

chunk constructing the system object structure can be assembled to get a method with a larger
coverage than any of the two initial ones. The assembly process is therefore mainly dealing in
making the bridge.

The second strategy is relevant to assemble chunks that have similar engineering objectives
but provide different ways to satisfying it. In such a case, the process and product models are
overlapping (Figure 1) and the assembly process consists in merging overlapping elements.
The integration strategy will be necessary, for example, to assemble two different chunks
dealing both with a use case model construction.

These two strategies are embedded in the assembly process model (APM) presented in section
4.

2.2 Method construction

The assembly of method chunks is a means, a technique to construct a method in a reuse
driven fashion. However, method construction is not restricted to chunk assembly. It includes,
for example, the elicitation of requirements for the method to construct, amend or enhance.
Besides, the ways the assembly technique will be used differ depending of the objective
assigned to the situational method engineering project. There are many different reasons for
constructing a new method. We identified three of them :

1) to define a brand new method to satisfy a set of situational requirements,

2) to add alternative ways-of-working in a method to its original one,

3) to extend a method by a new functionality.

Each of these delineates a specific strategy for method engineering that we have embedded in
the method engineering process model (MEPM).

The first strategy is relevant in situations where either there is no method in use or the one in
use is irrelevant for the project (or class of projects) at hand. The second strategy is relevant
when the method in use is strong from the product point of view but weak from the process
viewpoint. Enhancing the process model of the existing method by one or several new ways
of working is thus the key motivation for method engineering. The third strategy is required in
situations where the project at hand implies to add a new functionality to the existing method
which is relevant in its other aspects.

We present the method engineering process in the next section, whereas the assembly process
model is presented in section 4.

3 The method engineering process model (MEPM)

Figure 2 shows our proposal to engineer a method through an assembly of method chunks.
We use the strategic process meta-model [Rolland 99], [Benjamen 99] to represent our
process model as a map with associated guidelines. A map is a directed labelled graph with
intentions as nodes and strategies as edges. The core notion of a map is the section defined as
a triplet <source intention, target intention, strategy>. A map includes two specific strategies,
Start and Stop to start and stop the process, respectively. As illustrated in Figure 2, there are
several paths from Start to Stop. A map therefore includes several process models that are
selected dynamically when the process proceeds, depending on the current situation. Each
section is associated to a guideline that provides advice to fulfil the target intention following
the section strategy. Furthermore, a section can be refined as an entire map at a lower level of
granularity.

 4

The method engineering map in Figure 2 includes two intentions in addition to Start and Stop,
Specify method requirements and Construct method. The latter corresponds to the method
engineering’s essential goal, whereas the former is the prerequisite for the latter. The
formulation of this intention, Specify method requirements means that our approach is
requirements-driven. In order to construct a new method, we propose to start by eliciting the
requirements for the method engineering activity.

The map identifies two different strategies to Specify method requirements, namely the
intention driven strategy and the process driven strategy. Both lead to a set of requirements
expressed as a map that we call the requirements map (developed in the example of section
5). However, each strategy corresponds to a different way of eliciting the requirements. The
former is based on the inventory of engineering goals whereas the latter infers these goals
from an analysis of the engineering activities that must be supported by the method.

Once the requirements have been elicited, the intention Construct method can be achieved.
The method engineering map of Figure 2 shows three different strategies to help the method
engineer to achieve this intention. They are the following : from scratch assembly strategy,
enhancement driven strategy and extension driven assembly strategy. The three strategies
correspond to the three method engineering situations that were identified and motivated in
the previous section. The from scratch assembly strategy corresponds to situations where a
brand new method has to be developed, whereas the two others, enhancement driven strategy
and extension driven assembly strategy, are relevant when a method already exists, and needs
either enhancements or extensions. As indicated by the names of the strategies, the three
proposed ways are based on a method chunk assembly technique developed in the next
section.

Stop

Specify method
requirements

Construct
method

Start

process driven
strategy

intention driven
strategy

extension driven
 assembly strategy

completeness driven
assembly strategy

from scratch
assembly strategy

requirements
correction
strategy

validation
strategy

Figure 2 : The method engineering map

Backtracking to the requirements definition is possible thanks to the requirements correction
strategy.

Finally, the validation strategy helps verifying that the assembly of the selected method
chunks satisfies all requirements and ends the method engineering process.

According to the map meta-model used above to model the method engineering process, each
section of the map is (a) associated to a guideline providing advice on how to proceed to
achieve the target intention and (b) can be refined as a map of a finer level of abstraction. For

 5

the sake of space we do not present the guidelines associated to every section of the method
engineering map (see [Ralyte 01] for details) but concentrate on the refinement of the section
<Specify method requirements, Construct method, from scratch assembly strategy> dealing
with the assembly of method chunks. The refined map of this section models the method
chunk assembly process. The APM (assembly process model) is presented in detail in the next
section.

4 The process model for method chunk assembly (APM)

4.1 Overview of the assembly map

This section presents the assembly map guiding the selection of method chunks matching a set
of situational requirements and their assembly to form a new method. It is a generic process
model in the sense that it includes a number of strategies to retrieve and assemble chunks
providing solutions for the different engineering situations the method engineer may be faced
with. In particular the map includes two strategies (integration strategy and association
strategy) to assemble chunks that we identified from the literature and case studies and
introduced in section 2.

The process model is presented as a map, the assembly map, in Figure 3.

Stop

Assemble
chunks

requirements driven
strategy

integration
strategy

completeness strategy

aggregation
strategy

decomposition
strategy

Select
a chunk

association
strategy

Start

completeness strategy

refinement
strategy

evaluation
strategy

Figure 3 : The assembly map

As shown in Figure 3, the assembly process model proposes several different ways to select
chunks matching requirements as well as different strategies to assemble them. It is based on
the achievement of two key intentions : Select a chunk and Assemble chunks. The
achievement of the first intention leads to the selection of chunks from the method base that
match the requirements. The second intention is satisfied when the selected chunks have been
assembled in a coherent manner.

The process starts by the section <Start, Select a chunk, requirements driven strategy> . The
guideline associated to this section helps the method engineer to select candidate chunks that
are expected to match the requirements expressed in the requirements map (the requirements
map results of the achievement of the intention Specify method requirements in Figure 2). It
suggests to formulate queries to the method base giving values to the attributes of the
descriptors and interfaces of chunks (the notions of chunk interface and chunk descriptor are
recalled in the Appendix) to identify the chunks that are likely to match part or the totality of
the requirements map.

Any time a chunk has been retrieved, the assembly map suggests to validate this candidate
chunk by applying the evaluation strategy. The evaluation strategy helps in evaluating the

 6

degree of matching of the candidate chunk to the requirements. This is based on similarity
measures between the requirements map and the map of the selected chunk. We present these
similarity measures in section 4.2.

The decomposition, aggregation and refinement strategies help to refine the candidate chunk
selection by analysing more in depth if the chunk matches the requirements.

The decomposition strategy is relevant when the selected method chunk is an aggregate one
having some component parts that may not be required. The decomposition strategy helps to
select those which are the adequate ones.

The aggregation strategy is relevant when the candidate chunk partly covers the requirements.
This strategy suggests to search for an aggregate chunk containing the candidate chunk based
on the assumption that the aggregate method chunk might provide a solution for the missing
requirements.

The refinement strategy proposes to search for another chunk satisfying the same intention but
providing a set of guidelines richer than those of the candidate chunk.

If the candidate chunk has been selected and covers the whole requirements map, the
assembly map suggests to progress to the Stop intention following the completeness strategy.

When at least two chunks have been selected, the method engineer can progress to the
assembly of these chunks. Two strategies, namely the integration strategy and the association
strategy, are proposed by the assembly process model of Figure 3 to fulfil the intention
Assemble chunks. As discussed in section 2, the choice of the strategy depends of the presence
/absence of overlap between the chunks to assemble.

If the two chunks help to achieve the same intention in the system engineering process and to
construct the same or a similar product, the strategy by integration must be chosen. If the
selected method chunks do not overlap in terms of intention to achieve and product to
construct, then the strategy by association must be selected. In the first case where chunks
partially overlap, the integration of these chunks produces a new method whose product and
process models are ‘richer’ than those of the initial chunks. With the second strategy for
assembling chunks dealing with different aspects of system design, and supplementing one
another, the result is a new method providing a larger coverage of design activities. We
present the two strategies in more detail in 4.3 and 4.4.

In order to check if the current chunk assembly matches the requirements, the method
engineer shall use the completeness strategy. If the response is a positive one, the assembly
process ends. In the reverse case, other chunks have to be selected and assembled to gain the
required method completeness. This will be achieved by enacting the Start section again.

The two assembly strategies use assembly operators, similarity measures and quality
validation rules. The former and the latter were presented in [Ralyte 99a]. Their use will be
exemplified in section 5. Just as a reminder, let us mention that there are two types of
operators to assemble process models parts and product models parts, respectively. The
similarity measures are used to compare chunks before their assembly and to identify whether
they are overlapping. This will help to choose the right strategy between the integration
strategy and the association strategy. We present the similarity measures in the next section.

4.2 Similarity measures

Measures to estimate the similarity of conceptual schemas have been proposed by several
authors, for different purposes : in order to identify reusable components [Castano 92],
[Castano 93] and to select these components [Jilani 97]. Generally, these approaches measure

 7

the closeness between entities of different conceptual schemas by evaluating the common
properties and links with other entities [Castano 93]. The global complexity of the schemas is
also taken into account. Bianco et al. [Bianco 99] proposes similarity metrics to analyse
heterogeneous data base schemas. These metrics are based on the semantic and structural
similarity of elements of these schemas. Other approaches are proposed to help indexing
[Diamantini 99], grouping and selection of similar data [Papadopoulos 99]. [Poels 00a]
defines distance measures for software entities. The metrics to measure the similarity of
textual data have been used in the search of textual documents [Besançon 99]. In the
information systems reengineering domain, distance measures have been proposed to evaluate
changes in enterprise models [Poels 00b].

In our approach we use measures inspired from those proposed by [Castano 93] and [Bianco
99]. We distinguish two types of measures : those which allow to measure the similarity of
the elements of product models and those which allow to measure the closeness of process
models elements. We present them in turn.

4.2.1 Product models similarity measures

We use semantic and structural measures to compare elements of product models.

The Name Affinity (NA) metric allows us to measure the semantic similarity of concepts
belonging to different product models. To apply this measure, the concepts of the chunks
must be defined in a thesaurus of terms. Moreover, the synonymy (SYN)and the hyperonymy
(HYPER) relationships between these concepts must be defined. The SYN relation connects
the terms ti and tj (ti ≠ tj) which are considered as synonyms. This is a symmetrical relation.
For example, <Goal SYN Objective>. The HYPER relation connects two terms ti and tj (ti ≠
tj) where ti is more general than tj. This is not a symmetrical relation. The inverse relation is
the hyponymy (HYPO). For example, <Scenario HYPER Exceptional scenario>.

The thesaurus of terms is a network where the nodes are the terms and the edges between the
nodes are the terminological relations. Every terminological relation R ∈ {SYN , HYPER
/HYPO} has a weight Rσ . For example, 1=SYNσ and 8.0/ =HYPOHYPERσ .

Therefore, the name affinity metric is defined as follows:










→∗∗

><

= −

else 0

)n(e)n(e if ...

)n(e)n(eif 1

))n(e),n(e(kl
m

ij)1(1

klij

klij RmR

SYN

NA σσ

where)n(e)n(e kl
m

ij → is a length of the path between eij and ekl in the thesaurus and m ≥ 1,

σnR shows the weight of the nth relation in)n(e)n(e kl
m

ij → .

The semantic similarity is not sufficient to determine if two concepts are similar. We also
need to compare their structures. The measure of the structural similarity of concepts is based
on the calculation of their common properties and their common links with other concepts.
Thus, to obtain the Global Structural Similarity of Concepts (GSSC) we need to measure the
structural similarity of their properties and the structural similarity of their links with other
concepts. These measures are respectively called Structural Similarity of Concepts (SSC) and
Adjacent Similarity of Concepts (ASC).

The Structural Similarity of Concepts (SSC) is used to compare two concepts with respect to
their structural properties. It calculates the proportion of common properties of the two

 8

concepts. The similarity of the structural properties is measured by the Structural Affinity of
Properties (SAP). The properties of two concepts are called ‘common’ if their SAP has a
value strong or weak correspondence.

The Adjacent Similarity of Concepts (ASC) allows us to measure the structural similarity of
two concepts with respect to their relationships with other concepts in the corresponding
product models. The AAC calculates the proportion of the adjacent concepts which are
common to both concepts.

The formulas are as follows :









≠=

≤

==

=

∗=

∗=

+=

∑

∑

=

=

)d(p)d(por 0)p,NA(p if different

)d(p withcompatible)d(p and 1)p,NA(p if encecorrespondweak

)d(p)d(p and 1)p,p(NA if encecorrespond strong

)p,p(SAP

c ato conceptsadjacent ofNumber

)c and c toconceptsadjacent commun ofNumber (2
)c,ASC(c

 c in properties ofNumber

)c and c in properties common ofNumber (2
)c,SSC(c

2

)c,ASC(c)c,SSC(c
)c,GSSC(c

klijklij

klijklij

klijklij

klij

2

1i
i

21
21

i

2

1

21
21

2121
21

i

4.2.2 Process models similarity measures

In this section we propose metrics to compare elements of process models i.e. of maps (chunk
process models are maps - see the Appendix for more). Elements to compare are intentions,
sections and maps themselves to evaluate the global similarity of maps.

Let us start with the measure of the semantic similarity of map elements. We use two kinds of
semantic similarity : the Semantic Affinity of Intentions (SAI) and the Semantic Affinity of
Sections (SAS).

The Semantic Affinity of Intentions (SAI) is used to measure the closeness of two intentions.
This metric is based on the comparison of the two parameters composing the intention : verb
and target. The SYN relation is used to compare the corresponding parameters of two
intentions. The two intentions are considered as similar if their verbs and their targets are
synonyms.

The metric called Semantic Affinity of Sections (SAS) measures the closeness of two sections.
A section is defined as a triplet <source intention, target intention, strategy>; therefore, the
measure of the semantic affinity of two sections is based on the measure of the SAI of its
source intentions, the SAI of its target intentions and the application of the SYN relation
between their strategies.

The two semantic similarity measures are defined as follows :

S



 ∧=∧=

=><><



 ∧

=

else 0

sSYN s1)i,AI(i1)i,SAI(i if 1
)s,i,i ,s,i,iSAS(

 else 0

 .target))iSYN .target (i .verb)iSYN .verb(i if 1
)i,SAI(i

klijljki
kllkijji

jiji
ji

 9

The structural similarity measures are needed to compare the structures of two maps and to
identify their overlapping parts. We use two kinds of structural measures : the Structural
Similarity by Intentions (SSI) and the Structural Similarity by Sections (SSS).

The Structural Similarity by Intentions (SSI) is used to measure the proportion of similar
intentions in two maps. This is based on the calculation of the SAI of their intentions.

The Structural Similarity by Sections (SSS) allows us to measure the proportion of similar
sections in two maps.

Sometimes, we also need to compare the proportion of similar sections for a couple of
intentions which exist in the two maps. For this we introduce the Partial Structural Similarity
(PSS) metric.

The three measures are defined as follows :

11j1i1

21

2l2k1j1i

2l2k1j1i

2l2k21j1i1

2

1
i

21
21

2

1
i

21
21

m map in the intentions of couple a :i,i:m

maps the:m,m

 i,ibetween sections ofNumber i,ibetweensection ofNumber

i,i and i,ibetween sctionssimilar ofNumber 2

)i,i:m ,i,i:PSSS(m

min sections ofNumber

 m and min sectionssimilar ofNumber 2
)m,SSS(m

min intentions ofNumber

 m and min intention similar ofNumber 2
)m,SIS(m

><

><+><
><><∗

=><><

∗
=

∗
=

∑

∑

=

=

i

i

These metrics will be exemplified in the case study presented in section 5.

We now present the two ways to assemble method chunks, i.e. the integration and association
strategies, in more detail. This is done in the next section by refining the two sections <Select
a chunk, Assemble chunks, integration strategy> and < Select a chunk, Assemble chunks,
association strategy> of the assembly map shown in Figure 3, respectively.

4.3 Chunk assembly by integration

Figure 4 shows the process model corresponding to the assembly by integration strategy, the
integration map. The map of Figure 4 is a refinement of section <Select a chunk, Assemble
chunks, integration strategy> of Figure 3.

The assembly process by integration, or the integration process for short, consists in
identifying the common elements in the chunks product and process models and merging
them. The maps of the these chunks must have some similar intentions and their product
models must conceptualise the same objects of the real world by using similar concepts.

 10

merge
strategy

stop

merge
strategy

generalisation
strategy

specialisation
strategy

addition
strategy completeness

strategy

completeness
strategy

remove
strategy

remove
strategy

Adapt
process models

merge
strategy

section
merge
strategy

transformation
strategy

Construct
the integrated process

model

Construct
the integrated product

model

name unification
strategy

merge
strategy

name
unification
strategy

generalisation
strategy

merge
strategy

specialisation
strategy

Adapt
product models

Start

Figure 4 : Integration process map

As shown in Figure 4, the method engineer can start the assembly process by the integration
of the process models followed by the integration of the product models or vice versa. At
every moment he can navigate from the process models integration to the product models
integration and vice versa.

Let us first consider the assembly of chunks process models, i.e. maps. It might be necessary
to make some terminology adjustments of maps before their integration The mechanism of
integration merges similar intentions that must have the same name. This is not necessarily
the case in the initial chunks selected for assembly : intentions having the same semantics
may have different names whereas semantically different intentions my be named exactly the
same. The guideline associated to the section <Start, Adapt process models, name unification
strategy> helps to identify a couple of similar intentions requiring some name unification.
The SAI (section 4.2.2) measure is used to detect that the intentions are similar and then, the
RENAME_INTENTION operator (see the note about operator in 4.1) is recommended to unify
their naming.

Either directly or after having proceeded to the unification of names, the method engineer can
move to the intention Construct the integrated process model. The two sections <Start,
Construct the integrated process model, merge strategy> and <Adapt process models,
Construct the integrated process model, merge strategy> use the same guideline, i.e. suggest
the same way to proceed. The guideline recommends the use of the MERGE_INTENTION
operator for each couple of similar intentions.

The integration of product models is based on the identification of couples of similar concepts
to be merged. Again, this might require naming revision or can be done directly. The former
can be achieved by two different strategies, the name unification strategy and the
transformation strategy whereas the latter is achieved by the merge strategy, the
specialisation strategy and the generalisation strategy. We consider them in turn.

Two concepts to be merged must have the same semantics. In addition, if their structures are
identical, they must have the same name. Vice-versa, if their structures are different, they
must be named differently. For this reason, the product models integration may also be
preceded by an adaptation step. The map (Figure 4) proposes two strategies to progress to the

 11

intention Adapt the product models : the name unification strategy and the transformation
strategy.

The name unification strategy must be selected to solve the problem of naming ambiguity of
concepts belonging to the two different product models. The guideline associated to the
section <Start, Adapt product models, name unification strategy> uses the NA and GSSC
measures (section 4.2.1) to identify a couple of such concepts and proposes to rename one of
them by applying the RENAME_CONCEPT operator.

The transformation strategy must be selected when the same real world object is modelled
differently in the two product models. For example, the object may be presented by a concept
in one model and by a link between two concepts or by a structural property of another
concept in the other model. The guideline associated to the section <Start, Adapt product
models, transformation strategy> helps to identify the couples of elements that need to be
unified (concept and link, concept and property, or link and property) and to apply one of the
product assembly operators OBJECTIFY_LINK or OBJECTIFY_PROPERTY according to
the situation.

The same product integration strategies are possible to fulfil the intention Construct the
integrated product model independently of the starting intention, the Start intention or the
Adapt product models intention. There are three strategies: the merge strategy, the
generalisation strategy and the specialisation strategy (Figure 4). The guidelines associated to
the respective sections are identical. For example, the guideline associated to the section
<Start, Construct the integrated product model, merge strategy> is the same as the one
associated to the section <Adapt the product models, Construct the integrated product model,
merge strategy>.

The merge strategy is applicable to merge concepts with similar semantics and similar
structure. The corresponding guideline helps to identify a couple of similar concepts by
applying the NA and GSA measures and to apply the product assembly operator
MERGE_CONCEPT.

The generalisation strategy shall be used when the two concepts have the same semantics but
different structures : the GSA measure helps evaluating if the difference of their structures
forbid their merging. The guideline associated to the sections <Start, Construct the integrated
product model, generalisation strategy> and <Adapt the product models, Construct the
integrated product model, generalisation strategy> proposes to generalise the two concepts
into a new one. The common properties of the two concepts are attached to the new concept
whereas the specific properties are kept attached to the specialised concepts. The
GENERALISE operator is used to support this transformation. The two initial concepts must
have different names before their generalisation; therefore the name unification strategy shall
be required first.

Finally, the specialisation strategy is required when one concept represents a specialisation of
the other concept. The associated guideline to sections <Start, Construct the integrated
product model, specialisation strategy> and <Adapt product models, Construct the integrated
product model, specialisation strategy> introduces a specialisation link between the two
concepts by applying the SPECIALISE operator. As in the previous case, the two initial
concepts must have different names before their specialisation.

At any step of the integration process, it could be necessary to improve the current solution.
The map of Figure 4 proposes three strategies to refine the integrated process model; these
are : the remove strategy, the addition strategy and the merge section strategy.

 12

The remove strategy deals with the need to remove elements in the integrated model. Many
different reasons can justify such removals; for example to remove a useless or redundant
guideline. The guideline associated to the section <Construct the integrated process model,
Construct the integrated process model, remove strategy> suggests the use of the
REMOVE_SECTION operator to perform this operation.

Some new guidelines can also be required to complete the integrated process model,
particularly if the integrated product model integrates generalisation and/or specialisation of
concepts. The integrated process model needs to be extended in these cases. The guideline
associated to the section <Construct the integrated process model, Construct the integrated
process model, addition strategy> helps doing so by applying the ADD_SECTION operator.

Finally, the merge section strategy suggests to merge sections which are duplicates. The
guideline associated to the section <Construct the integrated process model, Construct the
integrated process model, merge strategy> applies the operator MERGE_SECTION to
achieve this goal.

Similarly, it can be necessary to improve the current version of the integrated product model.
The integration map of Figure 4 proposes two strategies for guiding the integrated product
model, namely the remove strategy and the merge strategy.

The remove strategy allows to eliminate concepts, links or properties of the integrated product
model, as the merging activity might have led to duplicated ones. The guideline associated to
the section <Construct the integrated product model, Construct the integrated product model,
remove strategy> applies one of the operators REMOVE_CONCEPT or REMOVE_LINK or
REMOVE_PROPERTY according to the situation at hand.

To end the integration process the method engineer is invited to apply the quality rules and to
verify the coherence and the completeness of the obtained product and process models
following the completeness strategy.

4.4 Chunk assembly by association

In this section we consider the assembly of method chunks carried out following the
association strategy. Figure 5 shows the process model corresponding to this assembly
strategy. The map of Figure 5 is a refinement of the section <Select a chunk, Assemble
chunks, association strategy> of the main assembly map presented in Figure 3.

connection
 strategy

Stop

addition
strategy

addition
strategy completeness

strategy
completeness
strategy

remove
strategy

Adapt
process models

Construct
the associated process

model

Construct
the associated product

model

name unification
strategy

connection
 strategy

name unification
strategy

addition
strategy

Start

Adapt
product models

Figure 5 : The association process map

 13

The assembly process by association, the association process for short, consists in connecting
chunks such that the first one produces a product which is the source of the second chunk.
Thus, the association process may consist in simply ordering chunks processes and relating
chunks products to one another.

The association process is simpler than the integration process. The association of product
models is achieved by establishing links between concepts or adding elements connected to
other concepts. The association of the process models consists in ordering the process
activities provided by the two different models and possibly adding some new activity.

As in the case of the integration driven assembly, the association of chunks may also require
the unification of their terminology. The name unification strategy is provided to unify names
in maps and product models. Maps of chunks in this case should not have similar intentions.
Thus, if there are intentions with the same name, these are homonyms and one of these
intentions must be renamed. The SAI (section 4.2.2) measure must be applied to the suspected
intentions. Similarly, the chunks product models should not contain similar concepts.
Therefore, two concepts having the same name should be homonyms requiring the renaming
of one of them. The NA and GSSC (section 4.2.1) measures can be used to evaluate the
similarity of concepts. The operators RENAME_INTENTION and RENAME_CONCEPT are
suggested to be applied by the corresponding guideline.

If the two maps do not have any naming problems, the construction of the associated process
model can start directly whereas the Adapt process models intention has to be fulfilled first in
the reverse case. Then, the connection strategy is needed to carry out the association.

The guidelines associated to the sections <Start, Construct the associated process model,
connection strategy> and <Adapt process models, Construct the associated process model,
connection strategy> are identical. They suggest a plan of action in three steps : (first), to
determine the order in which the chunk processes must be executed; (second), to identify in
the map of the first ordered chunk the intention that results in the product which is the source
to the second chunk process, and (third) to merge this intention with the Start intention of the
second chunk by applying the MERGE_INTENTION operator.

A similar set of strategies is proposed in Figure 5 to deal with the association of product
models. The product models may also by associated directly or after some terminological
adaptation. Thus, the guidelines associated to sections <Start, Construct the associated
product model, addition strategy> and <Adapt product models, Construct the associated
product model, addition strategy> are identical. They advise to identify the concepts in the
product models which can be connected by a link or by introducing an intermediary concept.
These guidelines recommend the use of the product assembly operators ADD_LINK or
ADD_CONCEPT depending of the situation at hand.

Refinement of the associated process model may be required and the remove and addition
strategies are proposed to deal with this in the map (Figure 5). They are the same as the
corresponding strategies in the integration map (Figure 4).

Finally, the validation of the resulting product and process models must be performed to end
the association process. The method engineer is invited to apply the quality rules and to verify
the coherence and the completeness of the resulting method chunk using the completeness
strategy.

 14

5 Application example

In this section we illustrate the use of the method engineering process model with an example.
We show how the method engineering map and its refined maps guide a method engineer step
by step to construct a new method by retrieving and assembling method chunks.

Let us suppose that a method engineer has to construct a method supporting the elicitation of
functional system requirements in a goal-driven manner, to conceptualise them using textual
devices such as scenarios or use cases, to validate them in an animated fashion and finally to
document them.

According to the method engineering map presented in Figure 2, the first intention to achieve
is to Specify method requirements. The process driven strategy looks adapted to the situation
at hand as the requirements are expressed above in a process-oriented way. Assume that the
application of this strategy leads to the following requirements map (Figure 6):

Stop

Elicit a
requirement

goal driven strategy

Document
a requirement completeness strategy

variants
discovery strategy

validation
strategy

linguistic strategy

completeness
discovery strategy

Conceptualise
a requirement

linguistic strategy

Start

exceptions
discovery strategy

Figure 6 : The requirements map of the application example

Once the requirements for the new method have been elicited, the method engineering map
suggests to Assemble Chunks. As the objective is to construct an entirely new method, the
from scratch assembly strategy proposed in the method engineering map (Figure 2) is chosen.
The refined map of this assembly process (Figure 3) proposes to start with the selection of
method chunks matching part or the totality of the requirements map. The guideline suggests
to formulate queries to the method base in order to retrieve candidate method chunks. These
queries give values to the different attributes of chunk interfaces and chunk descriptors. The
search in the application case is based on the following values : application domain =
information systems, design activity = requirements engineering, reuse intention = discover
functional system requirements, situation = problem description. Let’s assume that chunks
with the following interfaces are retrieved:

1. <(Problem description), Discover a goal with template strategy>
2. <(Problem description), Construct a use case model with OOSE strategy>
3. <(Problem description), Discover a use case with actor based strategy>

The method engineer selects the first chunk as a candidate one. However, as the requirements
coverage is not fully adequate, he decides to apply the aggregation strategy (Figure 3) with
the objective to find an aggregate chunk broader than this candidate chunk. Such a chunk
exists; it is the L’Ecritoire chunk and its process and product parts are shown in Figure 7.

 15

initial1..*

1..*

1..*

1..*

Exceptional
Scenario

Atomic
action

from

to

1..*

1..*

1

1

*

2..*

State
final

 parameter

1..* 1..*

Action

Flow of
actions

refined by AND

1

1

*
*

* *

OR

*
*

Scenario

Object

*
Goal

Verb
Target

Agent

Requirements
Chunk

Normal
Scenario

Resource

Elicit a
Use Case

alternative
discovery
strategy

composition
discovery
strategyWrite

a scenario

Conceptualise
a scenario

template
strategy

 free prose
strategy

tool supported strategy

manual
strategy

Start
goal
template
strategy

Elicit
a goal

refinement
discovery
strategy

completeness strategy Stop

case based
strategy

<(Problem description), Discover the scenario/goal couples with CREWS-L’Ecritoire strategy>

Figure 7 : The L'Ecritoire method chunk

This method chunk, called L’Ecritoire, provides guidelines to discover functional system
requirements expressed as goals and to conceptualise these requirements as scenarios
describing how the system satisfies the achievement of these goals [Rolland 98b], [Rolland
98c], [Tawbi 99]. Several different strategies are provided by the chunk to support goal
elicitation, scenario writing and scenario conceptualisation.

The method engineer wants to get a quantitative evaluation of the fit of L’Ecritoire to the
requirements map. Therefore, he selects the evaluation strategy (Figure 3) which helps him to
compare the map of the candidate chunk with the requirements map. The map similarity
measures SAI, SAS, SSI and PSSS presented in section 4.2.2 are used.

For example, owing to the SAI measure we detect that the intentions Elicit a requirement
(requirements map) and Elicit a goal (L’Ecritoire map) are similar because they use the same
verb and their targets requirement and goal are synonyms.

The measure SSI, calculated as follows :

SSI (Requirements map, L’Ecritoire map) = (2*2 similar intentions) / (6 intentions in
two maps) = 2/3, shows that a large part of the requirements map is covered by the map of the
selected chunk. To validate this assumption, we search for similar sections by applying the
SAS measure. For example, the SAS calculated as follows :

SAS (Requirements map : <Conceptualise a requirement, Elicit a requirement,
Variants discovery strategy>, L’Ecritoire map : <Conceptualise a scenario, Elicit a goal,
Alternative discovery strategy>) = 1, shows that the concerned sections are similar. Next, for
each couple of similar intentions we apply the PSSS measure to verify if the strategies
between these intentions are also similar. For instance, the

 PSSS (Requirements map : <Conceptualise a requirement, Elicit a requirement>,
L’Ecritoire map : <Conceptualise a scenario, Elicit a goal>) = (2* 2 similar strategies) / (6
strategies) = 2/3 shows that the map of the selected chunk matches a part of the requirements
map.

Figure 8 illustrates the matching of the map of the candidate chunk to a part of the
requirements map. The degree of matching is satisfactory enough to select the candidate
chunk.

 16

Stop

Elicit
a requirement

goal driven strategy

Document
a requirementcompleteness

strategy

variants
discovery strategy

validation
strategy

linguistic strategy

completeness
discovery strategy

Conceptualise
a requirement

linguistic strategy

Start

exceptions
discovery strategy

Elicit a
Use Case

alternative
discovery
strategy

composition
discovery
strategyWrite

a scenario

Conceptualise
a scenario

template strategy

 free prose
strategy

tool supported strategy

manual
strategy

Start

goal
template
strategy

Elicit
a goal

refinement
discovery
strategy

completeness strategy
Stop

case based
strategy

Requirements map Map of the chunk L’Ecritoire

Figure 8 : Similarity measure between the requirements map and the L'Ecritoire map

The requirements coverage is not complete and the method engineer must continue the search.
However, he knows the properties of the chunks he is looking for and can formulate precise
queries. The required chunks must have the following values in their interfaces : situation =
goal or scenario, intention = to discover exceptional requirements (or goals).

The SAVRE method chunk [Sutcliffe 98], [Sutcliffe 99], [Maiden 98a], [Maiden 98b]
presented in Figure 9 is one of the chunks retrieved by the query. This chunk provides
guidelines to discover exceptions in the functioning of a system under design caused by
human errors. It generates scenarios corresponding to the system requirements and identifies,
through an analysis of these scenarios, possible exceptions caused by human errors (exception
discovery strategy). The chunk also includes validation patterns to validate the requirements
(validation patterns strategy).

Conceptualise
a scenario

automatic
generation
strategy

Elicit
a requirement

Stop
exception
discovery
strategy

Start

validation
patterns strategy

completeness
strategy

<(Requirement, Use case), Elicit an exceptional requirement by analysing human errors>

describes

* 1

 start

1..*

1..*

Flow of
events

*

Agent

*

Sequence

Embedding

Event

Use case

Scenario

Requirement

 end
Action

1

1

 involves
1..*1..*

generates

1..*

1

Object uses *..1

1..*

Figure 9 : The SAVRE method chunk

The matching measures convinced the method engineer to make the decision to assemble the
two selected method chunks, thus to move in the map of Figure 3 to Assemble chunks. The
two chunks have the same broad objective, to discover system requirements, and their process
and product models overlap (they contain similar intentions and concepts). Thus, the
integration strategy (Figure 3) to assemble these chunks is adequate.

 17

Following the integration map shown in Figure 4, the method engineer understands that he
first needs to adapt the product and process models of the two chunks. It is only after the
necessary terminological adaptations that he will be able to proceed to their integration. As an
example, he selects the name unification strategy in the integration map (Figure 4) and
changes the name of the intention Elicit a requirement in the SAVRE map into Elicit a goal by
applying the RENAME_INTENTION operator.

Then, he progresses to the construction of the integrated process model with the merge
strategy to integrate the two maps. He applies the MERGE_INTENTION operator on the
couples of identical intentions. The merged intentions are represented in grey in Figure 10. By
selecting the addition strategy in the integration map he adds the transformation strategy to
the integrated map by applying the ADD_SECTION operator. This new strategy permits the
coupling of the two types of scenarios (the ones in L’Ecritoire and the ones in SAVRE) in the
same integrated product. This adjunction is necessary to transform L’Ecritoire scenarios into
SAVRE scenarios and vice versa.

The integration of the two product models also requires some adaptations. For example, the
two product models contain the scenario concept. The two scenarios have the same semantics,
but their structures are different. L’Ecritoire scenarios are composed of a set of actions
whereas SAVRE scenarios are defined as flows of events. The two kinds of scenarios must be
kept in the integrated product model. Thus, the method engineer renames the scenario concept
in the L’Ecritoire product model into L’Ecritoire scenario and in the SAVRE into SAVRE
scenario. The engineer selects the generalisation strategy in the integration map to integrate
the two scenario concepts by applying the GENERALISE operator. This leads to the
introduction of a new concept scenario as a generalisation of the two concepts L’Ecritoire
scenario and SAVRE scenario in the integrated model. The notion of the Agent is the same in
the two product models. Thus, the merge strategy can be selected in the integration map to
help applying the MERGE_CONCEPT operator on these two concepts.

The result of the integration of L’Ecritoire and SAVRE method chunks is illustrated in Figure
10.

initial1..*

1..*

1..*

1..*

Exceptional
Scenario

Atomic action

from

to

1..*

1..*

1

1

*

2..*

State

final

 parameter

1..* 1..*
Flow of actions

refined by

AND

1

1

*
*

* *

OR

**

Object

*

Goal
Verb
Target

Agent

Requirements
Chunk

Normal
Scenario

Resource

describes

*

1

 start

1..*

1..*

Flow of
events

*

*

Event

Requirement

 end

1

generates

1..*

1

Action

Scenario

SAVRE
Scenario

L’Ecritoire
Scenario

Use case

Elicit a
Use Case

alternative
discovery
strategy

composition
discovery
strategy

template
strategy

 free prose
strategy

tool supported
strategy

manual
strategy

goal
template
strategy

Elicit
a goal

refinement
discovery
strategy

completeness
strategy

Stop

case based
strategy

Start

exception
discovery
strategyautomatic

generation
strategy

transformation
strategy

validation
patterns
strategy

Write
a scenario

Conceptualise
a scenario

Figure 10 : The process and the product models of the integrated method chunk

 18

The requirements coverage is still not completed and the method engineer continues the
search for chunks that can fill in the gap between the requirements map and the integrated
chunk. There is a need for validating the requirements. Thus, the method engineer formulates
a new query asking for chunks with the intention to validate the requirements in their
interface. Among the retrieved method chunks, the method engineer retrieves the Albert
method chunk [Heymans 98], [Dubois 98] presented in Figure 11.

Stop

Start

Conceptualise an
Albert Spec.

animate
elicited
scenarios
strategy

conflict
resolution
strategy

 consolidation
strategy

selection
strategy

Construct
an animation trace

template
 based
strategy

tool based
strategy

free
animation
strategy

animate
unwanted
 scenarios
strategy

<(Scenario, Requirement), Validate requirement with the animation strategy>

describes

characterised by

has

1..*
1

1..*

Agent

Nom

*

Society

Constraint

Basic
Constraint

Local
Constraint

Co-operation
Constraint

Action

State
modifies

1..* 1..*

1

1..*

1..*

1

Figure 11 : The Albert method chunk

This chunk proposes guidelines to validate requirements in an animated manner. It can
transform scenarios describing requirements into an Albert specification and then, supports
the animation of these scenarios by activating the tool called Animator. The animation is
interactive and the requirements stakeholders can validate the requirements.

Since this method chunk uses a scenario as a source product and validates the requirements
expressed in this scenario, the process reaches a situation where the Albert chunk
complements the current integrated chunk. In order to assemble this chunk with the current
chunk assembly, the method engineer selects the association strategy in the assembly map
(Figure 3). The guideline supporting the assembly by association was presented in 4.4.

The maps of the two chunks to assemble do not have similar intentions. Thus, there is no need
to adapt the maps before their association. The method engineer selects the connection
strategy in the association map (Figure 5) and progresses to the construction of the associated
process model. Following the guideline associated to this section, he identifies that the
achievement of the intention Conceptualise a scenario in the integrated map constructs a
product (a scenario) which is a source product for the Albert chunk. The operator
MERGE_INTENTION is used on the intention Conceptualise a scenario and the Start
intention of the Albert map.

Some refinements are necessary on the associated map. For example, it seems reasonable to
forbid a progression from the intention Conceptualise a scenario to Stop. By selecting the
remove strategy in the association map (Figure 5) and following the associated guideline, the
method engineer applies the operator REMOVE_SECTION on this section.

To construct the associated product model, the method engineer needs to perform some
adaptation process. For example, both product models (the one of the method under
construction and the one of the Albert chunk) contain the Agent concept. The two concepts
have the same semantic but their structures are different. Therefore, it is necessary to rename

 19

one of two concepts by applying the RENAME_CONCEPT operator. The method engineer
decides to rename the Agent of the Albert chunk into Albert_Agent. The same operator must
be applied on the State and Action concepts.

Then, the method engineer select the addition strategy (Figure 5) which allows him to add a
link of the correspondence between the concepts Agent and Albert_Agent .

The end result is shown in Figure 12..

initial

1..* 1..*

Atomic action

from

to
1..* 1

*

2..*

Statefinal

 parameter

1..* 1..*
Flow of actions

refined by

AND

1

1

*
*

* *

OR

**

Object

*

Goal
Verb
Target

Agent

Requirements
Chunk

Normal
Scenario

Resource

describes

* 1

 start

1..*

1..*

Flow of
events

*

*

Event

Requirement

 end

1

generates

1..*

1

Action

Scenario

SAVRE
Scenario

L’Ecritoire
Scenario

Use case

describes
1..*

Constraint

Basic
Constraint

Local
Constraint

Co-operation
Constraint

characterised by

has

1..*1

*

Society

Formal
Action

Agent_State

modifies

1..*

1..*

1 1..*
Albert_Agent

corresponds to

Exceptional
Scenario

0..1

1

Elicit a
Use Case

alternative
discovery
strategy

composition
discovery
strategy

template
strategy

 free prose
strategy

tool supported
strategy

manual
strategy

goal
template
strategy

Elicit
a goal

refinement
discovery
strategy

case based
strategy

Start

exception
discovery
strategyautomatic

generation
strategy

transformation
strategy

validation
patterns
strategy

Write
a scenario

Stop

animate
elicited
scenarios
strategy

conflict
resolution strategy

 consolidation
strategy

selection strategy

Construct
an animation trace

template
based strategy

tool based
strategy

free
animation
strategy

animate
unwanted
scenarios
strategy

Conceptualise
a scenario

Conceptualise an
Albert Spec.

Figure 12 : The end result of the chunk assembly

In a similar manner the selection of additional chunks to cover the entire requirements map
and their assembly with the current integrated chunk will continue till the completeness
strategy ensures that the result is satisfactory enough to stop the assembly process.

6 Conclusion

In this paper we look at situational method engineering from a process perspective and
propose two embedded generic models to support :

 20

- method construction, and

- method chunk assembly.

Both are concerned with engineering methods matching a set of requirements through a
method chunk assembly technique. The former deals with assembly ‘in the large’ whereas the
latter offer solutions ‘in the small’.

The process models are represented as maps with associated guidelines. This allows us to
offer flexibility to the method engineer for carrying out the engineering activity. Besides,
guidelines provide a strong methodological support, thanks to some formally defined
techniques. Metrics to evaluate the distance between two method chunks and a set of
operators to perform the assembly tasks are the two most important techniques.

The approach is currently used in a professional environment in the context of a rather large
project (§10 millions). Results are encouraging, the experience is positive, even if it highlights
the need for improvements among which is a software environment to support the process.

References
[Benjamen 99] A. Benjamen, Une Approche Multi-démarches pour la modélisation des démarches

méthodologiques. Thèse de doctorat en informatique de l'Université Paris 1, 6 octobre 1999.

[Besançon 99] R. Besançon, M. Rajman, J.C. Chappelier, Textual Similarities on a Distributional Approach.

Proceedings of the 10th International Workshop on Database and Expert Systems Applications

(DEXA’99), Florence, Italy, September 1999.

[Bianco 99] G. Bianco, V. De Antonellis, S. Castano, M. Melchiori, A Markov Random Field Approach for

Querying and Reconciling Heterogeneous Databases. Proceedings of the 10th International

Workshop on Database and Expert Systems Applications (DEXA’99), Florence, Italy, September

1999.

[Brinkkemper 98] S. Brinkkemper, M. Saeki, F. Harmsen, Assembly Techniques for Method Engineering.

Proceedings of the 10th Conference on Advanced Information Systems Engineering, CAiSE’98.

Pisa Italy, 8-12 June, 1998.

[Castano 92] S. Castano, V. De Antonellis, B. Zonta, Classifying and Reusing Conceptual Schemas. Proceedings

of the 11th International Conference on Conceptual Modeling (ER’92), pp. 121-138, Karlsruhe,

1992.

[Castano 93] S. Castano, V. De Antonellis, A Constructive Approach to Reuse of Conceptual Components.

Proceedings of Advances in Software Reuse : Selected Papers from the Second International

Workshop on Software Reusability, Lucca, Italy, March 24-26, 1993. R. Prieto-Diaz,W.B. Frakes

(Eds), IEEE Computer Society Press.

[Diamantini 99] C. Diamantini, M. Panti, A Conceptual Indexing Method for Content-Based Retrieval.

Proceedings of the 10th International Workshop on Database and Expert Systems Applications

(DEXA’99), Florence, Italy, September 1999.

[Harmsen 94] A.F. Harmsen, S. Brinkkemper, H. Oei, Situational Method Engineering for Information System

Projects. In Olle T. W. and A. A. Verrijn Stuart (Eds.), Mathods and Associated Tools for the

Information Systems Life Cycle, Proceedings of the IFIP WG8.1 Working Conference CRIS'94,

pp. 169-194, North-Holland, Amsterdam, 1994.

[Harmsen 97] A. F. Harmsen, Situational Method Engineering. Moret Ernst & Young , 1997.

[Heymans 98] P. Heymans, E. Dubois, Scenario-Based Techniques for Supporting the Elaboration and the

Validation of Formal Requirements. Requirements Engineering Journal, Vol. 3, No. 3-4, 1998.

 21

[Dubois 98] E. Dubois, P. Heymans, Scenario-Based Techniques for supporting the Elaboration and the

Validation of Formal Requirements, Submitted to RE Journal, 1998.

[Jarke 99] M. Jarke, C. Rolland, A. Sutcliffe, R. Domges, The NATURE requirements Engineering. Shaker

Verlag, Aachen 1999.

[Jilani 97] L.L. Jilani, R. Mili, A. Mili, Approximate Component Retrieval : An Academic Exercise or a

Practical Concern ? Proceedings of the 8th Workshop on Istitutionalising Software Reuse

(WISR8), Columbus, Ohio, March 1997.

[LPR95] Le Petit Robert, French Dictionary, Dictionnaires LE ROBERT, France,1995.

[Maiden 98a] N.A.M. Maiden, CREWS-SAVRE: Scenarios for Acquiring and Validating Requirements. Journal

of Automated Software Engineering, 1998.

[Maiden 98b] N.A.M. Maiden, S. Minocha, K. Manning, M. Ryan , SAVRE: Systematic Scenario Generation

and Use. International Requirements Engineering Conference (ICRE’98), Colorado Springs,

Colorado, USA, April 6-10, 1998.

[Papadopoulos 99] A.N. Papadopoulos, Y. Manolopoulos, Structure-Based Similarity Search with Graph

Histograms. Proceedings of the 10th International Workshop on Database and Expert Systems

Applications (DEXA’99), Florence, Italy, September 1999.

[Plihon 96] V. Plihon, Un environnement pour l'ingénierie des méthodes, Thèse de doctorat de l'Université Paris

1, janvier 1996.

[Plihon 98] V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcliffe, E. Dubois, P. Heymans, A Reuse-

Oriented Approach for the Construction of Scenario Based Methods. Proceedings of the

International Software Process Association's 5th International Conference on Software Process

(ICSP'98), Chicago, Illinois, USA, 14-17 June 1998.

[Poels 00a] G. Poels, G. Dedene, Distance-based software mesurrement : necessary and sufficient properties for

software measures. Information and Software Technology, 42, pp. 35-46, 2000.

[Poels 00b] G. Poels, S. Viaene, G. Dedene, Distance Mesure for Information System Reengineering.

Proceedings of the 12th Conference on Advanced Information Systems Engineering CAISE’00,

Stockholm, Sweden, June 2000.

[Punter 96] H.T. Punter, K. Lemmen, The MEMA model : Towards a new approach for Method Engineering.

Information and Software Technology, Vol. 38, No.4, pp.295-305, 1996.

[Ralyté 99a] J. Ralyté, C. Rolland, V. Plihon, Method Enhancement by Scenario Based Techniques. Proceedings

of the 11th Conference on Advanced Information Systems Engineering, Heidelberg, Germany,

June 14-18, 1999.

[Ralyté 99b] J. Ralyté, Reusing Scenario Based Approaches in Requirement Engineering Methods: CREWS

Method Base. Proceedings of the First International Workshop on the Requirements Engineering

Process - Innovative Techniques, Models, Tools to support the RE Process, Florence, Italy,

September 1999.

[Ralyté 01] J. Ralyté, Ingénierie des méthodes par assemblage de composants. Thèse de doctorat en

informatique de l'Université Paris 1. A paraître en janvier 2001.

[Rolland 95] C. Rolland, C. Souveyet, M. Moreno. An Approach for Defining Ways-Of-Working, in the

Information Systems Journal, 1995.

[Rolland 96] C. Rolland, N. Prakash, A proposal for context-specific method engineering, IFIP WG 8.1

Conference on Method Engineering, Chapman and Hall, pp 191-208, Atlanta, Gerorgie, USA,

1996.

 22

[Rolland 98a] C. Rolland, V. Plihon, J. Ralyté, Specifying the reuse context of scenario method chunks.

Proceedings of the 10th Conference on Advanced Information Systems Engineering, CAiSE’98.

Pisa Italy, 8-12 June, 1998.

[Rolland 98b] C. Rolland, C. Souveyet, C. Ben Achour, Guiding Goal Modelling Using Scenarios. IEEE

Transactions on Software Engineering, special issue on Scenario Management, Vol. 24, No. 12,

1055-1071, Dec. 1998.

[Rolland 98c] C. Rolland, C. Ben Achour, Guiding the construction of textual use case specifications. Data &

Knowledge Engineering Journal Vol. 25 N° 1, pp. 125-160, (ed. P. Chen, R.P. van de Riet) North

Holland, Elsevier Science Publishers. March 1998.

[Rolland 99] C. Rolland, N. Prakash, A. Benjamen, A multi-model view of process modelling. Requirements

Engineering Journal, p. 169-187,1999.

[Saeki 93] M. Saeki, K. Iguchi, K Wen-yin, M Shinohara, A meta-model for representing software specification

& design methods. Proc. of the IFIP¨WG8.1 Conference on InformationSystems Development

Process, Come, pp 149-166, 1993. [Slooten 93]

[Slooten 93] K. van Slooten, S. Brinkkemper, A Method Engineering Approach to Information Systems

Development. In Information Systems Development process, N. Prakash, C. Rolland, B. Pernici

(Eds.), Elsevier Science Publishers B.V. (North-Holand), 1993.

[Song 95] X. Song, A Framework for Understanding the Integration of Design Methodologies. In: ACM

SIGSOFT Software Engineering Notes, Vol. 20, N°1, pp. 46-54, 1995.

[Sutcliffe 98] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel, Supporting Scenario-based Requirements

Engineering. IEEE Transactions on Software Engineering: Special Issue on Scenario Management,

Vol. 24, No. 12, 1998.

[Sutcliffe 99] A. G. Sutcliffe, J. Galliers and S. Minocha, Human Errors and System Requirements. Fourth IEEE

International Symposium on Requirements Engineering (RE'99).

[Tawbi 99] M. Tawbi, C. Souveyet, Guiding Requirement Engineering with a Process Map. Proceedings of

MFPE'99 : 2nd International Workshop on the Many Facets of Process Engineering, Gammarth,

Tunisia, 12-14, May 1999.

[UML 00] Rational Software Corporation, Unified Modelling Language version 1.3. Available at

http://www.rational.com/uml/resources/documentation/, 2000.

Appendix

The notion of a method chunk

Situational method engineering proposes to assemble fragments of existing methods to
construct a new method. Based on the observation that any method has two interrelated
aspects, product and process, several authors propose two types of method fragments : the
process fragments and the product fragments [Harmsen 97], [Brinkkemper 98]. In our
approach we associate these two aspects in the same fragment that we call a method chunk.

A method chunk ensures a tight coupling between some process part and its related product
part. It is a conherent module and any method is viewed as a loosely coupled method chunks
of different levels of granularity [Ralyte 99b]. The modular view of the methods is favourable
to their adaptation and extension. Moreover, this view permits to reuse chunks of a given
method in the construction of new ones .

 23

Figure 13 shows the method meta-model (using the UML notations [UML 2000]) which
defines our modular view of a method. According to this meta-model a method is also viewed
as a method chunk of the highest level of granularity.

Method

Guideline

Product
Model

represented by

*

1

11 has

Product
Part

Interface

1

1
Descripteur

Chunk
Not-Chunk1..* 1

Tactical
Guideline

Simple
Guideline

Nesting
Link

Abstraction
Link

Sequence

AND/OR Link

Composition

Choice

Strategic
Guideline

1

has

Situation

Intention

target of

1..*

1..*

*

is based on

1..*

1..*

has

is based on 1..*

1..*

appartient à

1..*

1

1

2..*

1

relates

relates

2..*

1

1*

*

Process
Model

AtomicAggregate

2..*

Figure 13: The method meta-model

The definition of the method chunk is ‘process-driven’ in the sense that a chunk is based on
the decomposition of the method process model into reusable guidelines. Thus, the core of a
method chunk is its guideline to which are attached the associated product parts necessary to
perform the process encapsulated in this guideline.

A guideline is defined [LPR95] as ‘a set of indications on how to proceed to achieve an
objective or perform an activity’. For us, a guideline embodies method knowledge to guide the
application engineer in achieving an intention in a given situation. Therefore, the guideline
has an interface which describes the conditions of its applicability (the situation) and a body
providing guidance to achieve the intention, i.e. to proceed in the construction of the target
product.

The interface is a couple <situation, intention> which characterises : the situation that is the
input of the chunk process and the intention (the goal) that the chunk achieves. The body of
the guideline details how to apply the chunk to achieve the intention. The interface of the
guideline is also the interface of the corresponding method chunk.

Guidelines in different methods have different contents, formality, granularity, etc. In order to
capture this variety, the meta-model identifies three types of guidelines : simple, tactical and
strategic.

A simple guideline may have an informal content providing some advice on how to proceed
in a narrative form. It can be more structured comprising an executable plan of action leading
to some transformation of the product.

A tactical guideline is a complex guideline which uses a tree structure to relate its sub-
guidelines. This guideline follows the NATURE process modelling formalism [Rolland 95],

 24

[Plihon 96], [Jarke 99] which proposes two different structures : the choice and the plan. Each
of its sub-guidelines belongs to one the three types of guidelines.

A strategic guideline is a complex guideline called a map which uses a graph structure to
relate its sub-guidelines. Each sub-guideline belongs to one of the three types of guidelines. A
strategic guideline provides a strategic view of the development process telling which
intention can be achieved following which strategy. Thus, a map is a labelled directed graph
in which the nodes are the intentions and the edges between intentions are strategies. The map
permits to represent a process allowing several different ways to develop the product. A set of
guidelines are associated to the map. They help the application engineer to progress in the
map and to achieve the intentions following selected strategies.

A descriptor (Figure 13) is associated to every method chunk. The descriptor extends the
contextual view captured in the chunk interface to define the context in which the chunk can
be reused. Figure 14 shows the structure of a descriptor. The two key elements of this
structure are the reuse situation and the reuse intention.

Every chunk can be applied in one or several system engineering domains and can support
one or more activities in the system design process. The reuse situation captures this
information in the Application domain and Design activity attributes. The reuse intention
expresses the objective that the method chunk helps to satisfy in the corresponding design
activity. The descriptor also contains a narrative description of the objective of the chunk and
specifies its type (i.e. atomic or aggregate). It identifies the origin of the chunk (i.e. the
originator method of the chunk). The experience element relates use experiences and
evaluates the usability of the chunk. Finally, the application example contains one or more
cases of the chunk application showing how it has been assembled to other chunks.

1

 origin
1..*

Descriptor

Type
Objective

Method

Name
Author
References

Application
Domain

Design
Activity

1 1..*

1..*

1..*

1

Reuse
Situation

1..*

* Experience

Example*

1
 contains

 contains

Reuse
Intention

Intention

Figure 14 : Structure of the chunk descriptor

