N
N

N

HAL

open science

An assembly process model for method engineering
Jolita Ralyte, Colette Rolland

» To cite this version:

Jolita Ralyte, Colette Rolland. An assembly process model for method engineering. International
Conference on Advanced information Systems Engineering, 2001, Switzerland. pp.1. hal-00707078

HAL Id: hal-00707078
https://hal.science/hal-00707078

Submitted on 14 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00707078
https://hal.archives-ouvertes.fr

An assembly process model for method engineering
Jolita Ralyté, Colette Rolland

Centre de Recherche en Informatique
Université Paris 1 Sorbonne
90, rue de Tolbiac, 75013 Paris, France

e-malil : ralyte rolland @univ-parisi.fr

Abstract

The need for a better productivity of system engiimgy teams, as well as a better quality of
products motivates the development of solutionadapt methods to the project situation at
hand. This is known as situational method engingerin this paper we propose a generic
process model to support the construction of a nehod by assembling method chunks
generated from different methods that are stored method base. The emphasis is on the
guidance provided by the process model, as wadnathe means underlying guidelines such
as similarity measures and assembly operators piideess model is exemplified with a case
study.

1 Introduction

We are concerned witlsituational Method EngineeringSME). SME aims at defining
information systems development methods by reusing assembling different existing
method fragments. The termethod fragmenivas coined by Harmsen in [Harmsen 94] by
analogy with the notion of a software componenmilirly to the component driven
construction of software systems, SME promotesctnestruction of a method by assembling
reusable method fragments stored in some methaal [S&ski 93], [Harmsen 97], [Rolland
98a], [Ralyte 99b]. As a consequence SME, favduescbnstruction of modular methods that
can be modified and augmented to meet the requitesnod a given situation [Harmsen 94],
[Slooten 93]. Therefore, a method is viewed as ledion of method fragments that we
prefer to callmethod chunk$Rolland 96], [Ralyte 99b] to emphasise the coheyeand
autonomy of such method modules. New methods cancdrestructed by selecting
fragments/chunks from different methods which &eemost appropriate to a given situation
[Brinkkemper 98], [Plihon 98]. Thus, method fragrte#ohunks are the basic building blocks
which allow to construct methods in a modular way.

The objective of our work is to propose a compéiproach for method engineering based on
a method chunk assembly technique. In previous rpajieolland 98a], [Ralyte 99b] we
presented anodularmethod meta-modeallowing to represent any method as an assembly of
the reusable method chunks. In this paper we aaéndewith the method chunk assembly
process. We present a generic process modeAskembly Process Mod@\PM), to guide
the assembly of method chunks using differentesiias depending on the type of situation in
which the assembly activity has to be carried Glunk assembly is the support of situational
method engineering and therefore we proposkethod Engineering Process ModMEPM)
providing several different ways to assemble chumkth the objective of constructing new
methods or enhancing the existing methods by neweisoand/or new ways of working.
Whereas the APM views the assembly of method chtinkbhe small’, the MCPM takes a
broader view where assembling method chunks is phra larger method engineering
process. As a consequence, the APM is embeddéé MEPM.

Both process models, namely the APM and the MEPM, expressed using the same
notations provided by a process meta-modelprAcess meta-modes an abstraction of
different process models, i.e. a process modeh imstance of a process meta-model. In this
paper, we use the strategic process meta-modeadrgeskin [Rolland 99] and [Benjamen 99].
Following this meta-model, a process model is preskas anap and a set of associated
guidelines.Such representation of the process model allowts psovide a strategic view of
different processes. Indeed, this view tells what be achieved - thatention and which
strategycan be employed to achieve it. We separate tladegic aspect from the tactical
aspect by representing the former in the method @ragh embodying the latter in the
guidelines. By associating the guidelines with &, a smooth integration of the strategic
and the tactical aspects is achieved.

This paper is organised as follows: section 2 lghité the need for different strategies for
assembling method chunks to form a new method amiivates different ways of method
engineering based on method chunk assembly. Thaefois encapsulated in the APM
whereas the latter is captured in the MEPM. InisacB, we take the view of method
engineering ‘in the large’ and present the methagireeering process (MEPM). The MEPM
includes the assembly process model which is pteden section 4. In section 4, we present
the assembly process model (APM) and discuss theugtechniques that support it in order
to carry out the assembly activities in a guideg.v&ection 5 illustrates the approach with an
example demonstrating the process step by stepiofe® draws some conclusions and
discussions around our future work. Finally, a foremainder of the notion of a method
chunk is given in the Appendix.

2 Chunk assembly and method engineering

2.1 Chunk assembly

The attempts to define assembly processes [Bringken®8], [Punter 96], [Song 95]
highlight the assembly of method fragments as ratidependent and supplementary to one
another. A typical example would be to adding aegiway of working some new activity
borrowed from another method and/or adding to trelyoct model of one method a new
concept borrowed from another method. In such &,cte assembly mainly consists in
establishing links between the ‘old’ elements ahe new’, added ones. We found cases
quite different where elements to assemble ardawang. This led us to the identification of
two assembly strategies :

1) the assemblpy association strateggnd
2) the assemblpy integration strategy.

Ci Cc2 C1
@ ®
® @
Cc2
Association strategy Integration strategy

Figure 1 : Strategies to assemble method chunks

As shown in Figure 1, the first strategy is relavahen the method chunks to assemble do
not have elements in common. This might occur wherend product of one chunk is used as
a source product by the second chunk. For exarttmechunk producing use cases and the

chunk constructing the system object structurebmassembled to get a method with a larger
coverage than any of the two initial ones. The radbg process is therefore mainly dealing in
making the bridge.

The second strategy is relevant to assemble chilnatshave similar engineering objectives
but provide different ways to satisfying it. In sua case, the process and product models are
overlapping (Figure 1) and the assembly processistsnin merging overlapping elements.
The integration strategy will be necessary, fornepi®, to assemble two different chunks
dealing both with a use case model construction.

These two strategies are embedded irmdsambly process mod@lPM) presented in section
4.

2.2 Method construction

The assembly of method chunks is a means, a taghrig construct a method in a reuse
driven fashion. However, method construction isnegtricted to chunk assembly. It includes,
for example, the elicitation of requirements foe ttmethod to construct, amend or enhance.
Besides, the ways the assembly technique will kel udiffer depending of the objective
assigned to the situational method engineeringeptojrhere are many different reasons for
constructing a new method. We identified threehef :

1) to define a brand new method to satisfy a setto&gonal requirements,
2) to add alternative ways-of-working in a methodtsooriginal one,
3) to extend a method by a new functionality.

Each of these delineates a specific strategy fahogeengineering that we have embedded in
themethod engineering process moMdEPM).

The first strategy is relevant in situations wheitder there is no method in use or the one in
use is irrelevant for the project (or class of potg) at hand. The second strategy is relevant
when the method in use is strong from the prodoattpf view but weak from the process
viewpoint. Enhancing the process model of the sygsmethod by one or several new ways
of working is thus the key motivation for methodyareering. The third strategy is required in
situations where the project at hand implies to adew functionality to the existing method
which is relevant in its other aspects.

We present the method engineering process in tkieseetion, whereas the assembly process
model is presented in section 4.

3 The method engineering process model (MEPM)

Figure 2 shows our proposal to engineer a methomligin an assembly of method chunks.
We use the strategic process meta-model [Rolland [8&njamen 99]to represent our
process model asraapwith associatedjuidelines A mapis a directed labelled graph with
intentionsas nodes anstrategiesas edges. The core notion of a map isséwiondefined as

a triplet source intention, target intention, strategyA map includes two specific strategies,
StartandStopto start and stop the process, respectively. lastiated in Figure 2, there are
several paths fronstart to Stop A map therefore includes several process modheis dre
selected dynamically when the process proceedsndépy on the current situation. Each
section is associated togaidelinethat provides advice to fulfil the target intemtifollowing
the section strategy. Furthermore, a section caefbedas an entire map at a lower level of
granularity.

Themethod engineering map Figure 2 includes two intentions in additionStartandStop,
Specify method requiremenandConstruct methadThe latter corresponds to the method
engineering’s essential goal, whereas the formethés prerequisite for the latter. The
formulation of this intention,Specify method requiremsnimeans that our approach is
requirements-driven. In order to construct a newhae, we propose to start by eliciting the
requirements for the method engineering activity.

The map identifies two different strategies $pecify method requiremsntnamely the
intention driven strategand theprocess driven strategyoth lead to a set of requirements
expressed as a map that we call tbguirements magdeveloped in the example of section
5). However, each strategy corresponds to a diffenay of eliciting the requirements. The
former is based on the inventory of engineeringlgedereas the latter infers these goals
from an analysis of the engineering activities thatt be supported by the method.

Once the requirements have been elicited, the tiotel€onstruct methodan be achieved.
The method engineering map of Figure 2 shows ttiféerent strategies to help the method
engineer to achieve this intention. They are thHivong : from scratch assembly strategy
enhancement driven strategyd extension driven assembly stratedye three strategies
correspond to the three method engineering sitostibat were identified and motivated in
the previous section. THieom scratch assembly strateggrresponds to situations where a
brand new method has to be developed, whereasvthethers enhancement driven strategy
andextension driven assembly strategye relevant when a method already exists, aadsne
either enhancements or extensioAs. indicated by the names of the strategies, theeth
proposed ways are based on a method chunk asseetdblgique developed in the next
section.

intention driven
strategy
process driven
strategy

Specify method
requirements
requirements
correction

strategy from scratch

assembly strategy

validation ConS;rugt
strategy metho

Figure 2 : The method engineering map

completeness driven
assembly strateg

extension driven
assembly strategy

Backtracking to the requirements definition is plolesthanks tahe requirements correction
strategy

Finally, the validation strategyhelps verifying that the assembly of the seleateethod
chunks satisfies all requirements and ends theadethgineering process.

According to the map meta-model used above to irtbdenethod engineering process, each
section of the map is (a) associated tguadeline providing advice on how to proceed to
achieve the target intention and (b) carrdfenedas a map of a finer level of abstraction. For

the sake of space we do not present the guidedisesciated to every section of the method
engineering map (see [Ralyte 01] for details) lmrtoentrate on the refinement of the section
<Specify method requirements, Construct method, soratch assembly strategydealing
with the assembly of method chunks. The refined mighis section models the method
chunk assembly process. The APM (assembly procedslins presented in detail in the next
section.

4 The process model for method chunk assembly (APM)

4.1 Overview of the assembly map

This section presents tlssembly maguiding the selection of method chunks matchisgta

of situational requirements and their assemblyotsnfa new method. It is a generic process
model in the sense that it includes a number @itesgies to retrieve and assemble chunks
providing solutions for the different engineeringuations the method engineer may be faced
with. In particular the map includes two strateg{ggegration strategy and association
strategy to assemble chunks that we identified from therdture and case studies and
introduced in section 2.

The process model is presented as a magdbembly mgpn Figure 3.

requirements driven

completeness strategy aggregation

strategy

integration
strategy

refinement
strategy
completeness strategy association
strategy

Figure 3 : The assembly map

As shown in Figure 3, the assembly process moagiqses several different ways to select
chunks matching requirements as well as differemategies to assemble them. It is based on
the achievement of two key intentionsSelect a chunkand Assemble chunksThe
achievement of the first intention leads to thesbn of chunks from the method base that
match the requirements. The second intention isfieat when the selected chunks have been
assembled in a coherent manner.

The process starts by the secti®tart, Select a chunk, requirements driven strategThe
guideline associated to this section helps the atkéngineer to select candidate chunks that
are expected to match the requirements expressib@ irequirements map (the requirements
map results of the achievement of the inten&pecify method requirements Figure 2). It
suggests to formulate queries to the method basaggvalues to the attributes of the
descriptors and interfaces of chunks (the notidnshank interface and chunk descriptor are
recalled in the Appendix) to identify the chunkatthre likely to match part or the totality of
the requirements map.

Any time a chunk has been retrieved, the assembly suggests to validate this candidate
chunk by applying thevaluationstrategy The evaluation strategyhelps in evaluating the

degree of matching of the candidate chunk to tlg@irements. This is based on similarity
measures between the requirements map and the frifag selected chunk. We present these
similarity measures in section 4.2.

The decomposition, aggregation and refinemstrategies help to refine the candidate chunk
selection by analysing more in depth if the churstahes the requirements.

The decompositiorstrategy is relevant when the selected methodkcilaian aggregate one
having some component parts that may not be refjuliiee decomposition strategy helps to
select those which are the adequate ones.

Theaggregationstrategy is relevant when the candidate chunkypeoters the requirements.
This strategy suggests to search for an aggrebatgkacontaining the candidate chunk based
on the assumption that the aggregate method chugtht provide a solution for the missing
requirements.

Therefinementtrategy proposes to search for another chungfgiaiy the same intention but
providing a set of guidelines richer than thoséhefcandidate chunk.

If the candidate chunk has been selected and cdherswhole requirements map, the
assembly map suggests to progress t&thpintention following thecompleteness strategy

When at least two chunks have been selected, tlihotheengineer can progress to the
assembly of these chunks. Two strategies, namelnteégrationstrategyand theassociation
strategy are proposed by the assembly process model afrd-i§ to fulfil the intention
Assemble chunkés discussed in section 2, the choice of theesisadepends of the presence
/absence of overlap between the chunks to assemble.

If the two chunks help to achieve the same intenitiothe system engineering process and to
construct the same or a similar product, strategy by integratiomust be chosen. If the
selected method chunks do not overlap in termsnt#ntion to achieve and product to
construct, then thetrategy by associatiomust be selected. In the first case where chunks
partially overlap, the integration of these chupksduces a new method whose product and
process models are ‘richer’ than those of theahithunks. With the second strategy for
assembling chunks dealing with different aspectsystem design, and supplementing one
another, the result is a new method providing gdarcoverage of design activities. We
present the two strategies in more detail in 4B84nd.

In order to check if the current chunk assembly dmas the requirements, the method
engineer shall use thmmpleteness strategif the response is a positive one, the assembly
process ends. In the reverse case, other chunkstbde selected and assembled to gain the
required method completeness. This will be achidyednacting th&tartsection again.

The two assembly strategies uassembly operatorssimilarity measuresand quality
validation rules The former and the latter were presented in [lRa®Pa]. Their use will be
exemplified in section 5. Just as a reminder, etmention that there are two types of
operators to assemble process models parts andigbrodbdels parts, respectively. The
similarity measures are used to compare chunkgdéfeir assembly and to identify whether
they are overlapping. This will help to choose tight strategy between thategration
strategyand theassociation strategyVe present the similarity measures in the nestice

4.2 Similarity measures

Measures to estimate the similarity of conceptuhlesmas have been proposed by several
authors, for different purposes : in order to idgnteusable components [Castano 92],
[Castano 93] and to select these components [BI&niGenerally, these approaches measure

the closeness between entities of different conepchemas by evaluating the common
properties and links with other entities [CastaBh Fhe global complexity of the schemas is
also taken into account. Bianco et al. [Bianco pBjposes similarity metrics to analyse
heterogeneous data base schemas. These metribasm® on the semantic and structural
similarity of elements of these schemas. Other agugres are proposed to help indexing
[Diamantini 99], grouping and selection of simildata [Papadopoulos 99]. [Poels 00a]
defines distance measures for software entitieg Mietrics to measure the similarity of
textual data have been used in the search of feximeuments [Besancon 99]. In the
information systems reengineering domain, distaneasures have been proposed to evaluate
changes in enterprise models [Poels 00b].

In our approach we use measures inspired from thiagsosed by [Castano 93] and [Bianco
99]. We distinguish two types of measures : thebheeh allow to measure the similarity of
the elements oproduct modelsand those which allow to measure the closenessanfess
modelselements. We present them in turn.

4.2.1 Product models similarity measures

We use semantic and structural measures to corefsarents of product models.

The Name Affinity (NA)metric allows us to measure the semantic simylasit concepts
belonging to different product models. To applystimeasure, the concepts of the chunks
must be defined in a thesaurus of terms. Morediiersynonymy $YN) and the hyperonymy
(HYPER) relationships between these concepts must beedefTheSYN relation connects
the termst; and t; (i # t;) which are considered as synonyms. This is a synsakrelation.
For example<Goal SYN Objective> The HYPER relation connects two terntsand t; (t; #

tj) wheret; is more general thain This is not a symmetrical relation. The inversktion is
the hyponymy KIYPO). For examplesScenarioHYPER Exceptional scenario>

The thesaurus of terms is a network where the nagethe terms and the edges between the
nodes are the terminological relations. Every taotugical relation RO{SYN , HYPER
/HYPGC} has a weighto ;. For examplegg,, = BNd 0, perpveo = 08

Therefore, the name affinity metric is defined @lfofvs:

1 if <n(e;) SYNn(gg) >
NAN(g;),n(eg)) = 0r L..Lo gy ifN(g) - "n(ey)
0 else

wheren(g;) - "n(g,) is a length of the path betweepand @ in the thesaurus and m1,
onr Shows the weight of thé"rrelation in n(g) - "n(g,).

The semantic similarity is not sufficient to detamm if two concepts are similar. We also
need to compare their structures. The measureeddtthictural similarity of concepts is based
on the calculation of their common properties ameirtcommon links with other concepts.
Thus, to obtain th&lobal Structural Similarity of Concepts (GSS&9 need to measure the
structural similarity of their properties and theustural similarity of their links with other
concepts. These measures are respectively caltedtural Similarity of Concep{SSC)and
Adjacent Similarity of Concep(aSC).

The Structural Similarity of Concept{SSC)is used to compare two concepts with respect to
their structural properties. It calculates the pmbipn of common properties of the two

concepts. The similarity of the structural propestis measured by tli&ructural Affinity of
Properties (SAR)The properties of two concepts are called ‘commbtheir SAP has a
valuestrongor weakcorrespondence

The Adjacent Similarity of Concep(®\SC)allows us to measure the structural similarity of
two concepts with respect to their relationshipshwather concepts in the corresponding
product models. TheAAC calculates the proportion of the adjacent conceytgh are
common to both concepts.

The formulas are as follows :

SSC(g,c,) + ASC(c,C,)
2

20(Numberof commonpropertiesnc; andc,)
iNumberof propertiesnc;
2 D(Nunl{tierof communadjacentonceptsto ¢, andc,)
i Numberof adjacentonceptsatoc;
i=1

strongcorresponence if NA (pj,p,) = 1andd(p;) = d(pq)

GSSC(g.,cy) =

SSC(G,¢c,) =

ASC(c,cy) =

SAP(p;,pw) = { weakcorrespondnce if NA(p;,p,) < landd(p;) compatiblewith d(p)
different if NA(p;,pw) = Oord(p;) # d(pg)

4.2.2 Process models similarity measures

In this section we propose metrics to compare ehsnaf process models i.e. of maps (chunk
process models are maps - see the Appendix for)mBlements to compare are intentions,
sections and maps themselves to evaluate the giohadrity of maps.

Let us start with the measure of the semantic anityl of map elements. We use two kinds of
semantic similarity : th&Semantic Affinity of Intentions (SAdnd theSemantic Affinity of
Sections (SAS)

The Semantic Affinity of Intentions (SA$) used to measure the closeness of two intentions
This metric is based on the comparison of the tax@meters composing the intention : verb
and target. TheSYN relation is used to compare the corresponding npeters of two
intentions. The two intentions are considered aslai if their verbs and their targets are
synonyms.

The metric calledemantic Affinity of Sections (SAReasures the closeness of two sections.
A section is defined as a triplet <source intentiamget intention, strategy>; therefore, the
measure of the semantic affinity of two sectionbased on the measure of t8Al of its
source intentions, th&Al of its target intentions and the application oé YN relation
between their strategies.

The two semantic similarity measures are defineiblésns :

SAI(L i) = 1 if (ii.verbSYNij.verb)D(ii.targelSYNij.target))
(Imj)_ 0 else
1 if SAI(;,i,) =10%Al(i;,i,) =10s SYN
SASK i, S5 > <k, S >):{0 | (i, 1) (iy.1) Si Sui
else

The structural similarity measures are needed topewe the structures of two maps and to
identify their overlapping parts. We use two kinofsstructural measures : ti&tructural
Similarity by Intentions (SS8nd theStructural Similarity by Sections (SSS)

The Structural Similarity by Intentions (SSK used to measure the proportion of similar
intentions in two maps. This is based on the catan of theSAl of their intentions.

The Structural Similarity by Sections (SS&)ws us to measure the proportion of similar
sections in two maps.

Sometimes, we also need to compare the proportiosinailar sections for a couple of
intentions which exist in the two maps. For thisimteoduce thdPartial Structural Similarity
(PSS)metric.

The three measures are defined as follows :

20Numberof similarintentionin m; andm
SIS(my,m,) = > 1 2
z Numberof intentionsin m;
i=1
20Numberof similarsectionsn m, andm
SSS(m,m,) = > 1 2
z Numberof sectionsn m;
i=1
PSSS(m:<iy;, iy > My i<ig, iy >) =

2[0Numberof similarsctionsbetweer<iy;, i;; > and<i, i, >

Numberof sectionbetweer<iy;, i;; >+ Numberof sectiondetween<i i, >
m,,m,, : themaps
m, :<iy;, iy; >:acoupleof intentionsin themapm,

These metrics will be exemplified in the case stpdgsented in section 5.

We now present the two ways to assemble methodkshua.the integration and association
strategiesin more detail. This is done in the next sectigirefining the two sectionsSelect

a chunk, Assemble chunks, integration strategpd < Select a chunk, Assemble chunks,
association strategyof the assembly map shown in Figure 3, respdgtive

4.3 Chunk assembly by integration

Figure 4 shows the process model correspondinge@$sembly by integration strategy, the
integration map The map of Figure 4 is a refinement of secti@elect a chunk, Assemble
chunks, integration strategyof Figure 3.

The assembly process by integration, or theegration processfor short, consists in
identifying the common elements in the chunks pobdand process models and merging
them. The maps of the these chunks must have soniarsintentions and their product
models must conceptualise the same objects oktievorld by using similar concepts.

name unification
strategy)
transformatiqn

merge

strategy generalisatiory

strategy

merge
strategy

remove

section
merge
strategy

remove
strategy

completene
strategy

merge
strategy

strategy completeness

strategy

Figure 4 : Integration process map

As shown in Figure 4, the method engineer can #tarassembly process by the integration
of the process models followed by the integratibrthe product models or vice versa. At
every moment he can navigate from the process madtdgration to the product models
integration and vice versa.

Let us first consider the assembly of chunks peesdels, i.e. maps. It might be necessary
to make some terminology adjustments of maps befwe® integration The mechanism of
integration merges similar intentions that mustehéhve same name. This is not necessarily
the case in the initial chunks selected for assgmimtentions having the same semantics
may have different names whereas semanticallyrdifteintentions my be named exactly the
same. The guideline associated to the sestitiart, Adapt process models, name unification
strategy> helps to identify a couple of similar intentiorexquiring some name unification.
The SAI (section 4.2.2) measure is used to detect thantkations are similar and then, the
RENAME_| NTENTI ON operator (see the note about operator in 4.Bdemmended to unify
their naming.

Either directly or after having proceeded to théication of names, the method engineer can
move to the intentiorConstruct the integrated process mod€he two sectionsStart,
Construct the integrated process model, merge esgsat and <Adapt process models,
Construct the integrated process model, merge exgsat use the same guideline, i.e. suggest
the same way to proceed. The guideline recommdmeisige of thaVERGE | NTENTI ON
operator for each couple of similar intentions.

The integration of product models is based on deatification of couples of similar concepts
to be merged. Again, this might require namingsiewi or can be done directly. The former
can be achieved by two different strategies, tlame unification strategy and the
transformation strategy whereas the latter is achieved by therge strategy the
specialisation strateggnd thegeneralisation strategyVe consider them in turn.

Two concepts to be merged must have the same demadntaddition, if their structures are
identical, they must have the same name. Vice-yéfgheir structures are different, they
must be named differently. For this reason, thedpeb models integration may also be
preceded by an adaptation step. The map (Figupeoppses two strategies to progress to the

10

intention Adapt the product modelsthe name unificationstrategyand thetransformation
strategy

The name unificatiorstrategy must be selected to solve the problemaofing ambiguity of
concepts belonging to the two different product sled The guideline associated to the
section<Start, Adapt product models, name unification ®&gy> uses theNA and GSSC
measures (section 4.2.1) to identify a couple ehstoncepts and proposes to rename one of
them by applying th&@ENANME_CONCEPT operator.

The transformationstrategy must be selected when the same real wbjktt is modelled
differently in the two product models. For examphes object may be presented by a concept
in one model and by a link between two conceptdyra structural property of another
concept in the other model. The guideline assati&tethe sectiorxStart, Adapt product
models, transformation strategytelps to identify the couples of elements thatdniebe
unified (concept and link, concept and propertylink and property) and to apply one of the
product assembly operato®BJECTI FY_LI NK or OBJECTI FY_PROPERTY according to
the situation.

The same product integration strategies are passlfulfil the intentionConstruct the
integrated product modehdependently of the starting intention, t8&art intention or the
Adapt product modeldgntention. There are three strategies: timerge strategy the
generalisatiorstrategyand thespecialisatiorstrategy(Figure 4). The guidelines associated to
the respective sections are identical. For exantpke,guideline associated to the section
<Start, Construct the integrated product model, geestrategy>is the same as the one
associated to the sectieghdapt the product models, Construct the integrgiestluct model,
merge strategy>

The merge strategy is applicable to merge concepts with similar setmanand similar
structure. The corresponding guideline helps tatifie a couple of similar concepts by
applying the NA and GSA measures and to apply the product assembly operato
MERGE_CONCEPT.

Thegeneralisatiorstrategyshall be used when the two concepts have the samantics but
different structures : the GSA measure helps etvialyaf the difference of their structures
forbid their merging. The guideline associatedhi® $ectionsStart, Construct the integrated
product model, generalisation strategyand <Adapt the product models, Construct the
integrated product model, generalisation strategy®poses to generalise the two concepts
into a new one. The common properties of the twacepts are attached to the new concept
whereas the specific properties are kept attachedthe specialised concepts. The
GENERALI SE operator is used to support this transformatidre #wo initial concepts must
have different names before their generalisatibarefore the name unification strategy shall
be required first.

Finally, thespecialisatiorstrategyis required when one concept represents a sypsatialn of
the other concept. The associated guideline toioseckStart, Construct the integrated
product model, specialisation strateggnd<Adapt product models, Construct the integrated
product model, specialisation strategyrtroduces a specialisation link between the two
concepts by applying th8PECI ALI SE operator. As in the previous case, the two initial
concepts must have different names before theaiglsation.

At any step of the integration process, it couldnbeessary to improve the current solution.
The map of Figure 4 proposes three strategiesfioerthe integrated process model; these
are : theeemovestrategy theadditionstrategyand themergesectionstrategy

11

Theremove strategyleals with the need to remove elements in thgiated model. Many
different reasons can justify such removals; foaregle to remove a useless or redundant
guideline. The guideline associated to the sectiGonstruct the integrated process model,
Construct the integrated process model, removetegyee suggests the use of the
REMOVE_SECTI ON operator to perform this operation.

Some new guidelines can also be required to compie¢ integrated process model,
particularly if the integrated product model int@gs generalisation and/or specialisation of
concepts. The integrated process model needs txteaded in these cases. The guideline
associated to the sectiaConstruct the integrated process model, Constthetintegrated
process model, addition strategyrelps doing so by applying t#é®D_ SECTI ON operator.

Finally, the merge section strategguggests to merge sections which are duplicaths. T
guideline associated to the sectiw@onstruct the integrated process model, Consttbet
integrated process model, merge strateggpplies the operatolVERGE _SECTI ON to
achieve this goal.

Similarly, it can be necessary to improve the aurkersion of the integrated product model.
The integration map of Figure 4 proposes two sgiatefor guiding the integrated product
model, namely theemovestrategyand themergestrategy

Theremovestrategyallows to eliminate concepts, links or properbéshe integrated product
model, as the merging activity might have led tplahated ones. The guideline associated to
the sectiorkConstruct the integrated product model, Constiiet integrated product model,
remove strategy>applies one of the operatoREMOVE_CONCEPT or REMOVE_LI NK or
REMOVE_PROPERTY according to the situation at hand.

To end the integration process the method engisagrvited to apply the quality rules and to
verify the coherence and the completeness of thairsa product and process models
following thecompleteness strategy.

4.4 Chunk assembly by association

In this section we consider the assembly of metbbdnks carried out following the
association strategyFigure 5 shows the process model correspondinghig assembly

strategy. The map of Figure 5 is a refinement & $ection Select a chunk, Assemble
chunks, association strategyof the main assembly map presented in Figure 3.

name unification
strategy

Adapt
process model

connection
strategy

name unification

strategy
Adapt
product model

addition
strategy

connection
strategy addition

remove strategy

strateg

' Construct
the associated process
’ model

addition
strategy completenes
strategy

Construct
the associated produg
model

completeness
strategy

Figure 5 : The association process map

12

The assembly process by association agsociation proces®r short, consists in connecting
chunks such that the first one produces a prodiithwis the source of the second chunk.
Thus, the association process may consist in sirapdgring chunks processes and relating
chunks products to one another.

The association process simpler than théntegration processThe association of product
models is achieved by establishing links betweamcepts or adding elements connected to
other concepts. The association of the process Isammsists in ordering the process
activities provided by the two different modelsigrossibly adding some new activity.

As in the case of the integration driven assenthly,association of chunks may also require
the unification of their terminology. Theame unification strateg provided to unify names
in maps and product models. Maps of chunks ind¢age should not have similar intentions.
Thus, if there are intentions with the same narhesd are homonyms and one of these
intentions must be renamed. TBAI (section 4.2.2) measure must be applied to theestsd
intentions. Similarly, the chunks product modelsowdd not contain similar concepts.
Therefore, two concepts having the same name sh@ulcbmonyms requiring the renaming
of one of them. ThéNA and GSSC (section 4.2.1) measures can be used to evalhate
similarity of concepts. The operatoRENAME_| NTENTI ON and RENAME_CONCEPT are
suggested to be applied by the corresponding gnelel

If the two maps do not have any naming problenes ctinstruction of the associated process
model can start directly whereas thaapt process modeistention has to be fulfilled first in
the reverse case. Then, ttemnection strategis needed to carry out the association.

The guidelines associated to the sectigfsart, Construct the associated process model,
connection strategy=and<Adapt process models, Construct the associatedga® model,
connection strategy=are identical. They suggest a plan of action medhsteps : (first), to
determine the order in which the chunk processest tmel executed; (second), to identify in
the map of the first ordered chunk the intenticet tiesults in the product which is the source
to the second chunk process, and (third) to mémgaritention with theStartintention of the
second chunk by applying thMERGE _| NTENTI ON operator.

A similar set of strategies is proposed in FiguréoSdeal with the association of product
models. The product models may also by associatedty or after some terminological
adaptation. Thus, the guidelines associated toiossckStart, Construct the associated
product model, addition strategyand <Adapt product models, Construct the associated
product model, addition strategyare identical. They advise to identify the consept the
product models which can be connected by a linkyointroducing an intermediary concept.
These guidelines recommend the use of the prodssxnably operatoré&DD LI NK or
ADD_CONCEPT depending of the situation at hand.

Refinement of the associated process model maedured and theemoveand addition
strategies are proposed to deal with this in the iflagure 5). They are the same as the
corresponding strategies in the integration magufe 4).

Finally, the validation of the resulting productdaprocess models must be performed to end
the association process. The method engineeritedhio apply the quality rules and to verify
the coherence and the completeness of the resuttgthod chunk using theompleteness
strategy.

13

5 Application example

In this section we illustrate the use of the metlndineering process model with an example.
We show how the method engineering map and itegdfinaps guide a method engineer step
by step to construct a new method by retrievingasmkmbling method chunks.

Let us suppose that a method engineer has to oohstimethod supporting the elicitation of
functional system requirements in a goal-driven mesnto conceptualise them using textual
devices such as scenarios or use cases, to valigatein an animated fashion and finally to
document them.

According to the method engineering map presemtddgure 2, the first intention to achieve
is to Specify method requiremeniheprocess driven strategpoks adapted to the situation
at hand as the requirements are expressed ab@@rimcess-oriented way. Assume that the
application of this strategy leads to the followneguirements map (Figure 6):

goal driven strategy
Elicit a
requirement

linguistic strategy

Document
a requiremen

Figure 6 : The requirements map of the applicatiorexample

exceptions
discovery strategy

variants
discovery strateg)

completeness
discovery strategy

Conceptualise
a requiremen

validation
strategy

linguistic strate
completeness strategy inguist oy

Once the requirements for the new method have bhketed, the method engineering map
suggests tAAssemble Chunk#\s the objective is to construct an entirely nesthod, the
from scratch assembly strategyoposed in the method engineering map (Figuis hosen.
The refined map of this assembly process (Figurpr8poses to start with the selection of
method chunks matching part or the totality of tbguirements map. The guideline suggests
to formulate queries to the method base in ordeetiteve candidate method chunks. These
gueries give values to the different attributeslofink interfaces and chunk descriptors. The
search in the application case is based on thewoly values : application domain =
information systemsdesign activity =requirements engineeringeuse intention =iscover
functional system requirementsituation =problem descriptionLet’'s assume that chunks
with the following interfaces are retrieved:

1. <(Problem description), Discover a goal with teatplstrategy>
2. <(Problem description), Construct a use case meillelOOSE strategy>
3. <(Problem description), Discover a use case witbrdzased strategy>

The method engineer selects the first chunk asndidate one. However, as the requirements
coverage is not fully adequate, he decides toyajy@aggregation strategyFigure 3) with
the objective to find an aggregate chunk broadan tthis candidate chunk. Such a chunk
exists; it is thd’Ecritoire chunk and its process and product parts are sirowigure 7.

14

goal
template
strategy

case based
strategy

AND

refined by

<(Problem description), Discover the scenario/goaouples with CREWS-L'Ecritoire strategy>

Normal
Scenatrio

Exceptional
Scenario

free prose
strategy

Write
a scenarip alternativg
discovery
manual strategy

Conceptualise
tool supported strategy

Scenario

emplate
strategy

composition
discovery
strategy

refinement
discovery
strategy

Target

a scenario

Atomic
action

Flow of
actions

completeness strategy

Figure 7 : The L'Ecritoire method chunk

This method chunk, called’Ecritoire, provides guidelines to discover functional system
requirements expressed as goals and to conceptuddesse requirements as scenarios
describing how the system satisfies the achieverokttiese goals [Rolland 98b], [Rolland

98c], [Tawbi 99]. Several different strategies awrevided by the chunk to support goal

elicitation, scenario writing and scenario concefpisation.

The method engineer wants to get a quantitativéuatian of the fit ofL’Ecritoire to the
requirements map. Therefore, he selectsttauation strategyFigure 3) which helps him to
compare the map of the candidate chunk with theireopents map. The map similarity
measures SAIl, SAS, SSI and PSSS presented inrsdcBi@ are used.

For example, owing to the SAI measure we detedt ttha intentionsElicit a requirement
(requirements map) artglicit a goal (L’Ecritoire map) are similar because they use the same
verb and their targetequirementandgoal are synonyms.

The measure SSI, calculated as follows :

SSI (Requirements map, L’Ecritoire map) = (2*2 samintentions) / (6 intentions in
two maps) = 2/3shows that a large part of the requirements mapvered by the map of the
selected chunk. To validate this assumption, weckefor similar sections by applying the
SAS measure. For example, the SAS calculated lasviot

SAS (Requirements map : <Conceptualise a requiremielicit a requirement,
Variants discovery strategy>, L’Ecritoire map : <@ceptualise a scenario, Elicit a goal,
Alternative discovery strategy>) = Shows that the concerned sections are similaxt, Ner
each couple of similar intentions we apply the PSB8&asure to verify if the strategies
between these intentions are also similar. Foantcs, the

PSSS (Requirements map : <Conceptualise a requitenigdicit a requirement>,
L’Ecritoire map : <Conceptualise a scenario, Eli@tgoal>) = (2* 2 similar strategies) / (6
strategies) = 2/3hows that the map of the selected chunk matcpest af the requirements
map.

Figure 8 illustrates the matching of the map of ttendidate chunk to a part of the
requirements map. The degree of matching is set®fa enough to select the candidate
chunk.

15

- — —— — —
— — —

-_— goal

goal driven strategy template
—— —————— —— strategy

case based
strategy

exceptions

composition
discovery
strategy

refinement
discovery
strategy

linguistic strategy

Conceptualisy
a requireme

validation,”
stratge

manual strategy
trategy

completeness
strategy

Document
a requireme

tool supported strategy’
linguistic strategy ~ ~ -

M o—— ——

completeness strategy

Requirements map Map of the chunk L’Ecritoire

Figure 8 : Similarity measure between the requiremets map and thel'Ecritoire map

The requirements coverage is not complete and #thad engineer must continue the search.
However, he knows the properties of the chunkssHedking for and can formulate precise
qgueries. The required chunks must have the follgwialues in their interfaces : situation =
goal or scenariq intention =to discover exceptional requiremeiis goals)

The SAVRE method chunk [Sutcliffe 98], [Sutcliffe 99], [Mad 98a], [Maiden 98b]
presented in Figure 9 is one of the chunks retdelg the query. This chunk provides
guidelines to discover exceptions in the functignof a system under design caused by
human errors. It generates scenarios corresponditige system requirements and identifies,
through an analysis of these scenarios, possildeptions caused by human erragdeption
discovery strategy The chunk also includes validation patterns dbdate the requirements
(validation patterns strateqy

<(Requirement, Use case), Elicit an exceptional regqgement by analysing human errors>

describes .
Use casef 1 Requirement

automatic 1
generation generates

strategy 1
Conceptualise Scenario
a scenario
validation
Sequence
. Flow of <

exception "
discovery events Embedding

patterns strategy

_ Elicit
X_a requiremen

completene
strategy

strategy uses *.1 Object

1.* start 1

Figure 9 : The SAVRE method chunk

The matching measures convinced the method engioeeake the decision to assemble the
two selected method chunks, thus to move in the afidgfigure 3 toAssemble chunk3he
two chunks have the same broad objective, to desceystem requirements, and their process
and product models overlap (they contain similatentions and concepts). Thus, the
integration strategyFigure 3) to assemble these chunks is adequate.

16

Following the integration map shown in Figure 4¢ thethod engineer understands that he
first needs to adapt the product and process maddise two chunks. It is only after the
necessary terminological adaptations that he wilable to proceed to their integration. As an
example, he selects theame unification strategyn the integration map (Figure 4) and
changes the name of the intentklicit a requirementn theSAVREmap intoElicit a goal by
applying theRENAME | NTENTI ON operator.

Then, he progresses to the construction of thegiated process model with thmerge
strategyto integrate the two maps. He applies MeRGE | NTENTI ON operator on the
couples of identical intentions. The merged intamdiare represented in grey in Figure 10. By
selecting theaddition strategyin the integration map he adds tinensformation strategyo

the integrated map by applying tA®D_SECTI ON operator. This new strategy permits the
coupling of the two types of scenarios (the omdsEcritoire and the ones iIBAVRE in the
same integrated product. This adjunction is necggssaransformL’Ecritoire scenarios into
SAVREscenarios and vice versa.

The integration of the two product models also negusome adaptations. For example, the
two product models contain tiseenarioconcept. The two scenarios have the same semantics
but their structures are different Ecritoire scenarios are composed of a set of actions
whereasSAVREscenarios are defined as flows of events. Thekiwds of scenarios must be
kept in the integrated product model. Thus, thehegengineer renames tbeenario concept

in the L’Ecritoire product modelinto L’Ecritoire scenarioand in theSAVREinto SAVRE
scenario.The engineer selects tigeneralisation strategin the integration map to integrate
the two scenario concepts by applying tGENERALI SE operator. This leads to the
introduction of a new concept scenario as a gesatan of the two concepisEcritoire
scenarioand SAVREscenarioin the integrated modelThe notion of théAgentis the same in
the two product models. Thus, theerge strategyan be selected in the integration map to
help applying thé¢VERGE_CONCEPT operator on these two concepts.

The result of the integration afEcritoire andSAVREmethod chunks is illustrated in Figure
10.

i 1 .
X Scenario
/\
generates
1% |) X
\ Goal Normal
SAVRE \ Verb Scenario
Scenario \\ Target
strategy v OR 1 AND Exceptional
. Scenario
composmon % *
discovery * * *
- 1. *initial 1+
Flow of Requirementg . initial 1..
. events Chunk | @—— " Feritire
strateg

- R Scenario [~ a7 -
refined by |:|
Resource
£
*

L. start
Event [—
1.* end

tool supporied
strategy

Conceptualise
a scenario ‘

completeness
strategy

transformation
strategy

Figure 10 : The process and the product models ofi¢ integrated method chunk

17

The requirements coverage is still not completed #re method engineer continues the
search for chunks that can fill in the gap betw#enrequirements map and the integrated
chunk. There is a need for validating the requinegimeThus, the method engineer formulates
a new query asking for chunks with the intentionvididate the requirements their
interface. Among the retrieved method chunks, thethod engineer retrieves thdbert
method chunk [Heymans 98], [Dubois 98] presentdeigure 11.

<(Scenario, Requirement), Validate requirement withthe animation strategy>
tool based consolidation conflict Basic Local Co-operation
strate i i i
a9y strategy, resolution Constraint | | Constraint Constraint
trategy [[I
template
Constraint

based
1.*

strategy Conceptualise an
Albert Spec.

describes

" g ooy

Agent

animate
elicited

animate
unwanted
scenarios

strategy Nom !
free characterised by
an aCncl)anat:IL(l)?‘It trace animation !
& strategy 1. .
has R Action

_| 1.* 1.%
St

modifies

selection
strategy

Figure 11 : TheAlbert method chunk

This chunk proposes guidelines to validate requams in an animated manner. It can
transform scenarios describing requirements intd\lert specification and then, supports
the animation of these scenarios by activatingttdot called Animator. The animation is
interactive and the requirements stakeholders adate the requirements.

Since this method chunk uses a scenario as a sptwdect and validates the requirements
expressed in this scenario, the process reacheguation where theAlbert chunk
complements the current integrated chunk. In otdeassemble this chunk with the current
chunk assembly, the method engineer selectaskeciation strategyn the assembly map
(Figure 3). The guideline supporting the assemplgdsociation was presented in 4.4.

The maps of the two chunks to assemble do not §iaviéar intentions. Thus, there is no need
to adapt the maps before their association. Thehadetngineer selects thmnnection
strategyin the association map (Figure 5) and progress#set construction of the associated
process model. Following the guideline associatedhis section, he identifies that the
achievement of the intentioGonceptualise a scenarim the integrated map constructs a
product (a scenario) which is a source product tfee Albert chunk. The operator
MERGE | NTENTI ON is used on the intentio@€onceptualise a scenariand the Start
intention of theAlbert map.

Some refinements are necessary on the associafedrmaexample, it seems reasonable to
forbid a progression from the intenti@onceptualise a scenarim Stop By selecting the
remove strategyn the association map (Figure 5) and following #ssociated guideline, the
method engineer applies the oper®®BMOVE _SECTI ON on this section.

To construct the associated product model, the adeimgineer needs to perform some
adaptation process. For example, both product mo@dle one of the method under
construction and the one of tiAdbert chunk) contain thé\gentconcept. The two concepts
have the same semantic but their structures aeretit. Therefore, it is necessary to rename

18

one of two concepts by applying tiRRENAME CONCEPT operator. The method engineer
decides to rename thiegentof the Albert chunk intoAlbert_Agent The same operator must
be applied on th8tateandActionconcepts.

Then, the method engineer select ddelition strategy(Figure 5) which allows him to add a
link of the correspondence between the concagentandAlbert_Agent

The end result is shown in Figure 12..

Scenario
i A : :
genergtes Basic Local Co-operation
Y N Constraint Constraint Constraint
1 | \\ Goal Normal |
SAVRE Scenario
Scenario Exceptional
? Scenario Constraint *
* .
1. Society
initial describep
Flow of L'Ecritoire 1 sae .
events |1 final 1. 1 1.)
Scenario 0.1 characterised § Eormal
Albert_Agent 1 Acti
corresponds to 1 1. ction
- 1> ! has 1.
Event | modifies
1”*
Agent_State 1
parameter
selection strategy
exception
discovery animate free
automatic strategy strategy unwanted animation
generation scenarios strategy
strategy composition validation strategy
discovery patterns
strategy strategy
consolidation
) strategy
Conceptualise al
. tool based Albert Spec.
Conceptualise strategy P)
tool supported a scenario conflict
strategy template resolution strategy
transformatio based strategy
strategy

Figure 12 : The end result of the chunk assembly

In a similar manner the selection of additional rksito cover the entire requirements map
and their assembly with the current integrated khwil continue till the completeness
strategy ensures that the result is satisfactooygimto stop the assembly process.

6 Conclusion

In this paper we look at situational method engimeefrom a process perspective and
propose two embedded generic models to support :

19

- method construction, and
- method chunk assembly.

Both are concerned with engineering methods magchinset of requirements through a
method chunk assembly technique. The former deidifisassembly ‘in the large’ whereas the
latter offer solutions ‘in the small’.

The process models are represented as maps wihiatssl guidelines. This allows us to
offer flexibility to the method engineer for camg out the engineering activity. Besides,
guidelines provide a strong methodological supptitgnks to some formally defined
techniques. Metrics to evaluate the distance betwee method chunks and a set of
operators to perform the assembly tasks are therteai important techniques.

The approach is currently used in a professionair@mment in the context of a rather large
project (810 millions). Results are encouraging,éRkperience is positive, even if it highlights
the need for improvements among which is a softeakéonment to support the process.

References

[Benjamen 99] A. BenjamenUne Approche Multi-démarches pour la modélisatioas ddémarches
méthodologiquesThése de doctorat en informatique de I'UniveiBaés 1, 6 octobre 1999.

[Besancon 99] R. Besancon, M. Rajman, J.C. Chagpdlextual Similarities on a Distributional Approach
Proceedings of the fOInternational Workshop on Database and ExperteBystApplications
(DEXA'99), Florence, Italy, September 1999.

[Bianco 99] G. Bianco, V. De Antonellis, S. Castand. Melchiori, A Markov Random Field Approach for
Querying and Reconciling Heterogeneous Datahag&®ceedings of the f0International
Workshop on Database and Expert Systems ApplicatiBEXA'99), Florence, Italy, September
1999.

[Brinkkemper 98] S. Brinkkemper, M. Saeki, F. HaemsAssembly Techniques for Method Engineering
Proceedings of the f0Conference on Advanced Information Systems EngiingeCAiSE'98.
Pisa Italy, 8-12 June, 1998.

[Castano 92] S. Castano, V. De Antonellis, B. Zp@iassifying and Reusing Conceptual ScherRagceedings
of the 11" International Conference on Conceptual Modeling'@), pp. 121-138, Karlsruhe,
1992.

[Castano 93] S. Castano, V. De Antonells,Constructive Approach to Reuse of Conceptual @oepts
Proceedings of Advances in Software Reuse : Selee@pers from the Second International
Workshop on Software Reusability, Lucca, Italy, BtaR4-26, 1993. R. Prieto-Diaz,W.B. Frakes
(Eds), IEEE Computer Society Press.

[Diamantini 99] C. Diamantini, M. PantiA Conceptual Indexing Method for Content-Based iRt
Proceedings of the TOInternational Workshop on Database and ExperteBystApplications
(DEXA’'99), Florence, Italy, September 1999.

[Harmsen 94] A.F. Harmsen, S. Brinkkemper, H. Ciiyational Method Engineering for Information ®yst
Projects In Olle T. W. and A. A. Verrijn Stuart (Eds.), Méds and Associated Tools for the
Information Systems Life Cycle, Proceedings of tRE> WG8.1 Working Conference CRIS'94,
pp. 169-194, North-Holland, Amsterdam, 1994.

[Harmsen 97] A. F. HarmseBjtuational Method Engineering/loret Ernst & Young , 1997.

[Heymans 98] P. Heymans, E. Dubo®genario-Based Techniques for Supporting the Ekdimr and the
Validation of Formal RequirementRequirements Engineering Journal, Vol. 3, No, 3998.

20

[Dubois 98] E. Dubois, P. HeymanScenario-Based Techniques for supporting the Elafiamm and the
Validation of Formal RequirementSubmitted to RE Journal, 1998.

[Jarke 99] M. Jarke, C. Rolland, A. Sutcliffe, Romges,The NATURE requirements Engineeririghaker
Verlag, Aachen 1999.

[Jilani 97] L.L. Jilani, R. Mili, A. Mili, Approximate Component Retrieval : An Academicrése or a
Practical Concern ?Proceedings of the ™8 Workshop on lIstitutionalising Software Reuse
(WISRS8), Columbus, Ohio, March 1997.

[LPR95] Le Petit Robert, French Dictionary, Dictimires LE ROBERT, France,1995.

[Maiden 98a] N.A.M. MaidenCREWS-SAVRE: Scenarios for Acquiring and ValidaRegjuirementsJournal
of Automated Software Engineering, 1998.

[Maiden 98b] N.A.M. Maiden, S. Minocha, K. Manninil. Ryan ,SAVRE: Systematic Scenario Generation
and Use. International Requirements Engineering Confere(i&RE’'98), Colorado Springs,
Colorado, USA, April 6-10, 1998.

[Papadopoulos 99] A.N. Papadopoulos, Y. Manolopgufstructure-Based Similarity Search with Graph
Histograms Proceedings of the f0International Workshop on Database and ExperteByst
Applications (DEXA'99), Florence, Italy, Septemtid99.

[Plihon 96] V. PlihonUn environnement pour l'ingénierie des méthodémse de doctorat de I'Université Paris
1, janvier 1996.

[Plihon 98] V. Plihon, J. Ralyté, A. Benjamen, NMA.Maiden, A. Sutcliffe, E. Dubois, P. Heymars Reuse-
Oriented Approach for the Construction of ScenaBased MethodsProceedings of the
International Software Process Association's 5Stlerirational Conference on Software Process
(ICSP'98), Chicago, lllinois, USA, 14-17 June 1998.

[Poels 00a] G. Poels, G. Dedeiistance-based software mesurrement : necessangatfidient properties for
software measuresnformation and Software Technology, 42, pp. 3520.

[Poels 00b] G. Poels, S. Viaene, G. DedeBéstance Mesure for Information System Reengingerin
Proceedings of the f'2Conference on Advanced Information Systems Emging CAISE'00,
Stockholm, Sweden, June 2000.

[Punter 96] H.T. Punter, K. Lemmemhe MEMA model : Towards a new approach for MetRodineering
Information and Software Technology, Vol. 38, Ngpf,295-305, 1996.

[Ralyté 99a] J. Ralyté, C. Rolland, V. Plihdviethod Enhancement by Scenario Based Technifueseedings
of the 11th Conference on Advanced Information &yst Engineering, Heidelberg, Germany,
June 14-18, 1999.

[Ralyté 99b] J. RalytéReusing Scenario Based Approaches in Requiremeginéaring Methods: CREWS
Method BaseProceedings of the First International Workshoptlte Requirements Engineering
Process - Innovative Techniques, Models, Tools uppert the RE Process, Florence, lItaly,
September 1999.

[Ralyté 01] J. Ralyté,Ingénierie des méthodes par assemblage de compos@hése de doctorat en
informatique de I'Université Paris 1. A paraitrejamvier 2001.

[Rolland 95] C. Rolland, C. Souveyet, M. Morenan Approach for Defining Ways-Of-Workingn the
Information Systems Journal, 1995.

[Rolland 96] C. Rolland, N. Prakasky proposal for context-specific method engineeritiggP WG 8.1
Conference on Method Engineering, Chapman and lgall191-208, Atlanta, Gerorgie, USA,
1996.

21

[Rolland 98a] C. Rolland, V. Plihon, J. Ralyt8pecifying the reuse context of scenario methodkshu
Proceedings of the T0Conference on Advanced Information Systems EngingeCAISE'98.
Pisa Italy, 8-12 June, 1998.

[Rolland 98b] C. Rolland, C. Souveyet, C. Ben AdhoBuiding Goal Modelling Using Scenario$EEE
Transactions on Software Engineering, special issu&cenario Management, Vol. 24, No. 12,
1055-1071, Dec. 1998.

[Rolland 98c] C. Rolland, C. Ben Achouguiding the construction of textual use case sppatibns Data &
Knowledge Engineering Journal Vol. 25 N° 1, pp. 18, (ed. P. Chen, R.P. van de Riet) North
Holland, Elsevier Science Publishers. March 1998.

[Rolland 99] C. Rolland, N. Prakash, A. Benjam@&nmulti-model view of process modellingequirements
Engineering Journal, p. 169-187,1999.

[Saeki 93] M. Saeki, K. Iguchi, K Wen-yin, M ShinahaA meta-model for representing software specificatio
& design methodsProc. of the IFIP"WG8.1 Conference on Informafigstems Development
Process, Come, pp 149-166, 1993. [Slooten 93]

[Slooten 93] K. van Slooten, S. Brinkkempek, Method Engineering Approach to Information System
Developmentin Information Systems Development process, Nkdst, C. Rolland, B. Pernici
(Eds.), Elsevier Science Publishers B.V. (Northdtol), 1993.

[Song 95] X. SongA Framework for Understanding the Integration ofsigmm Methodologiesin: ACM
SIGSOFT Software Engineering Notes, Vol. 20, N1.,46-54, 1995.

[Sutcliffe 98] A.G. Sutcliffe, N.A.M. Maiden, S. Mbcha, D. ManuelSupporting Scenario-based Requirements
Engineering. IEEE Transactions on Software EngingeSpecial Issue on Scenario Management,
Vol. 24, No. 12, 1998.

[Sutcliffe 99] A. G. Sutcliffe, J. Galliers and Binocha, Human Errors and System RequiremeRtsurth IEEE
International Symposium on Requirements Enginediitj99).

[Tawbi 99] M. Tawbi, C. SouveyetGuiding Requirement Engineering with a Process Mamceedings of
MFPE'99 : 2nd International Workshop on the Mangefa of Process Engineering, Gammarth,
Tunisia, 12-14, May 1999.

[UML 00] Rational Software CorporationUnified Modelling Language version 1.3Available at
http://www.rational.com/uml/resources/documentatio2000.

Appendix

The notion of a method chunk

Situational method engineering proposes to assernagnents of existing methods to
construct a new method. Based on the observatiah ahy method has two interrelated
aspects, product and process, several authors ggdpm types of method fragments : the
process fragments and the product fragments [Harn®8, [Brinkkemper 98]. In our
approach we associate these two aspects in thefeagneent that we call method chunk

A method chunk ensures a tight coupling betweenespracess part and its related product
part. It is a conherent module and any methodewe&d as a loosely coupled method chunks
of different levels of granularity [Ralyte 99b]. @modular view of the methods is favourable

to their adaptation and extension. Moreover, thévvpermits to reuse chunks of a given

method in the construction of new ones .

22

Figure 13 shows the method meta-model (using thel Uidtations [UML 2000]) which
defines our modular view of a method. Accordinghis meta-model a method is also viewed
as a method chunk of the highest level of graniylari

Product

is based on 1.% Model
relates
>
Choice
- 1 Product |1.*
- - - Part
Strategic Tactical Simple 1.
Guideline Guideline Guideline 1.
2% | | is based on target f
Nesting N
Link v N
AND/OR Link ; L.
relates 1 o 1 has 1
Guideline
represented hy
appartient a
.|
1 Method 12’: Chunk 1 Not-Chunk

! has 1 N

AggregateH Atomic |

1

1% Process
Model

has

Figure 13: The method meta-model

The definition of the method chunk is ‘process-dnvin the sense that a chunk is based on
the decomposition of the method process modelrietisableguidelines Thus, the core of a
method chunk is its guideline to which are attactiedassociategroduct partsnecessary to
perform the process encapsulated in this guideline.

A guideline is defined [LPR95] as ‘a set of indioas on how to proceed to achieve an
objective or perform an activity’. For us, a guidelembodiesnethod knowledg® guide the
application engineer in achieving an intention igieen situation. Therefore, the guideline
has aninterfacewhich describes the conditions of its applicapi(ithe situation) and body
providing guidance to achieve the intention, ieeptoceed in the construction of the target
product.

The interface is a coupkesituation, intention>which characterises : the situation that is the
input of the chunk process and the intention (thal)gthat the chunk achieves. The body of
the guideline details how to apply the chunk toiewh the intention. The interface of the
guideline is also the interface of the correspogdaiethod chunk.

Guidelines in different methods have different eons$, formality, granularity, etc. In order to
capture this variety, the meta-model identifie®éhtypes of guidelines : simple, tactical and
strategic.

A simple guidelinenay havean informal content providing some advice on how to proceed
in a narrative form. It can be more structured cosipg anexecutablelan of action leading
to some transformation of the product.

A tactical guidelineis a complex guideline which uses a tree structareelate its sub-
guidelines. This guideline follows tiéATURE process modelling formalism [Rolland 95],

23

[Plihon 96], [Jarke 99] which proposes two differstructures : the choice and the plan. Each
of its sub-guidelines belongs to one the threedygeauidelines.

A strategic guidelineis a complex guideline called a map which usesagply structure to
relate its sub-guidelines. Each sub-guideline lgddo one of the three types of guidelines. A
strategic guidelineprovides a strategic view of the development pgeceelling which
intention can be achieved following which strateglius, a map is a labelled directed graph
in which the nodes are the intentions and the edgesgeen intentions are strategies. The map
permits to represent a process allowing severtdréifit ways to develop the product. A set of
guidelines are associated to the map. They hel@pipiication engineer to progress in the
map and to achieve the intentions following selésteategies.

A descriptor (Figure 13) is associated to every method churie d@escriptor extends the
contextual view captured in the chunk interfacel@éfine the context in which the chunk can
be reused. Figure 14 shows the structure of a igéscr The two key elements of this
structure are theeuse situatiorand thereuse intention

Every chunk can be applied in one or several sysirgineering domains and can support
one or more activities in the system design proc@$e reuse situationcaptures this
information in theApplication domainand Design activityattributes. Thereuse intention
expresses the objective that the method chunk helpsitisfy in the corresponding design
activity. The descriptor also contains a narratescription of the objective of the chunk and
specifies its type (i.e. atomic or aggregate).diniifies theorigin of the chunk (i.e. the
originator method of the chunk). Thexperienceelement relates use experiences and
evaluates the usability of the chunk. Finally, #pplication exampleontains one or more
cases of the chunk application showing how it leenbassembled to other chunks.

contains .
1 Experience

Method . —
1 . Descriptor 1.* | Application
N 1. 1 1. Domain
Name origin Type <>—1 Reuse

Author Objective Situation
References Design
1 1 Activity

contains
* Example

Intention

Figure 14 : Structure of the chunk descriptor

24

