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EXTREME VALUES
OF RANDOM OR CHAOTIC DISCRETIZATION STEPS∗

By Matthieu Garcin† and Dominique Guégan

Université Paris 1 Panthéon-Sorbonne

Abstract

By sorting independent random variables and considering the dif-
ference between two consecutive order statistics, we get random vari-
ables, called steps or spacings, that are neither independent nor iden-
tically distributed. We characterize the probability distribution of the
maximum value of these steps, in three ways: i/ with an exact for-
mula; ii/ with a simple and finite approximation whose error tends
to be controlled; iii/ with asymptotic behavior when the number of
random variables drawn (and therefore the number of steps) tends
towards infinity.

The whole approach can be applied to chaotic dynamical systems
by replacing the distribution of random variables by the invariant
measure of the attractor when it is set.

The interest of such results is twofold. In practice, for example
in the telecommunications domain, one can find a lower bound for
the number of antennas needed in a phone network to cover an area.
In theory, our results take place inside the extreme value theory ex-
tended to random variables that are neither independent nor identi-
cally distributed.

1. Introduction. Ask hundred people to give a number between zero and a thousand,
and then sort their answers. What is the maximum step size between two successive val-
ues? This apparently simple question, depending of course on the probability distribution
governing the choice of the people, has a concise solution, highlighting the probability of
the maximum size of a step. The present article attempts to answer this question in a
more general context.

We can introduce the problem differently in order to identify its practical interest. We con-
sider a grid consisting of a certain number of independent, identically distributed random
variables. This grid can be used for various purposes such as, for instance, the recon-
struction of a signal. Indeed, imagine a mixing dynamical system and noting the state of
the system at random observation times, we want to reconstruct the entire attractor if
it exists. In order to solve this problem, it is useful to link the sample size to the size of
the greatest step between two successive values of the ordered variables drawn from the
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2 M. GARCIN, D. GUÉGAN

invariant measure of the attractor. This will provide an idea of the approximation made in
the reconstruction of the attractor. A practical question may be: How many observations
do we need to have a 95% probability (we are particularly interested in high quantiles) of
getting a maximum discretization step size below a certain threshold?

In this paper, we present three main results concerning the problem of extreme step.
First, we provide an exact formula for the distribution function of the maximum step size,
given in Proposition 1. This result being not easy to use in practice, we introduce some
approximations: a first approximation as given in Theorem 1 and easy to calculate, and
an asymptotic distribution as given in Theorem 2, when the number of random variables
tends towards infinity.

This discretization grid approach seems to have some similarities with Extreme Value
Theory and Monte Carlo or Quasi-Monte Carlo methods, nevertheless it presents some
conceptual differences. We list some below.

. Monte Carlo or Quasi-Monte Carlo methods: the core of the method involves cal-
culating expectations of a certain function using a discretization grid but it is quite
different from the method presented here. Indeed, authors use several kinds of dis-
cretization grids for Monte Carlo. Some of them [11] transform the probability dis-
tribution of the signal in order to draw more variables in significant areas and use
this importance sampling to the detriment of a small maximum step size in the grid.
Other authors [25][23] use deterministic low discrepancy sequences of variables in
order to reduce the step sizes. In contrast to these works, the discretization grid in
our study is simply composed of random variables drawn by a given distribution.

. Extreme Value Theory: the aim of such a theory is to describe the limit probability
distribution of the maximum (scaled and translated) of a set of independent and
identically distributed random variables [10][12][22]. Examples of non-independent
variables have been proposed to generalize the concept, for example by replacing
independence by a strong mixing condition [20][19][18][3]. Similarly, in our study,
we seek the probability distribution of the maximum of a set of random variables –
the discretization steps – which are neither independent nor identically distributed.
We provide two results, one with finite samples, the other one in an asymptotic
setting. Nevertheless, the problem of maximum step size, also known as maximum
spacing, is not new. Indeed, some theoretical articles, such as those of Lévy [21],
Deheuvels [4][5][6] and Devroye [7][8][9] address that problem of maximum spacing
for some distributions. These authors impose an asymptotic framework. We use a
different approach based on the countermonotonicity of the spacings which provides
approximations suitable for small samples. Stevens [26] obtained the exact distri-
bution for a finite sample, but only for a uniform distribution. Our results may be
applied to more general probability distributions.

Some applications using approximations of the distribution function of a maximum step
size exist: for instance, [1][2][24] consider an ad hoc network modelled by a set of identi-
cally distributed random variables, representing mobile antennas. Their goal is to find the
optimal transmission range of these antennas, in order for the network to work with a high
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EXTREME DISCRETIZATION STEPS 3

probability, in the sense that all the nodes would be connected. The maximum difference
between two random variables is crucial in this context. These articles make some approx-
imations and assumptions which are different from those in our approach. However, for
the uniform distribution, we obtain similar results in the asymptotic case which is their
framework. Our main contribution is thus the study of very general distributions in a
non-asymptotic case, taking into account the dependence of the steps.

The article is divided into three parts, describing successively the framework (Section 2),
the theory (Section 3) and some applications (Section 4).

2. Framework: building the discretization grid. We introduce some notations to
define the framework:

. U1, ..., UT are T > 1 independent and identically distributed real random variables;

. U1:T ≤ U2:T ≤ ... ≤ UT :T are the corresponding order statistics;

. δX and ∆X are the probability density function and the cumulative distribution
function of a random vector X; in particular, δU (supposed to be continuous) and
∆U are associated to the one-dimensional random variables U1, ..., UT ;

. Supp(f) is the support of the function f ;

. V1, ..., VT are the discretization steps, defined by:

Vt =

{
Ut:T − U(t−1):T if t > 1

U1:T − inf(Supp(δU )) else.

A question may arise about the expression of δU in practice. We mentioned in the in-
troduction the possibility that these random variables would be drawn according to the
invariant measure of the attractor of a dynamical system, if such invariant measure exists.
Despite the fact that such invariant measures are often difficult to identify, some attrac-
tors possess advantageous properties that allow us to find their invariant measure. The
book [13] addresses this problem and obtains the invariant measure of some chaos via the
Frobenius-Perron operator. We discuss these examples later.

Our goal is to determine the cumulative distribution function of the maximum step size,
∆ max
t∈{1,...,T}

Vt , and more specifically the probability that the maximum step size is below a

certain threshold v > 0:

∆ max
t∈{1,...,T}

Vt(v) = ∆V1,...,VT (v, ..., v).

Though we are able to identify δV1,...,VT , such a cumulative distribution function, ∆V1,...,VT ,
is difficult to calculate because of the successive integrations of the density δU . We pro-
pose different ways of approaching this distribution function. The first one reduces the
problem in determining a unique integral, and the other one adds a deterministic search
for maximum, which is algorithmically much less costly than the calculation of nested
integrals.

An additional difficulty concerns the dependence between all the step sizes: indeed, if the
step sizes were independent, the joint probability would be equal to the product of the
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4 M. GARCIN, D. GUÉGAN

marginal probabilities, and we would easily find a bound to the step size quantiles by
changing each of these marginal probabilities by the one of an ideal step corresponding to
the lowest density of the invariant measure (where step sizes are bigger). This dependence
forces us to use the theory of copulas. However, the expression of the copula for the vector
(V1, ..., VT ) requires explicit knowledge of the marginal probability of each component Vt.
Since this is not trivial, we simply build our approximation using a classical result of the
theory of copulas based on the Fréchet-Hoeffding theorem.

3. Main results. Before we turn specifically to the useful approximation of the proba-
bility distribution of the maximum step size, we present an intermediary result.

3.1. Exact probability distribution of the greatest discretization step size. The first propo-
sition deals with the exact probability distribution function of the maximum of all the
step sizes.

Proposition 1. Let U1, ..., UT be T > 1 independent and identically distributed real
random variables, with a probability density δU , and V1, ..., VT be random variables (the
discretization steps) defined by:

(1) Vt =

{
Ut:T − U(t−1):T if t > 1

U1:T − inf(Supp(δU )) else.

Then, the probability density function of the maximum of the step sizes, (V1, ..., VT ), is,
for v ≥ 0:

(2) ∆ max
t∈{1,...,T}

Vt(v) = T !

∫
[0,v]T

T∏
k=1

δU

(
k∑

m=0

vm

)
dv1...dvT ,

where v0 denotes inf(Supp(δU )).

Proof. First, we recall that the random variables V1, ..., VT are neither independent nor
identically distributed.

Let φ : RT −→ R be a Borel function. Let u1, ..., uT ∈ Supp(δU ) and v1, ..., vT ≥ 0. We
characterize the density δV1,...,VT of the vector of the steps, defined in equation (1), by:

E [φ(V1, ..., VT )] =
∫
RT φ(v1, ..., vT )1{v1≥0,...,vT≥0}δV1,...,VT (v1, ..., vT )dv1...dvT

=
∫
RT φ(v1, ..., vT )1{v1≥0,...,vT≥0}δV1+v0,...,VT (v1 + v0, ..., vT )dv1...dvT

=
∫
RT φ(u1 − v0, u2 − u1, ..., uT − uT−1)1{v0≤u1≤...≤uT }δU1:T ,...,UT :T

(u1, ..., uT )du1...duT .

The integration is done with the following substitution in order to link order statistics and
steps: 

u1

u2
...

uT−1

uT

 =



1 0 · · · · · · 0

1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

1 · · · · · · 1 1




v1 + v0

v2
...

vT−1

vT

 .
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EXTREME DISCRETIZATION STEPS 5

Since the Jacobian of such a substitution is 1, we get:

E [φ(V1, ..., VT )] =

∫
RT
φ(v1, ..., vT )1{v1≥0,...,vT≥0}δU1:T ,...,UT :T

(
1∑

m=0

vm, ...,

T∑
m=0

vm

)
dv1...dvT ,

which leads to:

(3) δV1,...,VT (v1, ..., vT ) = δU1:T ,...,UT :T

(
1∑

m=0

vm, ...,
T∑

m=0

vm

)
.

We also know [14] that the distribution function of the vector (U1:T , ..., UT :T ) of the order
statistics is:

δU1:T ,...,UT :T
(u1, ..., uT ) = T !

T∏
t=1

δU (ut)1u1≤...≤uT .

This relationship, used with (3), provides the joint probability density function of the
vector of the steps, (V1, ..., VT ):

(4) δV1,...,VT (v1, ..., vT ) = T !
T∏
k=1

δU

(
k∑

m=0

vm

)
.

Then we get:

(5)
∆ max
t∈{1,...,T}

Vt(v) = ∆V1,...,VT (v, ..., v)

=
∫

[0,v]T δV1,...,VT (v1, ..., vT )dv1...dvT .

Finally, the equations (4) and (5) provide the cumulative distribution function of the
maximum of the step sizes, that is to say equation (2).

The Proposition 1 shows that the calculation of the cumulative distribution function of
the maximum step size, ∆ max

t∈{1,...,T}
Vt(v), is difficult to compute because of the successive

integrations of the density δU . Thus, we now provide specific approximations.

3.2. Estimation of the distribution of the greatest discretization step size. We emphasized
the algorithmic difficulty of calculating the exact value of the cumulative distribution
function of the maximum step size. Indeed, it amounts to the calculation of T nested
integrals. Thanks to the theory of copulas, we propose a lower bound to the probability of
the maximum step size. Theorem 1 provides such a lower bound, whose value is obtained
by calculating a single integral.

Theorem 1. Let v ≥ 0 and U1, ..., UT be T > 1 independent and identically distributed
real random variables, with a probability density δU . We consider the random variables
V1, ..., VT (the discretization steps that are neither independent nor identically distributed)
defined in equation (1):

Vt =

{
Ut:T − U(t−1):T if t > 1

U1:T − inf(Supp(δU )) else.
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6 M. GARCIN, D. GUÉGAN

Then, there exists a lower bound ∆−, defined by:

(6) ∆− max
t∈{1,...,T}

Vt
(v) ≤ ∆ max

t∈{1,...,T}
Vt(v),

or, equivalently, for p ∈ [0, 1]:[
∆ max
t∈{1,...,T}

Vt

]−1

(p) ≤
[
∆− max
t∈{1,...,T}

Vt

]−1

(p),

such that:
(7)

∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1− T

∫ sup(Supp(δU ))

inf(Supp(δU ))+v
δU (u) [∆U (u− v) + 1−∆U (u)]T−1 du

}
.

In this theorem, we use the inequality of Fréchet-Hoeffding. We assume that the lower
bound is very close to the probability that we are interested in, because of the counter-
monotonicity of the variables studied, especially for high quantiles for which this effect
is more obvious and which corresponds to the objective of this article. Indeed, it is well
known that the lower Fréchet-Hoeffding bound does not correspond to any existing copula
in any dimensions higher than two. Kettler [15] proposes a realistic lower bound, corre-
sponding to the copula of step sizes when the support of δU is bounded. That seems to be
the best example of countermonotonic variables. However, since the marginal distribution
functions in our case are too complicated, we would rather use the Fréchet-Hoeffding in-
equality. The approach proposed by Kettler about step sizes encourages us to believe that
the Fréchet-Hoeffding bound is close to the reality that we are studying.

Proof. Let v ≥ 0. We recall that, according to the Fréchet-Hoeffding theorem, we can
write:

(8) max

{
0,−(T − 1) +

T∑
t=1

P(Vt ≤ v)

}
≤ P (V1 ≤ v, ..., VT ≤ v) ≤ min

t∈{1,...,T}
P(Vt ≤ v).

Moreover
P(Vt ≤ v) =

∫
R P(Vt ≤ v, Ut:T = u)du

=
∫
R P(Vt ≤ v|Ut:T = u)δUt:T (u)du,

which, by inverting the finite sum and the integral and using the Lemma 1 postponed at
the end of the article, leads to:
(9)∑T

t=1 P(Vt ≤ v) =
∫ sup(Supp(δU ))

inf(Supp(δU ))+v

[∑T
t=1 δUt:T (u)−

∑T
t=1

(
∆U (u−v)

∆U (u)

)t−1
δUt:T (u)

]
du

+
∫ inf(Supp(δU ))+v

inf(Supp(δU ))

[∑T
t=1 δUt:T (u)−

∑T
t=2

(
∆U (u−v)

∆U (u)

)t−1
δUt:T (u)

]
du.

We know the expression of the probability density function of the order statistic, given in
the proof of the Lemma 1 in equation (29):

δUt:T (u) =
T !

(T − t)!(t− 1)!
[∆U (u)]t−1[1−∆U (u)]T−tδU (u).
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Thus:

(10)

∑T
t=1 δUt:T (u) = δU (u)T

∑T−1
s=0

(T−1)!
s!(T−1−s)! [∆U (u)]s[1−∆U (u)]T−1−s

= δU (u)T [∆U (u) + 1−∆U (u)]T−1

= δU (u)T,

and, for any ρ > 0:

(11)
∑T

t=1 ρ
t−1δUt:T (u) = δU (u)T [ρ∆U (u) + 1−∆U (u)]T−1 .

On the other hand, for u < v + inf(Supp(δU )), ∆U (u− v) = 0 and therefore:

(12)
∑T

t=2

(
∆U (u−v)

∆U (u)

)t−1
δUt:T (u) = 0.

Thus, using equations (9) to (12), the sum of the cumulative distributions of the step sizes
becomes:

(13)
∑T

t=1 P(Vt ≤ v) = T − T
∫ sup(Supp(δU ))

inf(Supp(δU ))+v δU (u) [∆U (u− v) + 1−∆U (u)]T−1 du.

Finally, we use the lower Fréchet-Hoeffding bound (8) with the equation (13) and we
get (6) and (7).

Even though the exact probability is much closer to the lower Fréchet-Hoeffding bound
than to the upper one, we can provide an upper bound to the probability of the maximum
step size, for comparison, thanks to the upper Fréchet-Hoeffding bound:

∆ max
t∈{1,...,T}

Vt(v) ≤ ∆+
max

t∈{1,...,T}
Vt

(v),

with:
(14)

∆+
max

t∈{1,...,T}
Vt

(v) = min
t∈{1,...,T}

[
T !

(T − t)!(t− 1)!

∫
R

(
∆U (u)t−1 −∆U (u− v)t−1

)
(1−∆U (u))T−t δU (u)du

]
.

Theorem 1 provides an interesting expression, but in certain cases it will be difficult to
calculate it analytically. A good solution would be to discretize the integral which appears
in the theorem, in a way that preserves the fact that our estimator is a lower bound.
Thus instead of an integral, we can consider a sum together with a deterministic search
for maximum. This is the subject of the following corollary:

Corollary 1. Let v ≥ 0 and U1, ..., UT be T > 1 independent and identically distributed
real random variables, with a probability density δU . We consider the random variables
V1, ..., VT defined in equation (1). Assume that the support of δU is bounded. Let Θ ∈ N and
(S1, ..., SΘ) be a set of intervals forming a partition of [inf(Supp(δU )) +v, sup(Supp(δU ))].

We define ∆
−,(S1,...,SΘ)

max
t∈{1,...,T}

Vt
by:

(15) ∆
−,(S1,...,SΘ)

max
t∈{1,...,T}

Vt
(v) = max

{
0, 1− T

Θ∑
θ=1

[sup(Sθ)− inf(Sθ)] ρSθ(v)

}
,
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8 M. GARCIN, D. GUÉGAN

where:
ρSθ(v) = max

u∈Sθ

(
δU (u) [∆U (u− v) + 1−∆U (u)]T−1

)
.

Then:

(16) ∆
−,(S1,...,SΘ)

max
t∈{1,...,T}

Vt
(v) ≤ ∆− max

t∈{1,...,T}
Vt

(v)

and:
lim

max
θ∈[1,Θ]

[sup(Sθ)−inf(Sθ)]→0
∆
−,(S1,...,SΘ)

max
t∈{1,...,T}

Vt
(v) = ∆− max

t∈{1,...,T}
Vt

(v).

Proof. All the results are a direct consequence of the discretization of the integral ap-
pearing in Theorem 1, more precisely in equation (7):

∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1− T

∫ sup(Supp(δU ))
inf(Supp(δU ))+v δU (u) [∆U (u− v) + 1−∆U (u)]T−1 du

}
= max

{
0, 1− T

∑Θ
θ=1

∫
Sθ
δU (u) [∆U (u− v) + 1−∆U (u)]T−1 du

}
≥ max

{
0, 1− T

∑Θ
θ=1 [sup(Sθ)− inf(Sθ)] max

u∈Sθ

(
δU (u) [∆U (u− v) + 1−∆U (u)]T−1

)}
,

because, for u ∈ R, δU (u) [∆U (u− v) + 1−∆U (u)]T−1 ≥ 0. Then, with the definition of

∆
−,(S1,...,SΘ)

max
t∈{1,...,T}

Vt
in (15), we get (16).

3.3. Towards a limit distribution. One objective of the extreme value theory is to find the
limit distribution function of the maximum of a set of random variables. In the theory we
developed above, we did not consider limit distributions, but we tried to describe precisely
what happens for a given number of steps. Nevertheless, we can definitely present a limit
theorem describing the shape of the lower bound of the probability when drawing an
infinite number of variables.

Theorem 2. Let v ≥ 0 and U1, ..., UT be T > 1 independent and identically distributed
real random variables, with a probability density δU supposed to be differentiable. We con-
sider the random variables V1, ..., VT (the discretization steps that are neither independent
nor identically distributed) defined in equation (1):

Vt =

{
Ut:T − U(t−1):T if t > 1

U1:T − inf(Supp(δU )) else.

When v is greater than a certain threshold v̄(T ) such that lim
T→∞

Tg (v̄(T )) = 1, where

g : v 7−→
∫
R
δU (u)e−δU (u)vdu,

then:

(17) ∆− max
t∈{1,...,T}

Vt

( v
T

)
T→∞∼ max(0; 1− Tg(v)).
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EXTREME DISCRETIZATION STEPS 9

In the equation (17), we used the notation a(T )
T→∞∼ b(T ), for functions a and b. This

means that, when lim
T→∞

b(T ) 6= 0, then lim
T→∞

a(T )
b(T ) = 1.

Proof. According to Theorem 1:
(18)

∆− max
t∈{1,...,T}

Vt

( v
T

)
= max

{
0, 1− T

∫ sup(Supp(δU ))

inf(Supp(δU ))+v/T
δU (u) [∆U (u− v/T ) + 1−∆U (u)]T−1 du

}
.

Moreover, for u ∈ R, we get the Taylor expansions:

(19) [∆U (u− v/T ) + 1−∆U (u)]
T→∞

=
[
1− δU (u)

v

T

]
+ o

( v
T

)
,

because δU is differentiable. Thus:

(20)
[
1− δU (u)

v

T

]T−1 T→∞
= exp (−vδU (u)) + o

( v
T

)
.

Putting (19) and (20) together leads to:

(21) [∆U (u− v/T ) + 1−∆U (u)]T−1 T→∞
= exp (−vδU (u)) + o

( v
T

)
.

We can now integrate the Taylor expansion (21) and use it in (18):
(22)

∆− max
t∈{1,...,T}

Vt

( v
T

)
T→∞

= max

{
0, 1− T

∫ sup(Supp(δU ))

inf(Supp(δU ))
δU (u) exp (−vδU (u)) du

}
+ o (1) .

When v is greater than a certain threshold v̄(T ) such that lim
T→∞

Tg (v̄(T )) = 1, which

implies that the right part of the equation (22) is greater than zero, we get (17).

4. Examples for diverse invariant measures. We can apply the previous results to
any type of distribution known analytically. We give examples for the attractors charac-
terized by maps defined on [0, 1]. See Guégan [13] and Lasota and Mackey [16][17] for
interesting developments on the subject. We restrict to the logistic attractor and the 2-
adic attractor and we provide the distribution of their maximum step size. We also study
the case of a density with unbounded support: the exponential distribution. Finally, we
discuss the building of the discretization grid.

In addition, all our theoretical work can be applied without any modification to more
general probability density functions and thus to the search for the maximum step size for
any random variable.

4.1. Logistic attractor. The logistic attractor of parameter α is defined by the recurrence
relation:

Un+1 = αUn(1− Un).
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In a very general case, no theoretical result seems to reveal an invariant measure for the
logistic attractor. However, if its parameter is 4, which is then literally a chaotic system,
we know the existence and shape of the invariant measure, µ4 :

µ4 : x ∈ [0, 1] 7−→ 1

π
√
x(1− x)

,

in which we recognize a beta density function of parameters 1/2 and 1/2 – see Ulam and
von Neumann [27]. We represent the density in Figure 1. We note M4 as the associated
cumulative distribution function:

M4 : x ∈ [0, 1] 7−→
∫ x

0

1

π
√
y(1− y)

dy =
1

2
+

1

π
arcsin(2x− 1).

Figure 1. Probability density function µ4: invariant measure of the logistic attractor of parameter 4.

We apply Corollary 1 to this attractor and represent the result in Figure 2. We note that
the upper bound of quantiles (the corresponding curve is below the empirical distribution)
approaches reality for high probabilities, especially when increasing the number Θ of in-
tervals in the partition (S1, ..., SΘ). That proximity between the empirical quantiles and
our approximation corroborates the intuition that the step sizes are countermonotonic and
thus that the lower inequality of Fréchet-Hoeffding applied to the distribution of the step
sizes Vt is close to reality. Indeed, when a step Vt is much larger than others, there is less
room for other steps, therefore other steps will potentially be smaller.

For probabilities higher than 85%, the empirical quantile and its upper bound, calculated
for a partition of the support in 100 intervals, are nearly equal, as we can see in Figure 3.

4.2. 2-adic attractor. The r-adic attractor is defined by the recurrence relation:

Un+1 = rUn mod 1.
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Figure 2. Simulated cumulative distribution function (in black) of the maximum step size for the logistic
attractor of parameter 4, with T = 100. The simulation has been carried out with 10, 000 sets of T variables
drawn in the invariant measure of the attractor. In red, we represent the lower bound of the cumulative
distribution function (the upper bound of quantiles), specified in Corollary 1, for partitions of 10 (solid
line) or 100 (dotted line) intervals of equal size.

probability simulated quantile approximated quantile relative error

85% 0.0820 0.0825 0.6%
90% 0.0879 0.0881 0.2%
95% 0.0968 0.0977 0.9%
99% 0.1183 0.1199 1.4%

Figure 3. Empirical and approximated quantile of the maximum step size for the logistic attractor of
parameter 4, with T = 100. The simulation has been carried out with 10, 000 sets of T variables drawn
in the invariant measure of the attractor. The approximated quantile is calculated with Corollary 1 and a
partition of 100 intervals of equal size.
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Its invariant measure, when r = 2, is the constant function [13]:

µ2 : x ∈ [0, 1] 7−→ 1.

In fact, that is also the probability density function of a uniform random variable. We note
M2 as the corresponding cumulative distribution function, which is the identity function.

In this simple case, we can apply directly Theorem 1 without using a partition of the
support. We get the following expression for the lower bound of the distribution function:

(23)
∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1− T

∫
[v,1] [1− v]T−1 du

}
= max

{
0, 1− T (1− v)T

}
.

The limit distribution function is obtained thanks to Theorem 2:

∆− max
t∈{1,...,T}

Vt

( v
T

)
T→∞∼ max(0; 1− Te−v).

For this attractor, the upper bound is obtained from equation (14) by successive integra-
tions by parts or by recognizing Beta functions:
(24)

∆+
max

t∈{1,...,T}
Vt

(v) = min
t∈{1,...,T}

[
T !

(T−t)!(t−1)!

∫
R
(
M2(u)t−1 −M2(u− v)t−1

)
(1−M2(u))T−t µ2(u)du

]
= min

t∈{1,...,T}

[
T !

(T−t)!(t−1)!

(∫
[0,1] u

t−1 (1− u)T−t du−
∫

[v,1] (u− v)t−1 (1− u)T−t du
)]

= min
t∈{1,...,T}

[
1− (1− v)T

]
= 1− (1− v)T .

We represent both the upper and lower bounds in Figure 4. We note that the upper
bound of quantiles, corresponding to the lower Fréchet-Hoeffding inequality, converges
on the empirical quantiles for high probabilities. On the other hand, the lower bound of
quantiles, corresponding to the upper Fréchet-Hoeffding inequality, is very far from the
empirical quantiles. These two facts are consistent with our intuition that the step sizes
are countermonotonic.

For probabilities higher than 85%, the empirical quantile and its upper bound are nearly
equal, as we can see in Figure 5.

4.3. Exponential distribution. In order to give an example of unbounded support of prob-
ability density, we study the case of exponential random variables of parameter λ, defined
by the probability density function:

µλ : x ≥ 0 7−→ λe−λx,

and by the cumulative distribution function:

Mλ : x ≥ 0 7−→ 1− e−λx.
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Figure 4. Simulated cumulative distribution function (in black) of the maximum step size for the 2-adic
attractor, with T = 100. The simulation has been carried out with 10, 000 sets of T variables drawn in
the invariant measure of the attractor. In red, we represent the lower bound of the cumulative distribution
function (the upper bound of quantiles, equation (23)). In green, we represent the upper bound of the
cumulative distribution function (the lower bound of quantiles, equation (24)).

probability simulated quantile approximated quantile relative error

85% 0.0624 0.0630 1.0%
90% 0.0664 0.0667 0.5%
95% 0.0724 0.0732 1.1%
99% 0.0867 0.0880 1.5%

Figure 5. Empirical and approximated quantile of the maximum step size for the 2-adic attractor, with
T = 100. The simulation has been carried out with 10, 000 sets of T variables drawn in the invariant
measure of the attractor.
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We can apply directly Theorem 1, without using a partition of the support. We obtain the
following expression for the lower bound of the distribution function:

(25) ∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1− T

∫
[v,+∞)

λe−λu
[
1 + e−λu

(
1− eλv

)]T−1
du

}
.

Thanks to the substitution x = e−λu in (25), we get:

(26)
∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1 + T

∫
[e−λv ,0)

[
1 + x

(
1− eλv

)]T−1
dx
}

= max
{

0, 1− 1−e−λvT
1−e−λv e

−λv
}
.

In [9] we have an exact asymptotic formula for the cumulative distribution function of the
maximum step of an infinite set of exponential random variables which is:

∆max
t≥1

Vt(v) =
∞∏
k=1

(
1− e−λvk

)
.

We note that ∆− max
t∈{1,...,T}

Vt
may be written as:

∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1−

T∑
k=1

(
e−λvk

)}
,

which is the first-order expansion of:

(27)

T∏
k=1

(
1− e−λvk

)
when v is big. We find empirically that this product, inspired by the asymptotic formula
of [9], is an excellent approximation of the true distribution function. For this reason,
we can assert, for the example of exponential random variables, that high quantiles of
discretization steps are well approximated by our formula. We can check that in Figure 6.

The upper bound of quantiles has the advantage of being very fast to compute, and
although it is an approximation, we know where it stands in relation to reality: we chose
to overestimate the quantiles. Moreover, for probabilities higher than 90%, the empirical
quantile matches its upper bound.

4.4. Back to the building of the discretization grid. One of the motivations of this article
was: How many observations do we need to have a 95% probability of getting a maximum
discretization step size below a certain threshold?

As we are able to provide an upper bound of the quantiles (even more accurate for large
probabilities), we can get a minimum number of observations (T ) that allows the grid to
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Figure 6. Simulated cumulative distribution function (in black) of the maximum step size for exponential
random variables, with intensity λ = 0.1 and T = 100. The simulation has been carried out with 10, 000
sets of T variables drawn in the exponential probability distribution. In red, we represent the lower bound of
the cumulative distribution function (the upper bound of quantiles, equation (26)). Matching the black line,
we represent the approximation by the truncated product of the analytic asymptotic cumulative distribution
function, equation (27)), which coincides with the simulated distribution.

reach a target of proximity for all the nodes. As far as our approximation is an overesti-
mation of the quantile, then the minimum number of observations claimed by the same
approximation is also slightly higher than in reality. Thus, our approximation allows us to
build a discretization grid which is at least as accurate as we want.

For example, for a draw of random variables in the invariant measure of the 2-adic attrac-
tor, we recall the estimation obtained in equation (23):

∆− max
t∈{1,...,T}

Vt
(v) = max

{
0, 1− T (1− v)T

}
.

For a number of observations T and a given probability p, this leads to an upper bound
of the maximum step size:

(28) v ≤ 1−
(

1− p
T

) 1
T

.

We present this result in Figure 7, for various values of p.

As an illustration, with a 95% probability, a maximum step size of 0.02 is guaranteed for
T > 450. If the probability is 99.9%, then the condition becomes T > 663.

5. Conclusion. We introduced the problem of extreme values of random or chaotic
discretization steps with the facetious question:
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Figure 7. Upper bounds of the maximum step size (for the 2-adic attractor) as a function of the number
of observations (T ), as in equation (28). Each curve is for one probability, from the top right to the bottom
left, 99.9%, 99%, 95% et 90%.

Ask hundred people to give a number between zero and a thousand, and then sort their answers.
What is the maximum step size between two successive values?

The answer can be read, scaled, in Figure 7 if the distribution of such numbers is uniform:
the maximum step size is less than 67 with a probability greater than 90%, less than 74
with a probability greater than 95%, less than 88 with a probability greater than 99% and
less than 109 with a probability greater than 99.9%.

We have then obtained three main innovative theoretical results:

. in the Proposition 1, we give an exact formula for the distribution function of the
maximum step size;

. in Theorem 1, we give an approximation based on the countermonotonicity of the
step sizes and which is easy to calculate;

. in Theorem 2, we give a limit distribution, when the number of random drafts tends
towards infinity.

The contribution is interesting for the extreme value theory, since we consider the maxi-
mum of non-independent and non-identically distributed random variables. We also pro-
posed numerical applications mainly for invariant measures of chaos. More general proba-
bility distributions can be used too. We presented a practical application to quantify the
accuracy of a random or chaotic discretization grid. In further work, we will invoke the re-
sults of this paper to estimate the maximum error made when reconstructing attractors of
chaos by the technique of wavelets, applied to some observations forming a discretization
grid.
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APPENDIX A: LEMMA

In Lemma 1, used in the demonstration of Theorem 1, we introduce the conditional prob-
ability density of a step, given the position on its right.

Lemma 1. Let U1, ..., UT be T > 1 independent and identically distributed real random
variables, with a probability density δU . We consider the random variables V1, ..., VT (the
discretization steps that are neither independent nor identically distributed) defined in
equation (1). Let t ∈ {1, ..., T}, v ≥ 0 and u ∈ R. The probability density of Vt conditional
to Ut:T is:

δVt|Ut:T (v, u) = (t− 1)δU (u− v)
[∆U (u− v)]t−2

[∆U (u)]t−1

and the corresponding cumulative distribution function, defined by the conditional proba-
bility:

∆Vt|Ut:T (v, u) = P [Vt ≤ v|Ut:T = u] ,

can be expressed by:

∆Vt|Ut:T (v, u) = 1−
[

∆U (u− v)

∆U (u)

]t−1

.

Moreover, when t = 1, then Vt = Ut:T − inf(Supp(δU )) and the previous result can also be
written:

∆V1|U1:T
(v, u) = 1{u≤v+inf(Supp(δU ))}.

Proof. We prove the lemma in four steps:

1. We first need to have the probability density function of any order statistic. This is
a well-known result:

(29) δUt:T (u) =
T !

(T − t)!(t− 1)!
[∆U (u)]t−1[1−∆U (u)]T−tδU (u).

For the proof, see [14].
2. We also need to obtain the joint density function of two following order statistics,

for t ≥ 2. We first write the joint density function of all the order statistics:

δU1:T ,...,UT :T
(u1, ..., uT ) = T !

T∏
t=1

δU (ut)1u1≤...≤uT .

For the proof, see [14]. Then we integrate this equation:
(30)

δU(t−1):T ,Ut:T (ut−1, ut) =
T !

(T − t)!(t− 2)!
[1−∆U (ut)]

T−t [∆U (ut−1)]t−2 δU (ut)δU (ut−1).

3. We now want to obtain the joint density function of a step and the corresponding
order statistic on the right of the step. Let t ≥ 2. Let φ : R2 −→ R be a Borel
function. We characterize the density δUt:T ,Vt by:

E [φ(Ut:T , Vt)] =
∫
R2 φ(u, v)1{v≥0}δUt:T ,Vt(u, v)dudv

=
∫
R2 φ(ut, ut − ut−1)1{ut−1≤ut}δU(t−1):T ,Ut:T (ut−1, ut)dut−1dut.
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We implement the following substitution:(
ut−1

ut

)
=

(
1 −1
1 0

)(
u
v

)
.

Since the Jacobian of such a substitution is 1, we get:

E [φ(Ut:T , Vt)] =

∫
R2

φ(u, v)1{v≥0}δU(t−1):T ,Ut:T (u− v, u)dudv,

which leads to:
δUt:T ,Vt(u, v) = δU(t−1):T ,Ut:T (u− v, u).

This relationship, used with (30), provides the joint probability of (Ut:T , Vt):
(31)

δUt:T ,Vt(u, v) = δU(t−1):T ,Ut:T (u− v, u)

= T !
(T−t)!(t−2)! [1−∆U (u)]T−t [∆U (u− v)]t−2 δU (u)δU (u− v).

4. According to Bayes’ theorem, the conditional density function δVt|Ut:T is:

δVt|Ut:T (v, u) =
δUt:T ,Vt(u, v)

δUt:T (u)
.

With equations (29) and (31), we conclude for t ≥ 2 that:

δVt|Ut:T (v, u) = (t− 1)δU (u− v)
[∆U (u− v)]t−2

[∆U (u)]t−1 .

The cumulative distribution function is then obtained by integration:

∆Vt|Ut:T (v, u) = 1−
[

∆U (u− v)

∆U (u)

]t−1

.

The case t = 1 is trivial anyway. Indeed, U1:T = V1 + inf(Supp(δU )), and we get:

∆V1|U1:T
(v, u) = 1{u≤v+inf(Supp(δU ))}.
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