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Abstract: Prediction of physical particular phenomenon is based on knowledges of the
phenomenon. Theses knowledges help us to conceptualize this phenomenon throw different
models. Hidden Markov Models (HMM) can be used for modeling complex processes. We use this
kind of models as tool for fault diagnosis systems. Nowadays, industrial robots living in stochastic
environment need faults detection to prevent any breakdown. In this paper, we wish to evaluate
three Hidden Markov Models topologies of Vrignat et al. (2010), based on upstream industrial
synthetic Hidden Markov Model. Our synthetic model gives us simulation such as real industrial
Computerized Maintenance Management System. Evaluation is made by two statistical tests.
Therefore, we evaluate two learning algorithms: Baum-Welch Baum et al. (1970) and segmental
K-means Viterbi (1967). We also evaluate two different distributions for stochastic generation
of synthetic HMM labels. After a brief introduction on Hidden Markov Model, we present some
statistical tests used in current literature for model selection. Afterwards, we support our study
by an example of simulated industrial process by using synthetic HMM. This paper examines
stochastic parameters of the various tested models on this process, for finally come up with the
most relevant model and the best learning algorithm for our predictive maintenance system.

Keywords: Hidden Markov Models, model selection, learning algorithms, statistical test,
predictive maintenance, Aspin-Welch test, Kolmogorov-Smirnov test, p-value.

1. INTRODUCTION

Fault diagnostics techniques can reduce maintenance
downtime. According to Vrignat et al. (2010), we can
find two keywords in maintenance definition: maintain
and restore. The first one refers to preventive action. The
second refers to corrective action. Thus, maintenance op-
timization for reliability determines “optimal” preventive
maintenance. Events preceding a problem in maintenance
activities are often recurrent. Special events series should
inform us on next failure. For example, in mechanical
systems, noises, vibrations precede failure. The loss of
performances reflects failure or technical faults. Our works,
Vrignat et al. (2010), have shown that it was possible to
model degradation levels of a process and results have
shown that our approach combined with work of Zille
et al. (2007) can provide decision support for industrial
maintenance. We also showed in Vrignat et al. (2010) that
our model provided good failure prediction. Moreover, we
make a reference model, named synthetic model, which
fits to real industrial processes. Our goals consist here to
evaluate three different Hidden Markov Models topologies,
with parameters outcome from this industrial synthetic

model. The paper deals with the measurement of relevance
on Hidden Markov Models parameters, based on several
statistical criteria used in current literature.
The objective of this work is to evaluate the best Hidden
Markov Model, by using Kolmogorov-Smirnov test (Wang
and Schaalje (2009), Drezner et al. (2010)) and Aspin-
Welch test (Welch (1951), Held et al. (2010)). Calculation
is made with states and observations of three different
HMM topologies (figure 2). Symbols (or observations)
are produced by a synthetic HMM (the reference model),
using two different learning algorithms and two different
distributions of symbols.
The structure of this paper is as follows: in section 2, we
outline hidden Markov model and define its parameters.
We present criteria used to evaluate relevance of HMM
parameters, in section 3. We show the evaluation process in
section 4. Finally, we use our synthetic model to compare
several HMM topologies, from among a candidate set, with
previous criterion and then we try to give the best one, in
section 5.



2. HIDDEN MARKOV MODEL

We have chosen Hidden Markov Model to describe indus-
trial maintenance events. We first recall what are HMM:
A Hidden Markov Model (Rabiner (1989), Fox et al.
(2006)) is an automaton with hidden states which consists
of unobservable variable. This one represents the system
status to be modeled. Only output variable is observable.
Moreover, we get observations sequence from output of
the automaton. From now, we rename observations se-
quence as symbols, representing these observations (see an
example of model topology in figure 1). This is precisely
relevance of these symbols that we attempt to evaluate.
Hidden Markov Model is characterized by:

• State number;
• Number of distinct observation symbols per state,
observation symbols corresponding to the physical
output of the system being modeled;
• Distribution probability of state transitions;
• Distribution probability of observation symbols;
• Initial state distribution.

S1 S2 S3 S4

Symbols production
1: SEC
2: OT
3: NTR
4: OBS
5: . . .

Symbols production
HMM

π

λ1, µ1 λ2, µ2 λ3, µ3

Fig. 1. Four states Hidden Markov Model.

2.1 Markov Assumption

Basically, states prediction is not made more accurate
by adding a priori knowledge information, i.e. all useful
information for future prediction is contained in present
state of the process.

P (Xn+1 = j|X0, X1, . . . , Xn = i) =

P (Xn+1 = j|Xn = i).
(1)

2.2 Definitions for discrete Hidden Markov Model

We now describe variables for HMM:

• Let N , the number of workable hidden states and
E = {E1, E2, . . . , EN}, the set of this variable. Let
qt, the value of this variable at time t;
• Modeled process, must match to first-order Markov
assumption (see §2.1);
• Let T , the full number of observation symbols and let
X = {x1, x2, . . . , xT }, observations sequence of the
modeled process;
• Let A = {aij}, distribution probability of state

transitions with:
aij = P (qt+1 = Ej |qt = Ei)

1 ≤ i, j ≤ N, (2)

• Let B = {bj(m)}, distribution probability of observa-
tion symbol in j state, with:

bj(m) = P (Xt = xm|qt = Ej)

1 ≤ j ≤ N 1 ≤ j ≤ T, (3)

with Xt, value of observation variable at time t.
• Let π = {πi}, initial state distribution with:

π = P (q1 = Ei) 1 ≤ i ≤ N, (4)
• Hidden Markov Model will be set as: (A,B, π).

3. STATISTICAL TESTS

Most statistical tests assume that samples are taken ran-
domly to achieve Steinebach (2006). This sounds easy but
it is actually quite difficult to achieve.

3.1 NIST 1 Tests

In Rukhin et al. (2010), authors propose a statistical
package consisting in 15 different tests. These tests were
developed to test randomness of random number genera-
tors. NIST has verified the performance of these tests using
a Kolmogorov-Smirnov test of uniformity on the p-values 2
(see § 3.2). The purpose of this test is to determine whether
the number of ones and zeros in a sequence are approxi-
mately the same as would be expected for a truly random
sequence.
In our study, we use the frequency test of the NIST. This
test validates that our synthetic model gives real stochastic
symbols. The Decision Rule of the test, at the 1% Level,
is: If the computed p-values is < 0.01, then we conclude
that the sequence is non-random. Otherwise, we conclude
that the sequence is random.

3.2 Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is a statistical test that may be
used to determine if a set of data comes from a particular
probability distribution (Rukhin et al. (2010), Bercu and
Chafaï (2007)).

Empirical distribution function Fn(x) for X1, . . . , Xn sam-
ple is defined by:

Fn(x) =
1

n

n∑
i=1

δXi≤x, (5)

δXi≤x =

{
1 si Xi ≤ x,
0 sinon .

The Kolmogorov-Smirnov test statistic is defined as fol-
lows:

Dn = sup
x
|Fn(x)− F (x)|. (6)

1 National Institute of Standards and Technology
2 The probability (under the null hypothesis of randomness) that the
chosen test statistic will assume values that are equal to or worse than
the observed test statistic value when considering the null hypothesis.
The p-value is frequently called the “tail probability”.



3.3 Aspin-Welch test

Aspin-Welch’s test (Welch (1947), Welch (1951)), is de-
fined by t statistic in the following formula:

t =
x1 − x2√

σ2(
1

n1
+

1

n2
)

, (7)

σ2 =
n1σ

2
1 + n2σ

2
2

n1 + n2 − 2
, (8)

• xi: the ith sample mean,
• σ: an estimator of the common standard deviation of

the two samples,
• σi: samples standard deviation,
• ni: sample size.

4. EVALUATION PROCESS

We have used synthetic model to produce about 1000
data events. These simulated symbols, according to real
industrial process, are obtained by using uniform and
normal distribution. Correlatively, we produced states for
others topologies by using the same process. Afterwards,
these states are used to compare states models. Insofar
as states are obtained by different learning and decoding
algorithms (diagram of this process is given in figure 3):

• Baum-Welch learning (Baum et al. (1970)), decoding
by Forward Variable (Rabiner (1989)),
• Segmental K-means learning (Juang and Rabiner
(1990)), decoding by Viterbi, (Viterbi (1967)).

4.1 HMM topologies

Our studied models are represented by automata with
four oriented states. This stochastic automata represent
the degradation level of an industrial process, S4 to S1,
see figure 2. {S4, S3, S2} states, when process is run-
ning (“RUN”), and {S1} state, when process is stopped
(“STOP”). Topology 1 figure 2(a), describes all possible
transitions. With topology 2 figure 2(b), we need to go
through all states (S2 and S3) to go from hight level of
availability (S4) to low level of availability (S1). Figure 2(c)
shows the difference between topologies 2 and 3: S1 be-
comes a first state of breakdown.

4.2 Simulated industrial CMMS 3

Nowadays, every industrial factory uses preventive main-
tenance. Maintenance operators consign their actions and
observations in a centralized database. We show an exam-
ple of such database in table 1. For instance, symbols “PM,
OT, SP, . . . ” could characterize maintenance activities
carried out on industrial process. We recall the meaning
of selected symbols resulting from observations, in table
2. “SP” symbol corresponds to a stop of production units:
process state = “STOP” in table 2. It is a critical condition
that our research tries to minimize. Process state = “RUN”
when production units are running without failure. We
study here this kind of maintenance by using synthetic
3 Computerized Maintenance Management System

RUN

S1 S2 S3 S4

Symbols production
1: SEC
2: OT
3: NTR
4: OBS
5: . . .

Symbols production
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(a) Topology 1
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(b) Topology 2
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Symbols production
1: SEC
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3: NTR
4: OBS
5: . . .

Symbols production
HMM 3
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(c) Topology 3

Fig. 2. Four states Hidden Markov Models, (Vrignat et al.
(2010))

Name Date Ope. Cd IT N Code
Dupond 11/01/2007 Lubrication PM 20 1 9
Dupond 11/01/2007 Lubrication PM 20 2 9
Dupond 12/01/2007 Lubrication SEC 30 3 5
Dupond 12/01/2007 Lubrication PM 30 4 5
Dupond 13/01/2007 Padlock PM 10 5 6
Dupond 13/01/2007 Padlock NTR 30 6 5
Dupond 13/01/2007 Padlock NTR 30 7 5
Dupond 16/01/2007 Lubrication SP 90 8 1
Dupond 19/01/2007 Padlock OT 10 9 3

Table 1. Example of recorded events from a
maintenance database.

model (§4.4) to simulate real industrial environment. We
have chosen “λi” (failure rate) and “µi” (repair rate) of
HMM parameters (Vrignat (2010)), to match as possible,
with maintenance recording (table 1).



Synthetic model
Hidden Markov

Model 2
(reference)

Symbols generated
by Uniform
distribution

Symbols generated
by Normal
distribution

Topologies 1, 2 & 3

– Aspin-Welch test,

– Kolmogorov-Smirnov test.

Sequence analysis of 3 HMMs

Give the most relevant
HMM topology

Estimation of HMM Decoding sequences

Baum-Welch

Segmental
K-means

Forward
variable

Viterbi

Symbols generated
by Uniform
distribution

Symbols generated
by Normal
distribution

Baum-Welch

Segmental
K-means

– Kolmogorov-Smirnov test,
– Aspin-Welch test.

Sequences analysis of HMMs

Fig. 3. Matching model method, using synthetic model

Process states
RUN
STOP

Interventions type
1 SP (Troubleshooting / Stop Production)
2 SM (Setting Machine)
3 OT (Other)
4 OBS (Observation)
5 PM (Preventive Maintenance, Production not stopped)
6 SEC (Security)
7 PUP (Planified Upgrading)
8 CM (Cleaning Machine)
9 PMV (Preventive Maintenance Visit)
10 NTR (Nothing to report)

Table 2. Symbolic coding system of mainte-
nance interventions.

4.3 Industrial application

We try to understand the “signature” of industrial CMMS
by using HMM topologies. Furthermore, our approach can
provide decision support for organizing daily maintenance.
Our results presented in Vrignat et al. (2010), provide
good estimation of failure probability. Hence, we can help
experts to schedule maintenance activities.

4.4 Synthetic model

We have made our synthetic model with Matlab by using
four states oriented topology 2 presented in figure 2(b).
We have used this model feature because it has good per-
formance in maintenance activities (Vrignat et al. (2010)).
Then, we built sequences of data (also named “signature”)
using this model as the reference model, by injecting
stochastic symbols in this HMM. We have used these
symbols sequences as Markov chain (see table 3), to model

Label 1

Stop

Estimating
rate of
system

degradation

Run
with

degradation
level

Estimating - system
degradation

2 3 4 5 6 7 8 9 10

N Obs 10

NT
R

10

NT
R

9

PM
V

9

PM
V

5

PM

5

PM

6

SE
C

5

PM

5

PM

10

NT
R

N11

10

NT
R

12

1

SP

Fig. 4. Degradation of process.

degradation level of a process (example in figure 4). These

PM PM SEC PM PM NTR NTR SP . . .
Table 3. Sequence of a message from mainte-

nance database.

simulated symbols, according to real industrial process
(Vrignat et al. (2010)), are obtained by using uniform
and Gaussian distribution. We have used these symbols to
train three different HMM topologies, described in figure 2,
by using two different learning and decoding algorithms:
Baum-Welch learning, decoding by Forward Variable, and
Segmental K-means learning, decoding by Viterbi as we
seen before.

1000 symbols were produced by reference model (distribu-
tion in figures 5 and 6). Each sequence ends with a stop of
production (symbol SP in red) see figure 4. Then, we got
11 sequences in our 1000 simulated symbols. You can see
distribution symbols/states for the first sequence: HMM 1,
HMM 1/Baum-Welch and HMM 1/Segmental K-means al-
gorithms, in figure 7. Finally, we obtained states sequences
for each HMM outside. Later, these states are used to
make comparisons between 3 different HMM topologies
(figure 2), with statistical tests studied in section 3. Results
are shown in section 5. Diagram of our evaluation process
is given in figure 3.

SP SM OT OBS PM SEC PUP CM PMV NTR

1
2
3
4

0
50

10
0

15
0

States / Symbols, Normal distribution

Fig. 5. HMM sequences example, Normal distribution

5. RESULTS

First, we have verified the randomness of stochastic states
generated by the synthetic model (figure 5 and 6). The
random number generator is tested by frequency test § 3.1.
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Fig. 6. HMM sequences, Uniform distribution

NIST Test P-value
HMM Uniform law Normal Law

Topology 1 0.47 0.06
Topology 2 0.30 0.02
Topology 3 0.47 0.06

Table 4. p-value of states generated by syn-
thetic model

The results in table 4, show that all p-value ≥ 0.01 for
all HMM. Then we can consider that sequences of the
generator are random enough to apply others statistical
tests. Therefore we applied statistical tests on our three
Hidden Markov Models topologies figure 2. Aspin-Welch
figure 8(a) and Kolmogorov-Smirnov figure 8(b) give the
same results: most relevant model is topology 2, Baum-
Welch learning algorithm with Forward Variable decoding
is the best learning algorithm and finally, stochastic sym-
bols generated with normal distribution is the best way.
Kolmogorov-Smirnov test determines if two datasets differ
significantly. It has the advantage of making no assump-
tion about data distribution. This test is less sensitive than
Aspin-Welch test. This last one is intended for use with
samples having unequal variances.
Therefore, without a priori knowledge, we can give the
most relevant model in the way of statistical tests. Namely,
we verified that the best model, which provides the better
estimation of degradation level according to Vrignat et al.
(2010), fits to real industrial process, illustrated in figure 8.

6. CONCLUSION

After testing randomness of our stochastic symbols gen-
erated by the synthetic model generator, we have suc-
cessfully applied these two tests on three different HMM
topologies. The first one, uses Aspin-Welch and the second
one, uses Kolmogorov-Smirnov test. Given a set of obser-
vations sequences simulated by our synthetic model, we
verified that the most relevant model had the “goodness
of fit” i.e. how well model fits the set of observations
sequences. In a statistical way, topology of model 2 is the
best one. This corroborates results that model 2 is the one
which comes closest to real industrial process in Vrignat
et al. (2010). Thus, we specified our analysis from Roblès
et al. (2011) paper. This criterion also shown that Baum-
Welch learning algorithm with Forward Variable decoding
gives best results with normal distribution of stochastic
symbols. In our work on industrial breakdown prediction,

CM NTR OBS OT PM PMV PUP SEC SM SP

4
3
2
1

HMM 1 uniform distribution

0
5

10
15

(a) HMM–Reference

CM NTR OBS OT PM PMV PUP SEC SM SP

4
3
2
1

Model 1 / Baum-Welch, uniform distribution

0
5

10
15

(b) Baum–Welch

CM NTR OBS OT PM PMV PUP SEC SM SP

4
1

Model 1 / Segmental K-means, uniform distribution

0
5

10
15

(c) Segmental K–means

Fig. 7. First sequence, using normal distribution

determining the best model is expected to reduce signif-
icantly failure rate in production and in the same time,
to reduce power consumption. In further work, we will try
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Fig. 8. Statistical tests of Baum-Welch (B.W.) & Segmen-
tal K-means (S.K.) Algorithms

to test robustness of our synthetic model. Our researches,
are able to validate a real choice of a model: topology,
symbol,. . . without a priori knowledges on results.
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