On the curvature of two-dimensional optimal control systems and Zermelo's navigation problem

Abstract : The goal of this paper is to extend the notion of Gaussian curvature of two-dimensional surfaces to nonlinear time-optimal control systems in the plane by applying the moving frame method. This notion of curvature was introduced earlier by A. A. Agrachev and R. V. Gamkrelidze by means of Jacobi curves. Here we give a self-contained presentation of its two-dimensional version and apply the results to the well-known Zermelo navigation problem.
Type de document :
Article dans une revue
Journal of Mathematical Sciences, Springer Verlag (Germany), 2006, 135 (4), http://dx.doi.org/10.1007/s10958-006-0153-3. 〈10.1007/s10958-006-0153-3〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00706054
Contributeur : Ulysse Serres <>
Soumis le : vendredi 8 juin 2012 - 17:54:42
Dernière modification le : lundi 4 mars 2019 - 13:24:07

Lien texte intégral

Identifiants

Collections

Citation

Ulysse Serres. On the curvature of two-dimensional optimal control systems and Zermelo's navigation problem. Journal of Mathematical Sciences, Springer Verlag (Germany), 2006, 135 (4), http://dx.doi.org/10.1007/s10958-006-0153-3. 〈10.1007/s10958-006-0153-3〉. 〈hal-00706054〉

Partager

Métriques

Consultations de la notice

84