N

N

Characterization and Comparison of Google Cloud Load
versus Grids
Sheng Di, Derrick Kondo, Walfredo Cirne

» To cite this version:

Sheng Di, Derrick Kondo, Walfredo Cirne. Characterization and Comparison of Google Cloud Load
versus Grids. 2012. hal-00705858

HAL Id: hal-00705858
https://hal.science/hal-00705858

Submitted on 8 Jun 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00705858
https://hal.archives-ouvertes.fr

Characterization and Comparison of Google Cloud Load versusrids

Sheng D}, Derrick Kondd, Walfredo Cirné
HINRIA, France,?Google Inc., USA
{sheng.di,derrick.kond@inria.fr, walfredo@google.com

Abstract—A new era of Cloud Computing has emerged, but ~ Typical jobs come from web services (for meeting search
the characteristics of Cloud load in data centers is not perfectly queries, and online document editing and translations, for
clear. Yet this characterization is critical for the design of novel instance), and map-reduce applications (for buildingitece

Cloud job and resource management systems. In this paper, we . di f b d t i\ for inst
comprehensively characterize the job/task load and host load indices of web documents or email, for instance).

in a real-world production data center at Google Inc. We use Given those hypotheses, we characterize quantitatively
a detailed trace of over 25 million tasks across over 12,500 and statistically host and work load in commercial data
hosts. We study the differences between a Google data center centers, and compare and contrast properties of Cloudsrersu
and other Grid/HPC systems, from the perspective of bottwork Grid load. Bywork load, we refer to load due to incoming

load (w.r.t. jobs and tasks) andhost load (w.r.t. machines). In . .) .

particular, we study the job length, job submission frequency, jobs and their corresponding tasks S“t_’m'tted by gsers. By
and the resource utilization of jobs in the different systems, host load, we refer to load on a particular machine due
and also investigate valuable statistics of machine’s maximum to executing tasks. We use the sole teload to refer
load, queue state and relative usage levels, with different job generically to bothwork load andhost load.

priorities and resource attributes. We find that the Google data A detailed characterization of a system’s load is critical
center exhibits finer resource allocation with respect to CPU S

and memory than that of Grid/HPC systems. Google jobs are for optimizing its performance.. In t_he c.:ontext of.data ge:m,te
always submitted with much higher frequency and they are host and work load characterization is essential for job and

much shorter than Grid jobs. As such, Google host load exhibits resource management including but not limited to capacity

higher variance and noise. planning, virtual machine consolidation, load balanciaggl
task scheduling. For instance, by characterizing common
|. INTRODUCTION modes of host load within a data center, a job scheduler

Miron Livny once said, “I've been doing research in can use this information for task allocation and improve uti
Clouds before it was calledGrids’. This quote highlights lization. Alternatively, the resource management systam c
fundamental questions: what is novel in Clouds, and whaproactively shift and consolidate load via (VM) migratian t
are the real differences between Clouds and Grids? Pdtentianprove host utilization, using fewer machines and shgttin
differences can arise in many areas, including but not luinite off unneeded hosts.
to software configuration, resource and job management, and So, we investigate the following questions. First, what
monetary charging models. High-level differences betweerre the characteristics and statistical properties of veodk
Clouds and Grids are easy to identify. For instance, irhost load in Cloud data centers? Second, what are the key
Clouds, software configuration and management is eased viamilarities or differences of work and host load between
virtual machine images. Resource management is potentialiZlouds and Grids, and the implications for job/resource
more dynamic as virtual machines can be booted up anthanagement?
down over time. Charging models are pay-as-you-go. To answer those questions, we study a workload trace of

While high-level differences may be easy to identify, a production data center at Google [1]. Google offers sévera
the devil is in the details; substantiating such difference Cloud services, such as web search, interactive documents,
quantitatively andstatistically, specifically for work load and email, where users (indirectly) submit jobs without having
host load, is critical for the design and implementation ofto specify the details of their execution. As such, we believ
Cloud systems. It is challenging because it requires detailethis trace is representative of real-world Cloud workloads
traces of production and often proprietary Clouds. Moreove The trace contains detailed measurements reported every 5
such traces are often enormous, and one requires stdtistiaainutes of the states and events concerning users, joks, tas
techniques for summarizing and understanding the data. and hosts. In total, the trace contains details about over 25

At a high-level, one could hypothesize fundamental dif-million tasks executed over 12,500 hosts during 1-month
ferences in the time dynamics of load due to differencegime period.
in the types of users and applications. In Grids and HPC For comparison, we also characterize the work load and
systems, users often submit large scientific applicatians ohost load from different Grid systems, including AuverGrid
experimental research applications. In Cloud data center$2], NorduGrid [3], sharcnet [4], as well as other HPC clus-
users and applications are more commercial and interactivéers, from Argonne National Laboratory (ANL) [5], RIKEN

Integrated Cluster of Clusters (RICC) [6], METACENTRUM from [1]). Any newly submitted task will be first put in
cluster [7] and Lawrence Livermore National Laboratorythe pending queue, waiting for the resource allocation (the
(LLNL) [8]. step (1) as shown in the figure). As long as some available

We characterize the workload for Google’s jobs, based omesources meet the task’s constraints, it will be scheduled
Google’s trace data with over 670,000 jobs. By comparingonto the qualified resource for execution (step (2)). Users a
to the real-world trace of many other Grid systems and HPGllowed to tune their tasks’ constraints at runtime, adapti
systems, we find that Google jobs usually have much shortdp users’ needs and the environment (step (3)). For example,
length are submitted at higher frequency. Each Google jola user can expand the upper bound of CPU rate and memory
takes relatively a small share of resources, leading to aize for the task in the course of its execution. Any task may
much finer resource allocation granularity. Moreover, eactbe evicted by system, killed or lost during its execution.
Google job usually consists of only a single task; a typicalAfter its execution, it will enter into the dead state (stdp (
user job, such as keyword search, is relatively compact andnd (5)), and it can be resubmitted by users later (step (6))
self-contained. In contrast, in Grids, each job can consisto wait for further resource allocation.
of several processes running simultaneoulsy over multiple
cores. UPDATE RUNNING

With respect to host load, we give qualitative and quan-
titative descriptions of static metrics, such as machine’s
maximum host load. We also describe dynamic metrics,
such as queue state, and relative usage levels compared to
capacities. Interestingly, we find that host load in datdersn
has higher variance than in Grids. This is due to the fact that (§) suemr
the Google workload consists of a large number of short Figure 1. State Transitions of Google Tasks
tasks that complete within a few minutes.

For the remainder of the paper, we use the tedat

UNSUB

Basically, the Google scheduler processes high-priority
center, cluster, and cloudinterchangeably. In Section I, we t.aSkS before Iow-pr|or_|ty ones, and perf_orms the flrst-<:_on_1e
.) . . irst-serve (FCFS) policy on the ones with the same priority.

describe our modeling approaches in processing the Goog ‘, " . L .
e “best” resources will be used first, in order to optimally

trace data. In Section Ill, we comprehensively analyze th% . .
e . alance the resource demands across machines and minimize
characteristics of the workload for Google jobs and tasks o T
eak demands within the power distribution infrastructure

as compared to those of Grid jobs. We characterize th . : : S
. . . Teaching approximately optimal resource utilization. Isuc
host load of Google data center in Section IV, by taking k . .
a model will use the resources according to their abilities,

into account the variance of priorities, resources, anc tim) . : N
leading to an approximate load balancing situation.

periods. Finally, we discuss related work in Section V and .
. : X Based on the above task processing model, Google traced
conclude with future work in Section VI. L
over 25 million tasks that were scheduled/executed across
1. SYSTEM MODEL BASED ONGOOGLE' S TRACE DATA over 12500 heterogeneous machines within one month. All
the tasks are submitted with a set of customized constraints
task scheduling mechanism, and data contained in the trac%nd pnqrmes, which will be .dISCUSSGd later. More than
0 metrics are collected during the one month of task-

A Google cluster consists of many machines that are o . : .
. : event monitoring, including CPU usage, assigned memory,
connected via a high-speed network. One or more scheduler
. gbserved real memory usage, page-cache memory usage,
receive and process a large number of user requests (a.k.d’i

: o . 15k 1/0O time, and disk space.
jobs), each of which is comprised of one or more tasks. . .

g . When releasing the trace, Google normalized almost all
For instance, a map-reduce program will be handled ass@

In this section, we first briefly describe Google cluster’s

. .] oating-point values by its theoretical maximum value.
job with multiple reducer tasks and mapper tasks. Each ta g-p y . X
hese values were transformed in a linear manner. So, rela-

(actual!y represented asa Linux program pOS.S'ny congsti tive information about host load, for example, is preserved
of multiple processes) is always generated with a set of user

customized requirements (such as the minimum CPU rate IIl. ANALYSIS OF GOOGLE WORKLOAD

and memory size). Each job corresponds to one user, and In this section, we characterize the workload of jobs on

it may contain one or more tasks, which are the smallesh Google data center, by comparing it to that on other Grid
units of resource consumption. In addition, different task or HPC systems. Based on our characterization, we find that
have different scheduling priorities, and there are culyen Google jobs behave quite differently from the traditional

12 priorities in total. Grid jobs, especially with respect to job length, frequency
According to Google’s usage trace format [1], each taskof submission, and resource utilization.
can only be one of the following four statassubmitted, Based on Google’s trace, we first group the all 25 million

pending, running anddead, as shown in Figure 1 (excerpted tasks in terms of their job IDs, and then compute the

statistics (such as mean CPU usage and memory usage) 1
for each job. The Grid/HPC jobs to be compared are also

from real-world trace data, available from the Grid Workloa 08 f 1
Archive (GWA) [9] and Parallel Workload Archive (PWA) e
[10] respectively. 06 |

1) Job/Task Priority: In a Google data center, each task LgL

is submitted with a particular priority, which is selectedrh 0.4 J———
12 levels. Any tasks Wlth_ h|_g_h priorities are able to preempt RuverGria
other tasks with lower priorities. All of the tasks that bejo 02§ SHARCNET
i iori i] RICC «wieee
to the same job h_ave .the same priority. According to the METACENTHUM
histogram shown in Figure 2, there are three clusters of o ‘ ‘ . LLNL-Atlas
priorities, low priority (1~4), middle priority(5-8), and high 0 2000 J:S‘E‘;ngm (seiz(r)\(()i) 8000 10000
priority (9~12), for both jobs and tasks.
12*12 16x10° 17x10° 14x10° Thao Figure 3. The CDF of Job Length of Google and Grid Systems
14x10° % 120"
§ 12x10* e 10x10° 1 St 1
> 10x10* o 8x10° N(I)::s """
£ a0t £ 6x10° [5.10° o8 jomtr?gti% 08
E 6x10* E 4x10° L 06 L 06
F 4x10: . 8 0.4 | mmdis=23.19 8 7 mmis.0.82
2x10 . 4 1 joint ratio=6/94 04 / joint ratio=24776
® 1234567809111 1234567809101112 0.2 i 0.2 / Mags -
- - S 7 mmdis.
Job Priority Task Priority 0 e 0 e joint ratio
(a) The Number of Jobs (b) The Number of Tasks 005 1 15 2 25 3 35 4 0051 15 2 25 3 35 4
Task’s Execution Time (Day) Task’s Execution Time (day)
Figure 2. Statistics based on Different Priorities (a) Google’s Task Length (b) AuverGrid's Task Length

A.ISO’ We.can Ob.serve that mOSt of the jObS/taSkS a'r%igure 4. Mass-Count Disparity of Task Lengths (Google wse&Grid)
assigned with relatively low priorities (from 1 to 5). So
we study later the usage load level or idleness state of thénass” distribution. The “count” distribution simply refe
system from the perspective of different task prioritieer EF to the cumulative distribution function (CDF) as it counts
example, if a machine’s resource utilization is very fultbu how many items are smaller than certain size. The “mass”
over 90% of execution time is attributed to the tasks withdistribution weights each item, specifying the probapilit
low priorities, the machine can still be considered quite id that a unit of mass belongs to an item. Specifically, their
w.r.t the tasks that have relatively high priorities (ethe values are calculated based on Formula (1) and (2), where

values are greater than 4). f(t) is referred to as the probability dense function.

2) Job/Task Length: The length of a Google job or a Grid F.(z) = Pr(X <) 1)
job is defined as the duration between its submission time "
and its completion time. Its value could be affected by many Fon(z) = fgct f(t) dt)
factors, such as the work to be processed, the priority of the Jo t-f(t)dt

job, the system state (idle or busy) when it is submitted, By comparing the two curves, we can determine whether
and so on. We compare the cumulative distribution functiorthe distribution follows Pareto principle [12], heavy &ibr
(CDF) of the job length between Google and other Gridother statistical features. In the analygint ratio (a kind
systems in Figure 3. We observe that Google jobs are quitef Gini coefficient [11]) is a critical measure index, defined
shorter than Grid jobs: over 80% Google jobs’ lengths areas X/Y, meaning that X% of the items account for Y% of the
shorter than 1000 seconds, while most of Grid jobs aremass and Y% of the items account for X% of the mass. The
longer than 2000 seconds. This difference is mainly duemm-distance (abbreviated as mmdis.) shown in the figure is
to the fact that Grid jobs are usually based on complexefined as the horizontal distance of the two points that are
scientific problems, while Google jobs, such as keywordright in the middle of the CDF of the Count curve and Mass
search, are often real-time. curve. Longer distance means a larger number of period
We also compare Google task lengths to AuverGrid’s joblengths each with long duration.
lengths. We compare the mass-count disparity of the two Task lengths are 1.29 times longer on average in Auver-
systems in Figure 4. (We use the term task length and tastrid than in Google. However, AuverGrid’s maximum task
execution time interchangeably.) length is 1.61 times smaller than that in the Google cluster.
Mass-count [11] is a very important metric used to sum-Statistics shows that the average and maximum values of
marize the key features (such as heavy tails) for specific digask’s execution time among AuverGrid's 340,000 submitted
tributions. It is made up of the “count” distribution and the tasks are 7.2 hours and 18 days respectively, while those

in Google cluster are 5.6 hours and 29 days respectively.

Table |
THE NUMBER OF JOBS SUBMITTED PER HOUR

Through our analysis of task length’'s mass-count disparity

| ot task Googlf AG [NG [SN[ANL [RICC] MT [LINL
(see Figure 4), the distribution of Google’s task lengthg max # | 1421 | 818 | 2175 | 22334 | 132 | 4919 | 2315 | 240
exhibits the Pareto principle much more than that of Grid's| 2.7 _{ 52 | %5 [27 [126 |10 [121 | 24 |54
Specifically, about 94% of tasks’ execution times in Go®le’ [faimess | 094 | 035 | 011 | 004 | 051 | 0.14 | 0.04 | 0.23

data center are less than 3 hours. In contrast, only 700/|9 . h . d by th
of tasks in AuverGrid are smaller than 12 hours. Such g o COmParison, We use fe mean memory size used by the
difference in task length significantly impacts the fluctomt Job to evaluate its memory utilization.
of host load, which we discuss later.

3) Job Submission Frequency: Job submission frequency : (4)
is evaluated via the submission interval length between two WallClockTime
consecutive job submissions. This reflects the interagtivit We present the CPU usage and memory usage in Figure
between users/administrators and the systems. Figure & (a) and (b) respectively. In Figure 6 (a), we can observe
presents the CDF of the submission interval length. We cathat the CPU used by Google jobs is always smaller than
clearly observe that the submission interval length of G®og that of other Grid systems. Specifically, a large majority of
jobs is much shorter than that of Grid jobs, which meansGoogle jobs just need one processor per job at any time,
that the frequency of Google job submission is much highethough each job may contain multiple tasks submitted in
than that of Grid jobs. This can also be confirmed by Table la sequential order. In contrast, the jobs in AuverGrid and
which shows the minimum/mean/maximum number of jobsDAS-2 are likely parallel programs simultineously running
submitted per hour in Google and Grid/HPC systems. It ison multiple execution nodes.
observed that the frequency of Google’s job submission is As for memory usage, Google trace does not expose the
much higher than that of other Grid systems. exact memory size used by jobs but their scaled values

We use the fairness index [13] to demonstrate the stabilitgompared to the maximum memory capacity of each node.
of the job submission frequency. The fairness index isBy assuming the maximum memory capacity to be equal
defined in Formula (3), where; refers to the number of to 32GB and 64GB respectively, we could also compare
job submissions within one hour in different periods. TheGoogle jobs and Grid jobs with respect to their memory
higher value of the fairness index, the higher stability ofutilization. In Figure 6 (b), it is observed that the memory
the job submissions. Table | shows that Google jobs arsize used by Google jobs is always relatively small as users’
submitted with higher and more stable frequencies than Grighort-term, interactive jobs are dominant and not resource
jobs, while Grid job submissions exhibit significantly low intensive.

PU - ExeTimePerCP
CPU Usage — # of CPU - BExeTimePerCPU

fairness because of their strong diurnal periodicity.

CDF

04 |

3)

0.8

0.6

CDF

0.4

02 [/

0

=

Google
AuverGrid
DAS-2

0.8

0.6

CDF

0.4

| Googlor{NiaxCap=32GB) ——
ogle (MaxCap=64GB)

AuverGrid
SHARCNET
DAS-2

0

CPU Utilization over All Processors

1

2 3

4

(a) CPU Usage

(L=
0 200

400 600

800 1000

Memory Utilization over All Processors

(b) Memory Usage

Figure 6. CPU & Memory Usage of Jobs

Google
AuverGig - IV. ANALYSIS OF GOOGLE SHOSTLOAD
0.2 SHARCINL In this section, we first focus on the statistics of Google
RICG e

METACENTRUM
LLNL-Atlas

500

1000

1500

2000

clusters’ static metrics, such as machine’s maximum host
load on different attributes. After that, we will analyze

two types of dynamic metrics (queuing state and usage

Interval of Job Submission

levels), which change over time. Our analysis is based on
Figure 5. The CDF of Submission Interval of Google and Gridt&ys the observation of the Googles’ thousands of machines.
4) Job Resource Utilization: The last insight about the .) .
jobs is on their resource utilization, such as the CPU usag@- Analysis of Static Metrics
and the memory usage per job. We evaluate the CPU usageln the Google cluster, different machines have different
by the ratio of the cumulative execution time on one or morecapacities for various resource types (CPU, memory, page

processors and its wall-clock time, as shown in Formula (4)cache). So it is necessary to characterize the heterogeneit

as well as the maximum loads on different machines. Inoads are very close to their capacities. Specifically, fer t
the trace, the normalized hosts’ capacities are provided bgnachines with relatively low and middle CPU capacities,
dividing by the maximum value w.r.t. different attributes. and over 80% and 70% of these hosts’ maximum loads are
According to statistics, we further infer the upper boundequal to their capacities respectively. From Figure 7 (i) an
using the maximum resource usage value over the lifetiméc), we clearly see that the memory capacity among all ma-
of the trace for each host. That is, from the task usage on ehines can be split into four groups, and the expected values
given machine, we calculate the machine resource usage, anfl the maximum memory size consumed on machines are
use the maximum resource usage to indicate the machinekept around 80% of their corresponding capacities, which
valid ability. According to our Google co-author, this is a implies that the memory overhead of each machine must
valuable estimate, since the capacityusble resource in be non-negligable. In comparison, the summed assigned
user space is often less than flnd capacity due to system memory size is around 90% of the capacity with high
overheads (from the kernel, for instance.) probability. The page cache capacities on machines are the
same as each other, while the maximum consumed values
According to the statistics on 12500 machines, Figureshows a clear bimodal distribution.
7 shows the probability distribution of the maximum con- _ _ .
sumed host load during the whole lifetime of the trace,B: Analysis of Dynamic Metrics
w.r.t. the four significant attributesCPU usage, memory We investigate the characteristics of the dynamic features
consumed, memory assigned, and page cache used. CPU of the resource metrics appearing in the Google cluster
usage is measured based on CPU core seconds per s#@ce data. We also compare the load changes between Grid
ond, that is, the more cores a machine owns, the higheplatform and Cloud platforms, with respect CPU usage and
computation ability it would have. The consumed memorymemory usage.
indicates the practical value of the memory size consumed 1) Machine's Queuing State: A machine’s queuing states
by applications, while the assigned memory means thé&efer to the number of tasks that are kept in different states
memory size allocated to the applications. The page cach@ending, running, finish, or abnormal) respectively. Tie d
metric records the total amount of Linux page cache (i.e.fribution of states changes over time as new tasks are submit
file-backed memory) including both mapped and unmappeded/scheduled or old tasks are finished normally/abnoymall
pages. Recall that all the usage values in the Google tracEask’s abnormal termination is due to one of the following
are normalized based on the corresponding maximum nod@ur task eventsgvicted by higher priority tasksfailed
capacity, we can only show the relative heterogeneity auste because of task failureslled by its user, andost because
of the exact amounts. The black dotted line in the figureof its missing source data.

indicates the normalized heterogeneous capacities,ferg., Different task events occur with different frequencies,
all machines, CPU'’s capacities are 0.25, 0.5 and 1; memory'ut different machines exhibit similar distributions oreth
are 0.25, 0.5, 0.75 and 1. different types of events. We present the task event trace of
] 0.07 a particular machine, in Figure 8 (a). We use the black lines
: :Cap.=0.25 —— Cap.=0.256 ——
o ; 82%=o.?— 0.06 Cé‘ép.go?.g (between start time and end time) to indicate the running
: H ap. ap.=0. : .
o ' 0.05 |~ Cap.=t period for each task.
. 0.04 : : :
IEL IEL 0.03 6000 s ugmiT - 4000 e BiNG ——
0.4 - H 500§CHEDULE * e £ 3500 F RUNNING eseeseres
0.02 EVICT P 8 3000 FINISH wc
02 : 4000 FAIL « = | = >""ABNORMAL
0.01 =] FINISH - 4 5 2500
° J / ; % 3000 Ker A 8 2000
0 02 04 06 08 1 0 02 04 06 08 1 ul LOST s E 1500
Normalized Maximum Host Load Normalized Maximum Host Load 2000 e > 1200
P ———)
(@) CPU usage (b) memory usage 1000 emi=imimRmm————— 1 F g5 #
1 o
0 0 k=
025 =025 —— 0.025 0 5 10 15 20 25 30 0 2 4 6 81012141618202224262830
02 Cap.=0.5 - Cap.=1 Time (Day) Time (Day)
- Cap.=0.75 0.02
Cap.=1 (a) Task Events (b) Queuing State
u 0.15 ; ; ; w0015
Y & o Figure 8. Task Events and Queuing State on a Particular Host
0.05 } 0.005 Based on the different states the tasks are treated over
0 LA . " time, we can imagine them being kept in different queues
0 02 04 06 08 1 0 02 04 06 08 1 (pending-queue, running-queue, dead-queue) on the ma-
Normalized Maximum Host Load Normalized Maximum Host Load . . .
_ chines. For example, we define thenning queue state to
(c) memory assigned (d) page cache memory be the number of running tasks at some time point. Figure 8
Figure 7. Distribution of Maximum Load (b) also presents the queuing states over time. Specifically

Figure 7 (a) shows that most of machines’ maximum hosthe running-queue state increases gradually from zero to

40 and then this number will be kept stable until the end The relative usage of a machine’s resource is most relevant
of the trace. The pending-queue state (i.e., the number dbr load prediction. We define a machine&source usage
pending tasks) is always 0 (except for the bootstrap periotb be the ratio of the usage of some attribute to its capacity.
of the system), which means that each task is able to b&he range of resource usage is thus[in1]. We will
immediately scheduled as it is submitted. Moreover, thealso useresource utilization, usage level andload level
number of finished tasks increases linearly and many ointerchangeably. We will characterize in detail CPU and
them belong to the abnormal-completion state. According tanemory resource usage in the following sections.

statistics, for the totally 44 million task-completion evg , 2) Machine's Usage Level: Based on the scaled CPU
about 59.2% are abnormal ones, among which most of theroapacity information provided by the Google trace, we can
belong to thefail state (50%) or théill state (30.7%). compute the relative usage level (or load level) for the CPU

We show more statistics about running tasks on nodestnd memory relative to their capacity on each machine. As
since the system’s dynamic state is mainly attributed to thdollows, we present a snapshot of the relative CPU/memory
running tasks instead of the pending or finished ones. wésage on 100 randomly sampled machines, before discussing
split the running-queue state into 6 intervals based oemiff agdgregate statistics and distributions.
ent number of running tasks, [0,9], [10,19], [20,29], [39,3 In terms of the distribution of the number of tasks
[40,49], [50; - -]. Then, we analyze the mass-count disparityWith different priorities (as shown in Figure 2), we split
of the period lengths in which the running-queue state isll jobs/tasks into three categories, with low-priority-4),
unchanged. We observe the distribution of these lengths ovéniddle-priority (5-8) and high-priority (9-12) respeatiy.
all machines (see Figure 9) exhibits the Pareto principld0r @ particular attribute with a specific priority category
especially from the perspective of the joint ratio and mm-(€.9., CPU usage of the mid-+high priority tasks), we further
distance metrics. That is, the majority of the unchangeddivide the whole usage range into five equal intervals,
state lengths are quite short. In Figure 9, we just show foupnd plot a trace of dynamically changing load levels over
major intervals for simplicity. It is obvious that the firstree time for 50 randomly sampled machines. This depicts the
intervals follows the 10/90 rule, while the last one ([4Q)49 System’s idleness level from the perspective of the tasks wit
follows the 15/85 rule. The distribution is thus skewed asdifferent priorities.
about 90% of tasks have very short continuous durations From Figure 10 (a)(d), we observe that CPU and
and contain 10% mass. Moreover, the first three interval§nemory usage differ. Specifically, Figure 10 (a) shows that
also show a similar mm-distance, while the last one present&0st of the machines are relatively idle compared to their
a much smaller mm-distance. This implies that the [40,49apacities in most of time (from the beginning to the 21th
running-queue state changes much more frequently than tit2y and from 25th day till the end). Such an idle situation

other ones. is attributed to the inten_tion by rese_rvin_g a certa_in of CPU
1 1 resources to meet service level objectives (for instance, a
08 r/ 08 F, threshold on web request latency) in case of unexpected load
v 06 e Y P spikes. From the perspective of high-priority tasks, havev
a e [a) i . .
© 04 e mmdis.=972 © 04 " mmdis =845 the percentage of host load is not that heavy, as shown in
ozl Gount —— o Count Figure 10 (b). This means that most of the CPU resources
) [lointratio=11/89 | mMeLS, . Joint o= 2/E8 T from the Google computer cluster are actually consumed by
0 500 1000 1500 2000 O 500 1000 1500 2000 low-priority tasks, especially in the busy duration (froiil2
Time Period (minute) Time Period (minute)

day to 25th day). Hence, it is relatively easy to allocate idle

(&) # of running tasks = [10,19] (b) # of running tasks = [20,29] CPU resources for the tasks with high priorities.

! ! Figure 10 (c) and (d) present the snhapshot of the load
08 08 changes about memory usage. We can see that the majority
w 06 e Y. - of machines’ memory usage is high compared to their
e s = dis.=370 o . . .
Coaf MM 2201 Coaf MM count capacities. Moreover, their fluctuations are quite unltat t
oun i oun! .p . y
R 02 gt rato=teiga 3RS of CPU usage. S_pecn‘llcally, some machines memory usage
N joint rafio ol joint ratio are always relatively lightly-loaded (the green lines show
0 500 1000 1500 2000 0 500 1000 1500 2000 H s . H
Time Period (minute) Tirme Period (minute) in the figure); some are often heavily loaded (the black and

red lines); some memory usage always alternate between
two load levels; and there also exist a few machines that
demonstrate completely irregular changing memory usage.
By studying the number of running tasks, we realize that We use Table Il and Table Ill to show the statistics the
the duration in which the running-queue state is constant odurations where CPU or memory usage are constant. The
each machine can be several hours on average. This meaststistics are computed using all the tasks (including all
that the running-queue state is relatively stable. priorities) running on all of machines. It is obvious thaé th

(c) # of running tasks = [30,39] (d) # of running tasks = [40,49]

Figure 9. Mass-Count of Duration in Unchanged Queuing State

w

Machine ID
N

w

N

Machine ID

w

Machine ID
Machine ID

0 5 10 15
Time (Day)

20 25

5 10 15 20

Time (Day)

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (Day) Time (Day)

T [0.4,06] ——
1 [0.6.0.8] =

[0.8,1] = ‘

[0.4,06] ——
[0.6.0.8] ==

[0.8,1] e ‘

% [0.4.06] ——

[0.8,1] e ‘ 0,0.2] [0.4,0.6] ==
[0.6.0.8] =]

08.1] —— ‘
[0.6.0.8] =——

(a) CPU Usage with All Tasks

(b) CPU Usage with Hi.Pr. Tasks

(c) MEM Usage with All Tasks (d) MEM Usage with Hi.Pr. Tasks

Figure 10. Snapshot of Resource Usage Load

continuous duration of CPU load approximately conformsvalue of joint ratio.

to 30/70 rule, while memory’s conforms to 20/80 rule. 1 - 1

Moreover, the frequency of the CPU load changes is very os
high, in that the average duration is only about 6 minutes os
and the mm-distance is also small {149 minutes). S oa
Due to the limited space, we cannot show the complete ,
statistics from the perspective of middle/high-priorigsks,

mdis.=13%
joint ratio=40/60
Count

Mass
mmdis.
joint ratio

CDF

0.8

0.6

0.4

0.2

£ mmdis.=13%
‘joint ratio=38/62
Count

Mass
mmdis.

joint ratio

but just present a few as follows: As for CPU usage, the %o
uninterrupted load duration is~8 minutes on average,
and the joint ratio is always about 30/70, in the situation
where only middle/high-priority tasks or high-prioritystes

60% 80%
Percentage of Usage

100%

Figure 11.

are taken into account; as for memory usage, the joint
ratios are about 20/80 and 15/85 for the middle/high-psiori

tasks and high-priority tasks respectively. In particiar 4
high-priority tasks, CPU’'s mm-distance mainly appears in o4

0.8

0.6

joint ratio=43/57,/
mmdis.=8% /x"

(a) low+mid+high priority tasks

0 20% 40%

60% 80%
Percentage of Usage

100%

(b) high priority tasks

Mass-Count Disparity of CPU Usage

‘mmdis.=13%

14~.40, except for [0,0.2] whose mm-distance is 371, while o2
memory’s is in [560,1700], which clearly indicates that the
CPU usage changes much more frequently than that of

memory usage over time.

Table Il

CONTINUOUS DURATION OF UNCHANGED CPU USAGE LEVEL

[0,0.2] | [0.2,0.4] | [0.4,0.6] | [0.6,0.8] | [0.8,1]
avg value (minute) 6 6 6 6 5
max value (minute) 41269 | 40302 3590 1452 2575
joint ratio 26/74 28/72 30/70 30/70 27173
mm-distance (minute) | 49 25 18 19 24

Table Il

CONTINUOUS DURATION OF UNCHANGED MEMORY USAGE LEVEL

[0,0.2] | [0.2,0.4] | [0.4,0.6] | [0.6,0.8] | [0.8.1]
avg value (minute) 6 9 10 10 10
max value (minute) 31556 | 40302 10996 16736 16826
joint ratio 20/80 | 23/77 26/74 23/77 18/82
mm-distance (minute) | 119 83 63 95 351

_/joint ratio=41/59

4 Count
Mass
mmdis.

0 g joint ratio

20% 40% 60% 80%
Percentage of Usage

mmdis.
joint ratio
0 20% 40% 60% 80% 100% 0
Percentage of Usage

100%

(a) low+mid+high priority tasks
Figure 12.

(b) high priority tasks
Mass-Count Disparity of Memory Usage

Finally, we explore the difference of load changes be-
tween Cloud and Grid, by comparing the resource usage of
Google’'s compute clusters and those of AuverGrid [2] and
SHARCNET [4], whose trace data can be downloaded from
the Grid Workload Archive (GWA) [9].

In Figure 13, we present the CPU usage load of three
machines, selected from the Google cluster, AuverGrid
and SHARCNET, within one month, 5 days and 1 day
respectively. What is the most interesting is that Grid's CPU
usage is always higher than memory usage. This because

Now, we focus on the distribution of the mass-count dis-most Grid jobs are computation-intensive. By contrast, in
parity of the relative resource utilization whose valuagga
from 0% to 100%. Figure 11 and Figure 12 present suchhan memory usage. This implies that Google tasks are not
statistics about CPU usage and memory usage respectivepompute-intensive programs and they use other resources
By comparing the two figures, we can further confirm thatsuch as memory more intensively.
the CPU usage is much lower than memory usage, relatively. The second key difference observed is that Google clus-
Specifically, the percentage load of CPU is about 35% W.r.tio's CPU load has higher noise than the other two Grid
all the tasks and about 20% for the high-priority tasks, ®hil systems. We measure noise by processing the trace with
memory’'s are about 60% and 50% respectively. In additiong” mean filter [14], and then computing statistics on the
we can also know that the distribution of usage is relativelyyransformed trace. The minimum/mean/maximum noise of
uniform because of the small value of mm-distance and larg, ,erGrid’s CPU load ar®.00008, 0.0011, 0.0026 respec-

the Google cluster, a machine’s CPU usage is usually lower

tively, while those for the Google cluster's CPU load areperformance characteristics of the NIBC BLAST application
0.00024, 0.028, 0.081 respectively. It is clear that the noise on a cluster environment. In our research, we comprehen-
of Google cluster’s usage load is about 20 times as large asively compare the workload between Cloud (Google) and
that of Grid’s on average. other Grid systems, showing much shorter job length and
* much higher submission frequency in Cloud systems. D.
Kondo [19] analyzed the resource availability of Desktop
Grid systems based on the traces collected from different
Grid softwares, including the Entropia DCGrid desktop grid
N O R [20], XtremWeb desktop grid [21] and so on. Our key
contribution is to exploit the key insights about the woedo
and host load between Cloud and Grid systems, serving as a

(a) Google [0,30] (b) Google [10,15] (c) Google [10,11]

N = L fundamental basis for the system performance improvement

B over Cloud systems.

e D — Despite some works [15], [22], [23] also characterizing

A L T A T workload features for Cloud systems, they mainly focus on
S T T T e T e modeling running tasks such as tasks’ placement consgraint

(d) AuverGrid [0,30](e) AuverGrid [10,15)f) AuverGrid [10,11] [15] or usage shapes [22]. Specifically, B. Sharma et al. [15]

| ‘ carefully studied the performance impact of task placement

cpu_usage —— cpu_usage ——
m_usage

o2 e K ” constraints based on the resource utilization from the view
MW of tasks. Q. Zhang et al. [22] designed a model that can

F E characterize task usage shapes in Google’'s compute clusters

s R R e e In comparison to these two works, we intensively compare
e e ' e the load characteristics between Cloud and Grid systems,

(9) sharcnet [0,30] (h) sharcnet [10,15] (i) sharcnet [10,11] and summarize many new insights about Cloud load.
Figure 13. Host load Comparison between Google cluster & Systems A. Khan et al. [24] designed a model to capture the CPU

Lastly, Figure 13 also shows that the host load of Au-load auto-correlations in the Cloud data centers by leverag
verGrid and HARCNET is more stable during relatively ing the Hidden Markov Model (HMM). B.J. Barnes et al.
long periods (e.g., a few hours), while Google cluster'slloa [23] introduced a regression-based approach for predictin
changes rather frequently even in quite short periods,aéns Parallel application’s workload, and the prediction errcas

minutes in length. Over all hosts, the mean autocorrelatfon be' limited between 6.2% and 17.3%. In comparison, by
CPU usage load is abouts x 10~6, which is much smaller USing Google cluster's large-scale one-month trace daga, w

than AuverGrid’s CPU autocorrelation (06 x 10~8). This c_omprehensively :_studied _the h_ost load changes about mul-
is mainly due to the fact that Google cluster has to procesiPle resource attributes (including CPU, memory and page
millions of tasks, a large majority of which are smaller than¢ache) in Cloud data centers. Specifically, we characterize
in Grids, as shown in Figure 8 (a) and Figure 4. The fact thaf"® machine capacity, queuing size (the number of running
majority of Google’s tasks are smaller will definitely lead {@sks), the impact of task priority and task events, usage
to much finer resource usage and introduce more instabili}eVels and so on.

in terms of host load fluctuation. Moreover, as described in VI. CONCLUSION AND FUTURE WORK

[15], Cloud tasks’ placement constraints may also be tuned

:Jhye ljrzircjsu:gzqﬂteil?ztgtigxesri t'r:ri}ﬁ:’amrlc%znﬁy;?n:i 'rr:gictdata center and compare them to those of Grid systems. We

. . 9 y., ' use a detailed workload trace of a Google data center with
challenging to predict Google cluster’'s host load becatse o - .
o . over 25 million tasks executed over 12,000 hosts in a 1-
its higher noise and and more unstable state.

month time frame, and the trace data from many Grid/HPC

We characterize the work load and host load in a Google

V. RELATED WORK systems. Our key findings are summarized below:
There is much related work on the characterization of Wth respect to Work load of Job or Task:
workload and host load for Grid systems. H. Li [16] studied — Job/Task length: Most jobs finish in tens of minutes
the workload dynamics on clusters and Grids, based on the and tasks finish quickly on the order of a few
real-world trace provided by Grid Workload Archive (GWA) minutes. Statistics show that about 55% of tasks
[9]. His work revealed many features about Grid load, which finish within 10 minutes and about 90% of tasks’
can be leveraged to improve the system performance. Specif- lengths are shorter than 1 hour. A handful of tasks
ically, the Grid host load exhibits clear periodic or diurna last for several days or weeks and likely correspond
patterns, which can be used for host load prediction for to long-running services. Compared to Grid work-

the task scheduling [17]. E. Afgan et al. [18] exploited the loads, most Cloud task lengths are shorter, and at

the same time the longest task lengths are longer.[3]
We believe this difference is due to the differences [4]
in Cloud users and applications, which include [5]
commercial applications such as web services. This [6]
indicates that load can be sporadic and highly [7]
variable. 8]
Job Priority: We find that task priorities can be 1
clustered into 3 groups, namely, low, medium,
and high. As high priority task can preempt low [10]
priority task, load prediction thus can and should

be tailored and evaluated for each of these groupd11]
Job Submission Frequency: Google jobs are sub-
mitted with much higher and more stable fre- 12]
guency than that of Grid jobs. The average numbe|[

of jobs submitted per hour and its fairness index13]
in Google are 552 and 0.94 respectively, compared

to 8.4~126 and 0.04.0.51 in Grids.

Job Resource Utilization: Google jobs usually have [14]
lower resource demand for CPU and memory than
Grid jobs, because Google jobs (such as keyworchS]
search) are more interactive and real-time in con-
strast to scientific batch jobs.

[9] Grid

o With respect to Host load:

Maximum load: We find that Google host's maxi-
mum CPU load is often close to the CPU capacity,
and the maximum memory usage is about 80%
of the memory capacity. The maximum load is [17]
actually controlled in the Google system for guar-
anteeing the service level of requests in case of
unexpected load spikes. In contrast, Grid resources
can be highly utilized without having a high risk [18]
of losing users or customers.

Machine usage level: CPU and memory usage
changes every 6 minutes, indicating again thel19
volatility of load. CPUs are often idle, but memory
usage is relatively high. CPU usage in Grids is
higher and more stable. Noise of CPU load in the[20]
Google cluster is 20 times as high as that in Grids.

(16]

In the future, we will try to exploit the best-fit load 1]
prediction method based on our characterization work, an&2

analyze
centers.

and improve the job scheduling in Google data

(22]
ACKNOWLEDGMENTS

We thank Google Inc, in particular Charles Reiss and John
Wilkes, for making their invaluable trace data availablbisT
work was made possible by a Google Research Award ange’]
by the ANR project Clouds@home (ANR-09-JCJC-0056-

01).

[1] Google

REFERENCES [24]

cluster-usage traces: online at

http://code.google.com/p/googleclusterdata.
[2] Auvergrid: online at http://www.auvergrid.fr/.

Nordugrid: online at http://www.nordugrid.org/.

Sharcnet grid project: online at https://www.sharcnet.ca.
Anl cluster: online at http://www.anl.gov/.

Ricc cluster: online at http://accc.riken.jp/ricehtml.

Metacentrum cluster: online at
http://www.metacentrum.cz/cs/.
LInl: online at https://www.lInl.gov/.

workloads archive (gwa): online at
http://gwa.ewi.tudelft.nl/pmwiki/.
Parallel workload archive (pwa): online at
http://www.cs.huji.ac.il/labs/parallel/workload/.
D. G. Feitelson, Workload Modeling for Computer

Systems Performance Evaluation, 2011. [Online]. Available:
http://www.cs.huji.ac.il/ feit/wlmod/

R. Koch, The 80/20 principle: the secret of achieving more
with less. Nicholas Brealey, 1997.

R. K. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Smulation and Modelling. John Wiley & Sons, April 1991.

P. S. R. Diniz,Adaptive Filtering: Algorithms and Practi-

cal Implementation, softcover reprint of hardcover 3rd ed.
2008 ed. Springer, Oct. 2010.

B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat,
and C. R. Das, “Modeling and synthesizing task placement
constraints in google compute clusters, Hroceedings of the

2nd ACM Symposium on Cloud Computing (SOCC'11). New
York, USA: ACM, 2011, pp. 3:1-3:14.

H. Li, “Workload dynamics on clusters and gridsThe
Journal of Supercomputing, vol. 47, no. 1, pp. 1-20, Jan.
2009.

H. Li, R. Heusdens, M. Muskulus, and L. Wolters, “Anal-
ysis and synchesis of pseudo-periodic job arrivals in grids:
A matching pursuit approach,” irfth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid07),
2007, pp. 183-196.

E. Afgan and P. Bangalore, “Exploiting performance charac-
terization of BLAST in the grid,"Cluster Computing, Feb.
2010.

] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and

H. Casanova, “Characterizing resource availability in enter-
prise desktop grids Future Gener. Comput. Syst., vol. 23(7),

pp. 888-903, 2006.

B. Calder, A. A. Chien, J. Wang, and D. Yang, “The entropia
virtual machine for desktop grids,” iNEE, 2005, pp. 186—
196.

C. Germain, V. Nri, G. Fedak, and F. Cappello, “Xtremweb:
Building an experimental platform for global computing,” in
1st ACM/IEEE International Conference on Grid Computing
(Grid’'00), 2000, pp. 91-101.

Q. Zhang, , J. L. Hellerstein, and R. Boutaba, “Characterizing
task usage shapes in google compute clusters,aige Scale
Distributed Systems and Middleware Workshop (LADIS 11),
2011.

B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves,
B. de Supinski, and M. Schulz, “A regression-based approach
to scalability prediction,” inProceedings of the 22nd annual
international conference on Supercomputing (ICS 08). New
York, NY, USA: ACM, 2008, pp. 368-377.

A. Khan, X. Yan, , S. Tao, and N. Anerousis, “Workload
characterization and prediction in the cloud: A multiple time
series approach,” ir3rd IEEE/IFIP International Workshop

on Cloud Management (Cloudman’12), 2012.

