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abstract

A combinatorial study discloses two surjective morphisms between generalized shuffle
algebras and algebras generated by the colored Hurwitz polyzétas. The combinatorial
aspects of the products and co-products involved in these algebras will be examined.

1 Introduction

Classically, the Riemann zéta function is ((s) = > ., n~°, the Hurwitz z&ta function

is C(s; t). = s - t)~* and the col.ored z8ta .function is C(Z) =Y 0’7,
where ¢ is a root of unit. The three previous functions are defined over Z- but can
be generalized over any composition (sequence of positive integers) s = (s1,..., S;),

like, respectively, the Riemann polyzéta function {(s) = >, o o, Son; ' ...n°,

the Hurwitz polyzéta function ((s;t) = >_, o <, So(n1 —t1)7% ... (np —t,) 7"

and the colored polyzéta function §(qsi) =Y s 0 @M g
with ¢ a root of unit and i = (41, ...,4%,) a composition. These sums converge when
s1 > 1.

To study simultaneously these families of polyzétas, the colored Hurwitz polyzétas,
for a composition s = (s1, ..., s,) and a tuple of complex numbers & = (&1,...,&,)
and a tuple of parameters in | — co; 1[, t = (¢4, ..., t.), are defined by [6]

Z ?1 e é"nr
Di(F¢y¢;s) = - r —. (1)
T s Sse (Tt (e )
Note that, for [ = 1...,r, the numbers & are not necessary roots of unity ¢*. We are

working, in this note, with the condition



(B) Vi, | [] &I <1 and t; €] — o0;1].
k=1

Hence, Di(F¢ ¢;s) converges if s; > 1. We note & the set of C-tuples verifying (E).

These polyzétas are obtained as special values of iterated integrals' over singular
differential 1-forms introduced in [10]. As iterated integrals, they are encoded by words
or by non commutative formal power series [10] and are used to construct bases for
asymptotic expanding [14] or symbolic integrating fuchian differential equations [11]
exactly or approximatively [8]. The meromorphic continuation of the colored Hurwitz
polyzétas? is already studied in [5, 6]. In our studies, we constructed an integral repre-
sentation® of colored Hurwitz polyzétas and a distribution treating simultanously two
singularities and our methods permit to make the meromorphic continuation commuta-
tively over the variables sy, . . ., s, [5, 6]. Moreover, [6] gives another way to obtain the
meromorphic continuation thanks to translation equations [4]. Our methods give the
structure of multi-poles [5] (Theorem 4.2) and two ways to calculate algorithmically
the multi-residus®.

In this note, in continuation with our previous works [10, 11, 12, 13, 5, 6], we are
focusing on Hofp algebra, for a class of products as minusstuffle (=1 ), mulstuffle ( =1 ),
..., and in particular for the new product duffle ( ks ), obtained as “tensorial product”
of o1 and the well known stuffle (11 ), of symbolic representations of these polyzétas
(see Definition 2.1 and Proposition 2.1 bellow).

2 Combinatorial objects

2.1 Some products and their algebraic structures

Let X be an encoding alphabet and the free monoid over X is denoted by X*. The
length of any word w € X* is denoted by |w/| and the unit of X* is denoted by 1 x«. For
any unitary commutative algebra A, a formal power series S over X with coefficients
in A can be written as the infinite sum ) _ . (S|w)w. The set of polynomials (resp.
formal power series) over X with coefficients in A is denoted by A(X) (resp. A{(X ).
The set of degree 1 monomials is AX = {ax/a € A,z € X}.

Definition 2.1 We note P the set of products x over A(X) verifying the conditions :

IThey are presented as generalized Nielsen polylogarithms in [10] (Definition 2.3) and as generalized
Lerch functions in [12] (Definition 3).

2See also references and a discussion about meromorphic continuation of Riemann polyzétas in [5].

3This integral representation is obtained by applying successively the polylogarithmic transform [10]. Tt is
an application of non commutative convolution as shown in [9] (Section 2.4). Other integral representations
can be also deduced easily by change of variables, for example ¢ = zr and then r = e~ [5].

4Other meromorphic continuations can also be obtained by Mellin transform as already done in [17] or
by classical estimation on the imaginary part [7] but these later work reccursively, depth by depth, and the
commutativity of this process over the variables s1, ..., s, must be proved. Unfortunately, the structure of
multi-poles as well as multi-residus are missing in both works [7, 17]. In [16], to make the meromorphic
continuation (giving the expression of non positive integers multi-residus via a generalization of Bernoulli
numbers — but not of a/l multi-residus) of the specialization at roots of unity of colored Hurwitz polyzétas
Di(F¢,¢;s), the author bases on the integral representation, on the contours, of the multiple Hurwitz-Lerch
which corresponds mutatis mutandis to the integral representation of generalized Lerch functions introduced
earlier in [5] (Corollary 3.3).



(i) the map x : A(X) x A(X) — A(X) is bilinear,

(ii) foranyw € X*, 1x« xw =w* 1lx- = w,

(iii) foranya,b € X andu,v € X*,

au x bv = a(u * bv) + b(au x v) + [a,b](u * v),

where [.,.] : AX x AX — AX is a function verifying :
(S1) Va € AX, [a,0] =0,
(82) ¥(a,b) € (AX)?, [a,b] = [b,al,
(83) V(a,b,c) € (AX)3, [[a,b],c] = [a, [b, c]].

Example 1 (see [18]) Product of interated integrals.
The shuffle is a bilinear product such that :

Yw e X* wWwlyxys =1lx+ww=w and
Y(a,b) € X2, ¥(u,v) € X*?, auw vb = a(uw bv) + blau . v).
For example, for any letter xq, = and x' in X,
2oz’ L z%x = xoz/xgx + 2z3z/x0z + Bxgx’z + Bxgxz/ + z%xzox’.
Example 2 (see [15]) Product of quasi-symmetric functions.

Let X be an alphabet indexed by N.
The stuffle is a bilinear product such that :

Yw e X*, wwlys =1y wmw=w and
V(xi, xj) € X2 Y(u,v) € X*Q,
Tiuw v = o (U 20) + 2 (Tuw v) + i (v v).
In particular, with the alphabet Y = {y1,y2,93, ...},
(Yay1) wya = ysy1y2 + Ysyey1 + Y3ys + y2y3y1 + ysyi-

Example 3 ([3]) Product of large multiple harmonic sums.
Let X be an alphabet indexed by N.
The minus-stuffle is a bilinear product such that :

Yw e X*, welys =1y« =w=w and
V(zi,z5) € X2 Y(u,v) € X*2,
T = v = 2 (ui= 20) + 25 (Tu = v) — i, (w = o).
Example 4 ([6]) Product of colored sums.

Let X be an alphabet indexed by a monoid (I, ).
The mulstuffle is a bilinear product such that :

Yw e X* welys =1xs 0w =w and
V(i x;) € X2, V(u,v) € X*2,
T 20 = T (U 250) + 25 (U e v) + Ty (U v).
For example, with X indexed by Q*,

T2X_ 121 =2L20_1T1 +T2210_1+T20-1 +T12x220_1+XT12_1.
3 2 3 2 3 2 3 2 2 3 3



Remark 2.1 Thanks to the one-to-one correspondence (i1, ..., i) ¥ X4 ...%;. be-
tween tuples of T and word over X, the calculus ofz%:r,l L x1L can be written as

Go1)w ()= G+ G-+ (33 (31 + (o).
Example 5 ([6]) Product of colored Hurwitz polyzétas.

Let Y and E be two alphabets and consider the alphabet A =Y x E with the concate-
nation defined recursively by (y, e).(wy,wg) = (ywy,ewg) for any letters y € Y,
e € E, and any word wy € Y™, wg € E*. The unit of the monoide A* is given by
1as = (y=,1p«). IfY is indexed by N and E by a monoid (I, x), the duffle is a
bilinear product such thatVw € A*, w1 4. = 14« bl = 1w,

Y(yi,y;) € Y2 V(e ex) € B2 V(u,v) € A2 (yi, ). el (yj,ex).v = (yi,er).
(w ke (g5, ex).v) + (Y, ex)- (i, 1) utHd v) + (yigj, erxr)-(u B v).

Proposition 2.1 The shuffle, the stuffle, the minus-stuffle and the mulstuffle are ele-
ments of P, with respectively, [x;,x;] = 0, [z, ;] = Tixj, [Tis Tj] = —@ig, [T, 25] =
Zixj for any letters x; and x; of X.

The duffle is in P, with [(y;, e1), (Yj, ex)] = (Yi+j, €ixk) for all y;, y; inY, ey, ey in E.

Proposition 2.2 Let x € P, then (A(X), %) is a commutative algebra.

Proof. We just have to show the commutativity and the associativity of .

To obtain wy x wy = wa *w; for all wy, we in X*, we use an induction on |wy | + |ws|.
It is true when |wy| + |wz| < 1 thanks to (i) since wy or we is 1x«. The equality (iii),
the condition (S2) and the commutative of 4 give the induction. In the same way, an
induction on |w1 | + |wa| + |ws]| gives wy * (w2 * w3) = (w1 *x wa) x ws thanks to (iii)
and (S3). O
If we associate to each letter of X an integer number called weight, the weight of a
word is the sum of the weight of its letters. In this case X is graduated.

In [15], Hoffman works over X = X U {0} with [,.] : X x X — X and call quasi-
product any product in P with the additional condition :

(S4) Either [a,b] = 0 for all a, b in X; or the weight of [a, b] is the sum of the weight
of a and the weight of b for all a, b in X.

Example 6 1. The shuffle is a quasi-product.

2. Let X be an alphabet indexed by N and define the weight of z;, i € N, by i .
Then the stuffle is a quasi-product.

Theorem 2.1 ([15]) If X is graduated and has a quasi-product , then (A(X), %) is a
commutative graduated A-algebra..

We can define (i) a comultiplication A : A(X) — A(X) @ A(X),
(ii) acounite: A(X) — A,

lifw=1x-

by: VYwe X*, Aw:Zu@v and e(w) = nw X

— 0 otherwise.
Uv=w

The coproduct A is coassociative so (A(X), A, €) is a coalgebra.



Lemma 2.1 Foranyw € X*andx € X, (z ® 1x+«)Aw + 1x+ @ zw = Azw.
Proof. Vw € X* Vz € X, Axw = Z URV = Z 2’ @v+ 1y @ zw

uv=zw w'v=w
so A:Ew::E@lX*( Z u/®v)+1x*®xw:(x®1X*)Aw+1X*®xw. O

Proposition 2.3 If x € P, then (A(X),*, A, €) is a bialgebra.

Remember that x acts over A(X) ® A(X) by (u®v)* (v @) = (uxu') ® (v*v
Proof. ¢ is obviously a x-homomorphism. It still has to be show A(wy) x A(ws)
A(wy * wy) over X*. This equality is true if w; or wo is equal to 1 x+.

Assume now that A(u)xA(v) = A(uxv) for any word u and v such that |u|+ |v| < n,
n € N, and let wy and ws be in X* with |wq| + |we| = n + 1. We note wy = au and
wg = bv, with a and b two letters of X, u and v two words of X *. Thus, by definition,
Awy = zuluz:u auy @ us + 1x+- ® au and Aws = E’Ul’UQ:’U vy @ va + 1x+ ® bo.

A(wl) *A(U}Q)
= Z (auy * b)) ® (ug xv2) + Z (au1) @ (ug x bv)

UIU2=U,V1 V2=V UL U2=U

+ Z (bv1) @ (auxv2) + 1x+ @ (au* bv)

V1V2=v

= Z (a(uy x bv1) @ (ug *x v2) + blaug x v1) ® (ug *x v2)

U1 U2=U, V1 V2=V

+([a, b](u1 *v1)) ® (ug *xv2)) + Z (au1) ® (ug * bv)

i

UL U2=U

+ Z (bv1) ® (auxv2) + 1x+ @ a(u * bv)

V1V2=0

+1x+ @ blau*v) + 1x« & [a,b](u *v)
= Z a(ug xbvy) @ (ug x v2) + Z (au1) & (ug x bv)

ULU2=U, V1 V2=V U1 U2=u
+ Z blauy *v1) ® (ug * v2) + Z (bv1) @ (au * va)
U1U2=U,V1 V2=V V1UV2=7

+a,b] ® 1x- Z (u1 @ ug) * (v1 @ va)

ujug=u
V1UV2=7

+(1x- @ a(uxbv) + 1x« @ blau*v) + 1x+ ® [a, b](u*v))
=(a®1x)(Au) *x A(ws)) + 1x- @ aluxbv) + (b @ 1x+)(A(wy) * A(v))
+1lx- @blauxv) + ([a,b] @ Lx+)(A(u) x A(v)) + 1x+ ® [a, b](u *v).
Using the induction hypothesis then the lemma 2.1 (since [a, b] € AX) gives
Alwr) * A(ws) = A(a(urws)) + A(b(wy *v)) + A([a, b](u * v))
= ﬁga(u*wg)) + b(wy1 *v) + [a, b](u *v))



Remark 2.2 In particular, A is a ..-homomorphism, a \+1 -homomorphism and a L+ -
homomorphism.

Let C,, be the set of positive integer sequences (i1, . .., i) such thati; + ...+ ix=n.

Theorem 2.2 Define a, by, forall x1,...,x, in X,

§ k
= (—1) L1 oo o Ljy *Tjy41 - - Lijgtio X oo e * Tyt i 141+ Tn

then, if x € P, (A(X),*, A, €, ay) is a Hopf algebra.

Proof. With the applications :
p: A =  AX) m: AX)QAX) — AX)
and
A = Alxs U@ v = U*U

the antipode must verify m o (a, ® Id) o A = o e, or, in equivalent terms

Z a(u) *v = (w[lx~)lx-.

uv=w

. a,(1x«)=1x=n . .
ie. «(1x-) = 1x and,if w =21 ...2, withn > 2, z1,...,2, € X,
Ve € X, a.(z) = —x
n—1
ay(w) = — s (X1 .. T) * Tpg1 -+ Ty
k=1

An induction over the length n shows that a, defined in theorem verifies these equali-
ties, and, in the same way, a, verifies m o (Id @ a,) o A = poe. O

Corollary 2.1 If x is w or w1 or w1 or el then this construction gives an Hopf
algebra. Moreover, for w or w1, we obtain a graduated Hopf algebra.

2.2 Iterated integral

Let us associate to each letter x; in X a 1-differential form w;, defined in some con-
nected open subset U/ of C. For all paths zg~~z in U, the Chen iterated integral associ-
ated to w = z;, - - - x;, along zp~-z, noted is defined recursively as follows

aio (’LU) = / Wiy (21)042 (:Eiz o ':Cik) and O‘zo(lx*) =1, (2)
zZo~rz
verifying the rule of integration by parts [2] :
azo (’U,u_l U) = azo (u)azo (U) (3)
We extended this definition over A(X) (resp. A{(X)) by
aZ,(8) = Y (Slw)ai, (w). 4)

weX*



2.3 Shuffle relations
2.3.1 First encoding for colored Hurwitz polyzétas

Let £ = (&) be a sequence of complex numbers and 7" a family of parameters. Put
X’ an alphabet indexed over N* x CN x T'and X = {xo} U X’. To each x in X we
associate the differential form :

dz .
= — si x = xg

[heei & d2 )

wigr(z) = —=2——x — if x =z, withi > 1.
1, ( 1*1_[2:1&«2’ St i,§ zZ

wo(z)

For any T-tuple t = (1, ...,t.) we associate the T-tuple t = (Z1,...,%,) given by

ty = t; —ta, th =titta+...+1n,
E = t2_t3; ta = E++Ea

in this way . 6)
E = tr_1 — 1y t, = E

We choose the sequence ¢ and the family t such that the condition (F) is satisfied.

Proposition 2.4 For any s = (s1,...,8,) with s1 > 1if§ = (&1,...,&) € & and
t=(t1,...,t) €T", then Di(F¢ ;) = aé(xél_lxlyfﬂ . .zgr_lxn&g).

. : o 2ldz . L 2
Proof. Since w; ¢ +(z) = Z H & P then ag(r, 7-) = Z H & —— and

n>0k=1 n>0k=1
1 . Zn—tr L .

z Sp— ) n_~ 1 s1— . Sy .

(20" Trer) = Z H Sk (n—1t,)s Hence, ag (2" ™ Ty e 77+ 70" Tpein)
n>0 k=1 ] T
: [Th -1 &

. k.—=1Sk. .

gives Z H s — < \5;° and thel’l, by Change of vari-
mi,..., mr>oj—1(ijF---ﬁLmr*tjf...ftT)
n1 €nT

ables, E 1 r °

ny>...>n,>0 (nl - tl)Sl ce (nT - tr)sr '

Theorem 2.3 Let T be the group of parameters generated by (T';+), C be a sub-
group of (C*,.) and A a sub-ring of C. Put C' = CN' N & and T' the set of finite tuple
with elements in T. Then the A algebra generated by {Di(F¢ ¢;8)}eccr se7 is the A
modulus generated by {Di(F¢ ;s)}eccr et

Proof. We have express the product Di(F¢ ¢;8) Di(Fe/ ¢/;8'), with s = (s1,...,5,),

s’ = (sh,...,80), &€ € Cand t = (t1,...,t.),t = (t),...,t,) € T, as lin-

ear combination of colored Hurwitz polyzétas. This is an iterated integral associated
s1—1 sp—1 sh—1 sl,—1 L

L ST R M N R DY R Ty 1 7, which is a sum of



st/ —1 s —1

"
sp—1 i r :
terms of the form z Tem iy To T e g Lo with

€. "y T
jT//,E(T ),t(rn)’
s/ €N, €0 is & or¢ and t(s) is tj, ort} forall 4;and r” = r + r”. Note that

ag(z; £, 7353_1%' g/,ﬁ)

/ > H’f;?z{n i1 :1 % /OZS+1 > Hf :+1tj dzsi1

m>0 k=1 n>0 k=1

Z (& - ( ) Sntm

(m+n7t —t’)(nft')

)

m,n>0
1( sy —1 - s;/—l ) 5”—1 )
oLy L1 e, t(l) SRR 35,60 F 5 STy Ty, £ E
(1) ONT
_ Z H & &, )™
- o _ st
mi,...,mn>0i= 1 i <My t(l) T t(’"”)) ‘

// n.L

- Y I

niy>...>n,n>01i= 1

with n; = m; 4+ ...+ mpn, t] =t + ...+ Lo forall i, sot” € T; & = §1)
() ()
and £}’ = W

Ji—1

product as Di(F¢r 43 s”). O
Note that the shuffle product over two words of X* X' acts separately over (C’,.),
(T',+) and the convergent compositions. We can describe the situation with the shuffle
algebra’ :

fori > 1s0¢&” € C: we can express each term of the shuffle

Theorem 2.4 Let H be the Q-algebra generated by the colored Hurwitz polyzétas. The
map ¢ : (QUapzie) ) ) = (M) 2wy oo 2y e = DilFegis+1) isa
surjective algebra morphism.

Example 7 Since Di(F¢1;3) = af (v321,¢,) and Di(Fer 1;2) = of (wox1,¢ /) then
Di(Fyi4;3) Di(Fair v;2) = o (wox1,er 1+ o 2321 ¢.1). Example 1 with x = x1 ¢ + and
¥’ = x1 ¢ p gives the expression of Tox1 ¢ ¢ w T3x1 ¢ 1. But the first term obtained is

ao(fﬁoxl ¢ pTRTLE )

/ dz /zlzglm . tfldz/ dzg /Zs d24/ Zgn ~t=1

B glmgn

B nmz>0 (m+n—t —t)2(n—t)3
_ (&)™ (g/8)

= 2 (ng —t' —t)2(ng — t)3

ni>n2>0
= Di(F(¢,¢ /¢4 ,1)5 (2, 3))-

SWorking in Q{(z$@;,¢,.)*) implies working in the graduated Hopf algebra (Q(X*), i, A€, a,,, ).




We can make similar calculus for the other terms and find :

Di(Ff,t; 3) Di(F&/,t/; 2)

= Di(F(er g/6);0+17,0)3 (2,3)) + 2DUF (e g/¢r); (1,003 (3, 2))
+3DiF (e ¢/e;0+0,0)3 (4, 1) + 3DIF e g7 /) 040 ,0)5 (4, 1)
+DUFeer/6)i0417.0)3 (3,2)):

2.3.2 Second encoding for colored Hurwitz polyzétas

For the Hurwitz polyz€tas, we can obtain an encoding indexed by a finite alphabet. Let
the alphabet X = {xo; 1} and associate to xq the form wy(z) = 2~ 'dz and at 21 the
form wy (2) = (1 — z)~tdz.

For each « € X and A € C, we note (Az)* Zk>0()\ac . Then, (see [10], [11]),

of (2§ 7 (trwo)* Sy (o) ) = (85 b).

Theorem 2.5 Let H' be the Q-algebra generated by the Hurwitz polyzétas and X the
Q-algebra generated by (t1x0)***x1 ... (trxo)**r . Then, ¢ : (X, w) — (H',.)isa
surjective morphism of algebras.

Note that we can apply the idea of encoding of “simple” colored Hurwitz zetas
functions (with depth one : » = 1). Let £ = (&,,) be a sequence of complex numbers in
the unit ball B(0; 1) and T a family of parameters. Let X = {x¢, 21, ...} be a alphabet
indexed by N. Associate to x¢ the differential form wo(z) = 27 1dz and to z;, i > 1,
the differential form w;(2) = &(1 — &;2) " tdz.

Proposition 2.5 With this notation, o} (((txo) 20)° " (tzo)*xi) = Z &

n>0 (7’L - t)S
§idzo .
Proof. Slnce =¢ Z(&Zo)"dzo, we can write
- €z n>0
dz
o ((two)kwi) = tk/ Rl / / §z (&iz0)"dzo = Ztk€k+17
n>0 n>0

for z € B(0;1) and for k£ € N. Thanks to the absolute convergence,
()= S EE Y (4] 3 2
n—t
n>0 k>0

In the same way, if z € B(0;1) :

Vk € N, of ((tzo) zo(tzo)*xi) = Ztk & 2

n —tnktl’
n>0

50 o ((tzo) zo(twe) zi) = > (nf"_ Z:)2
n>0




and af (((two)*xo)s_l (txo)*xi) = Z(/’Czﬂ

n>0 n= t)s -
O
Remark 2.3 Note that, with the same notation,
2 . ys—1 . et
af (x1 ((Taxo) @ toxg) T ) =
O( 1((2 0) 0) (2 0) 2 n;o(n_b)s(m—’—n)
_ Z 5325”1 na P!
L 1(n2 —t2)*
In other words, this encoding appears to be widespread only as couples of the type
E=(1,1,...,1,&) s withé = land wy = (1 — 2)71dz,
1 s1—1 *51 Sp—1—1 *S5,._1 sr—1 *5,.
ap (2™ (trzo) ...z (tr—120) Tr_1xy (Erxo)
- ¥ =
e, (nl — tl)sl . (nr — tr)ST
2.4 Duffle relations
Let A = (\,,) be a set of parameters, s = (s1, ..., s,) a composition, £ € C". Then
Vn€Zso, MIN)= > J[&A and MG (N =1 (D
n>ni>...>n,>07=1
We can export the duffle over the tuples s = (s1,...,s,) € Z{;, and £ € C" with :
(s,8) 2 (), 1) = ((), 1) el (s, §) = (s,€) and
(Slvsagla )Iﬂﬂ( 1, 7plap)
= (51:&)- ((83,&) ¥ (1,15 p1, p)) + (r13 p1)- (51,85 p1,€) B2 (15 p))
+(s1 +T1,§1P1) ((s;€) el (13 p)) ®)
Proposition 2.6 Lets = (s1,...,8;) andr = (r1,...,1E) be two compositions, § €

ct, pE C*. Then

Proof. Put the compositions s’ = (s2,...,8;), ' = (ra,..
numbers &' = (&2,...,&) and p’ = (pa, ..., pk), then
MZe(N) M2, ()
= ) g ML (M) HEDNER Vi L (A
n>ni,n>n}
S 6N MO0 M) + 3 A, M O) M O

n>ni n>n'q

., 7% ), the tuples of complex
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7 ) A M () M (M),

n>m
A recurrence ended the demonstration. O
Theorem 2.6 Lets = (s1,...,8;) andr = (r1,...,7rE) be two compositions, § a l-

tuple and p a k-tuple of €, t = (t,...,t) al-tuple and t' = (t,...,t) a k-tuple, both
formed by the same parameter t diagonally. Then

Di(FE_’t; S) Di(FEgt/ s S/) = Di(Ff”,(t,...,t); SN),
with (s";€") = (s;€) s (s'; ).

1 n
:nitforallnEN, Msyg()‘): Z H TLZ*tS"- So

n>n1>...>n, t=1

lim Mg () = Di(F¢ ¢;s) and taking the limit of Proposition 2.6 gives the result.

n—roo

Proof. With A\,

O

Example 8 The use of examples 2 and 4 gives

Di(F(2 _1y5(3,1)) Di(F (1) 4); (2))
=Di(F(2 _1,1), (1,605 (3:1,2)) + Di(F (2 1 1y (1.4.4): (3,2,1))
JFDi(F(%,f%) ¢ (3,3)) + Di(F(%,g,fl),(t,t,t) (2,3,1)) + Dl(F(é,fl),ﬁ (5,1))

Remark 2.4 Extend the duffle product to triplets (s, t,£) € Upen-N" x {t}" x C" by

= (s13t5&1). ((s5658) el (g, w58, ,p1, p))
+  (r1;3t501)- ((51,85 8, 5 p1, §) el (r; 875 p))
+ (s1+rst6pr). ((s5458) e (st p))7

and define the function F over T = U,en+N" x {t}" x C" by F(s,t,£) = Di(Fe¢y;s).
Then, by Theorem 2.6, the function F : (I, Hel) — (C,.) is morphism of algebras.

(Slvs 75175) (7’1,1‘ tvt/;plap)
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