Uncertainty principles for integral operators

Abstract : The aim of this paper is to prove new uncertainty principles for an integral operator $\tt$ with a bounded kernel for which there is a Plancherel theorem. The first of these results is an extension of Faris's local uncertainty principle which states that if a nonzero function $f\in L^2(\R^d,\mu)$ is highly localized near a single point then $\tt (f)$ cannot be concentrated in a set of finite measure. The second result extends the Benedicks-Amrein-Berthier uncertainty principle and states that a nonzero function $f\in L^2(\R^d,\mu)$ and its integral transform $\tt (f)$ cannot both have support of finite measure. From these two results we deduce a global uncertainty principle of Heisenberg type for the transformation $\tt$. We apply our results to obtain a new uncertainty principles for the Dunkl and Clifford Fourier transforms.
Type de document :
Article dans une revue
Studia Mathematica, INSTYTUT MATEMATYCZNY * POLSKA AKADEMIA NAUK, 2014, 220, pp.197--220
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00704805
Contributeur : Philippe Jaming <>
Soumis le : mercredi 6 juin 2012 - 12:14:56
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : vendredi 7 septembre 2012 - 02:31:19

Fichiers

IT120604.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00704805, version 1
  • ARXIV : 1206.1195

Collections

Citation

Saifallah Ghobber, Philippe Jaming. Uncertainty principles for integral operators. Studia Mathematica, INSTYTUT MATEMATYCZNY * POLSKA AKADEMIA NAUK, 2014, 220, pp.197--220. 〈hal-00704805〉

Partager

Métriques

Consultations de la notice

281

Téléchargements de fichiers

511