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Abstract 

This paper addresses an extension of the Capacitated Vehicle Routing Problem where the client demand 

consists of three-dimensional weighted items (3L-CVRP). The objective is to design a set of trips for a 

homogenous fleet of vehicles based on a depot node which minimizes the total transportation cost. Items in each 

vehicle trip must satisfy the three-dimensional orthogonal packing constraints. A GRASP ELS algorithm is 

proposed to compute the best possible solution. We propose a new method to address the 3D packing which 

allows items to be rotated or not. It is based on a relaxation of the 3D problem in which       items coordinates 

are first computed before getting compatible z-coordinates. Additional techniques are used to reduce as much as 

possible the time to check the 3D packing feasibility of trips. The effectiveness of our approach is evidenced 

through computational experiments on 3L-CVRP instances from the literature. New realistic instances are also 

proposed. These instances are based on the 96 French districts and encompass both small scale instances and 

large scale instances with up to 200 nodes 

Keywords: Vehicle Routing, GRASP, Evolutionary local search, 3L-CVRP, 3D orthogonal packing 

1 Introduction 

1.1 Capacitated Vehicle Routing Problem and extensions with packing constraints 

The Capacitated Vehicle Routing Problem (CVRP) is a classical NP-hard node routing problem 

which received a considerable amount of attention for decades [1] [2] [3]: it consists in optimally 

organizing vehicles trips in order to deliver goods required by a set of clients. It can be fully defined 

by considering a depot and a set of   clients. Each one corresponds to a node of a complete graph 

        where V is a set of n+1 nodes, 0 being the depot and nodes 1...n being the clients. Each 

edge     has a finite cost      and each node         is given a demand     . A fleet of 

homogeneous vehicles of limited capacity   is located at the depot. The objective is to design a set of 

trips of minimal total cost to service all clients. A trip is a cycle performed by one vehicle. It starts at 

the depot, visits a subset of nodes, before returning to the depot. The trip total load is upper bounded 

by the vehicle capacity. Since split deliveries are not allowed, each client is serviced by exactly one 

vehicle. As stressed in [4], exact methods can only solve small to medium instance. Thus, medium and 

large CVRP instances are typically addressed by metaheuristics. 

 

The 2L-CVRP is an extension of the CVRP which includes two-dimensional orthogonal rectangle 

loading constraints (the 2L constraints). This problem is essentially addressed in [5][6][7]. It can be 

reduced to the CVRP when the size of the items is not considered or when items are 1 1 squares, thus 

dealing only with their weight.  The 2L-CVRP resolution has been first addressed by Iori et al. [8] 

using a branch and cut approach limited to small scale instances (less than 25 clients). Then Gendreau 

et al. [5] introduced a tabu search algorithm. Zachariadis et al. [6] developed a guided tabu search. 

Fuellerer et al. [7] proposed an efficient version of the Ant Colony scheme to solve the 2L-CVRP. 

Recently, Duhamel et al. [9] introduced a multi-start evolutionary local search scheme which 

outperforms all previous published methods. The approach is original as it does not address the 2L-

CVRP during the main optimization process but rather a relaxation into the so-called RCPSP-CVRP. 
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In the RCPSP-CVRP, the two-dimensional packing problem is relaxed into a RCPSP: at each point of 

the vehicle length the total width used must not exceed the vehicle width. Thus the vehicle width is 

related to the RCPSP resource availability. At the end of the main optimization process, the RSPCP-

CVRP solution is transformed into a 2L-CVRP solution by a dedicated procedure. The authors showed 

in their experiments that most of the RCPSP-feasible solutions can be efficiently transformed into 2L-

CVRP feasible solutions by only considering packing solutions which satisfy the previously computed 

x-abscissa. 

 

The three-dimensional loading CVRP (3L-CVRP) is an extension of the 2L-CVRP where the 

height is also considered. More formally, each vehicle of the homogenous fleet is now defined by a 

weight capacity D and by a volume         where   is the vehicle length,   is the vehicle 

width and   is the vehicle height (related to (x, y, z) coordinates). The demand of each client       

consists of a set of    items of total weight   . Each item        is a three-dimensional cuboid of 

length lik, width wik and height hik. Each client must be serviced by exactly one vehicle, which is 

assigned to a single trip. A trip   is a sequence                            of clients where    

         corresponds to the depot. Each trip must be both “weight-feasible” and “packing-feasible”. A 

trip   is “weight-feasible” if the total weight of carried items does not exceed the vehicle capacity, i.e. 
        . It is “packing-feasible” if the client items can be loaded into the vehicle without 

overlapping and if it satisfies the classical orthogonal three-dimensional packing constraints. A set of 

“weight-feasible” and “packing-feasible” trips which involves all the clients defines a solution of the 

3L-CVRP. 

 

The 3L-CVRP has been addressed by Gendreau et al. [10] and more recently by Fuellerer et al. 

[11]. Only medium instances have been considered since three-dimensional packing problems are 

much harder to solve than their two-dimensional counterparts. The seminal publication of [10] 

introduces a tabu search algorithm that iteratively invokes a tabu search procedure for solving the 

inner loading sub-problem. Fuellerer et al. [11] introduce a highly efficient ant colony optimization 

algorithm which takes advantage of both fast packing heuristics for the loading sub-problem and of 

effective heuristics for the routing problem. These two publications also consider additional 

constraints about item fragility, LIFO unloading and support. Note that both instances from the 

literature and real-world instances were used by [10] to evaluate the performance of their method. 

 

1.2 Cutting and Packing problems 

1.2.1 General Cutting and Packing problems 

 

Packing problems belong to the well-known family of cutting and packing problems. Many packing 

problems deal with the insertion of rectangular items in a rectangular bin in both two and three 

dimensions. They mostly differ on the objective function to optimize. 

 The Three-Dimensional Bin Packing Problem (3BPP) consists in packing a set of rectangular 

boxes into a minimal number of identical rectangular boxes [12] [13]; 

 The Three-Dimensional Strip Packing Problem (3SPP) consists in packing a set of rectangular 

boxes into a strip of known width and infinite height so as to minimize the overall height of the 

packing [14] [15]; 

 The Three-Dimensional Packing Problem (3PP) consists in checking if a set of rectangular boxes 

can be packed into one bin (rectangle box) of fixed size, see [16] for instance. 

 
Several extensions have also been addressed over time, including but not limited to, rotation of items, 

limitations on the total weight and/or item costs. 

1.2.2 The 3D packing sub-problem in the 3L-CVRP 
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The packing problem within the 3L-CVRP falls into the last category (3PP) since each trip has to be 

“packing-feasible”. A 3PP instance consists of a set of items           which have to be packed 

into a bin           of length  , of width   and of height  . An item i has a length li , a width wi 

and a height hi (            . 

A 3PP solution can be fully defined by the position of each item i, denoted (xi, yi, zi), into the bin. This 

position corresponds to the coordinates of its bottom-left corner. Item rotation is only allowed in the 

(x, y) plane as rotations in other planes may be prohibited in the corresponding real-life application 

(items often have a "top" side for instance). Moreover the packing must be orthogonal, i.e. the items 

must be placed with their edges parallel to the sides of the bin. 

Some authors have added extra constraints: 

- fragility: the items tagged as “fragile” cannot be put under another item; 

- support: each item must have a minimum “supporting area”, i.e. a given percent of its basis 

must be defined by the top of other items (or by the floor of the bin); 

- LIFO: the items of any client in the trip can be unloaded by only using straight movements, 

i.e. the items of a client i are not blocked by items of yet unvisited clients. 

Such constraints correspond to realistic considerations in the industrial context of transportations and 

logistics. They are mandatory in many situations as CVRP solutions involving fully-loaded or nearly 

fully-loaded vehicles may not be 3L-CVRP feasible in practice, thus greatly reducing the interest of 

many CVRP commercial solvers. 

2 GRASP ELS framework for the 3L-CVRP 

2.1 GRASP ELS Principle 

The GRASP ELS [17] is a hybridization of the GRASP metaheuristic and of the ELS metaheuristic 

combining the positive features of both methods. The GRASP (Greedy Randomized Adaptive Search 

Procedure) [18] is a multi-start Local Search metaheuristic. At each iteration, an initial solution is 

constructed by using a greedy randomized heuristic. It is then improved by a local search and the best 

solution obtained at the end of each GRASP iteration is kept. The ELS (Evolutionary Local Search) 
[19] is an extension of the ILS (Iterated Local Search, [20]). At each iteration of the ELS, several 

copies of the current solution are done. Each copy is modified (mutation) before being improved by a 

Local Search. The best resulting solution is kept as the new current solution. The purpose of the ELS 

is to better investigate the neighbourhood of the current local optimum before leaving it, while the 

GRASP aims at managing the diversity during the solution space exploration. The framework we 

promote is a multi-start ELS in which the ELS is applied to the initial solutions generated by greedy 

randomized heuristics. Such an approach can also be viewed as a GRASP ELS in which the ELS is 

used as Local Search. Besides combining GRASP with ELS, another important feature of our 

approach is the alternation between two solution spaces: the giant tour space and the 3L-CVRP 

solution space. By defining genuine exploration on those two search spaces and by defining 

projections from one search space into the other one, one can more easily avoid being trapped in local 

optima. The high quality solutions obtained by Prins [19] for the VRP, alternating between two search 

spaces (giant tour and VRP solutions) is a clear illustration of approaches which manage alternation 

between a set of giant tours and a set of solutions. 

 

Two solution representations are used: solutions encoded as giant tours (TSP tours on the n clients) 

and 3L-CVRP solutions encoded as the set of trips (see Figure 1). Converting a 3L-CVRP solution 

into a giant tour is done by the Concat procedure. It consists in removing the depot from each trip and 

then concatenating the resulting trips into a single one. The reverse operation, i.e. converting a giant 

tour into a 3L-CVRP, requires more work. It is usually done by a dedicated splitting procedure (Split) 

and it relies on dynamic programming. Such an approach has been successfully applied to numerous 

routing problems including the Capacitated Arc Routing Problem, the Vehicle Routing Problem, the 

Location Routing Problem for instance, see [21] for a recent state of the art of Split in routing 
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problems. As a giant trip is not a direct representation of a 3L-CVRP solution, we have chosen the 

inner ELS to work on 3L-CVRP solutions while GRASP focuses on giant tours. 
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Figure 1: GRASP ELS with alternation between the two search spaces 

 

A random heuristic is required to generate an initial solution S (set of trips) at each iteration of 

GRASP. It is then transformed into a giant trip T before being perturbed in a way similar to the 

mutation operator in Genetic Algorithms. The resulting giant tour    is split into 3L-CVRP trips which 

provides a solution S'. Then S' is improved using a Local Search operating on 3L-CVRP trips. The 

new solution S'' is associated to the giant trip T'' by trips concatenation and it becomes the incumbent 

solution (S,T). During ELS, nd "children" are generated out of S, each one being mutated and 

improved by the local search. The best child replaces S. The process is iterated until ne iterations are 

done. The incumbent solution is updated before starting a new GRASP iteration. 

 

The Local Search is defined as a first improvement descent method using several classical VRP 

neighborhoods to improve the initial 3L-CVRP solution: 2-Opt within a trip, 2-Opt between two trips, 

Swap within a trip and Swap between two trips. The random heuristic is indeed a randomized version 

of both the Path-Scanning heuristic and the heuristic of Golden et al. Thus, each call is likely to 

produce a different solution. The mutation operator is defined on the giant tour                , 
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where    is the i
th
 trip and where      is the number of trips in T. It first generates a new giant trip by 

modifying the concatenation order. Then some clients are exchanged to get the new giant trip     
 

2.2 Proposal for a new vehicle loading resolution approach 

 

The approach we propose shares some similarities with the method we developed for the 2D packing 

problem in the 2L-CVRP [9]. For the 2L-CVRP, the original 2PP is first relaxed into a RCPSP with 

one resource, leading to the RCPSP-CVRP. A solution to the RCPSP-CVRP is then computed before 

being transformed back into a 2L-CVRP by using an efficient procedure. In most of the cases, the 

resulting 2L-CVRP solution is packing-feasible which means no other subsequent RCPSP-CVRP 

solution has to be investigated. 

 

Unfortunately similar idea cannot be successfully applied to the 3L-CVRP. One should think that 

relaxing the 3PP sub-problem into a RCPSP with two resources (for example the width and the height) 

would also lead to the RCPSP-CVRP and most of the previous work could be re-used as well. 

However, the transformation of a RCPSP solution into a 3PP solution is often not possible as all the 

items are likely to be packed at the same location. Thus we propose a variation based on a 2-step 

procedure. 

2.2.1 General process to solve the 3PP 

 

Let           be a set of items. The following two steps are performed to compute a solution to the 

3PP: 

 

- Step 1: (xi, yi) positions are computed for each item i. The 3D geometry of the items is relaxed 

and the height of the item is considered as a cost ci = hi. Thus the following sub-problem has 

to be solved: “Let I be a set of rectangular items i defined by their length li, their width wi and 

their cost ci, and let a rectangular bin be defined by its length L, its width W and its capacity C. 

Find a position (xi, yi) for each item i of I in the bin such that (i) the packing is orthogonal, (ii) 

the sum of the overlapping items costs does not exceed C”. This step is addressed in part 

2.2.2. 
 

- Step 2: given the (xi, yi) positions obtained in Step 1, the zi coordinates are computed such that 

(xi, yi, zi) positions lead to a 3PP solution for the set of items I. Thus a 3PP has to be solved in 

this step, except that the solution is already partially defined. The resolution is fully detailed in 

part 2.2.3. 
 

To the best of our knowledge, this kind of approach is original. However Gilmore and Gomory 

proposed in 1965 a stack building approach [22]. It consists in packing items stack after stack by 

solving a two-dimensional packing problem for each stack. The method we introduce is quite different 

since it does not solve as many two-dimensional packing problems. In fact, only one problem need to 

be solved in step 1 (which can be seen as a 3PP relaxation and not as a 2PP) and the solution is then 

transformed into a 3PP solution in Step 2. 

 

2.2.2 Step 1: solving the relaxed 3PP 

 

As stressed in section 2.2.1, the arrangement problem introduced in Step 1 is considered. It is 

defined as follows: let I be a set of rectangular items i defined by their length li, their width wi and 

their cost ci. Let a rectangular bin be defined by its length L, its width W and its capacity C. The 

problem consists in finding a (xi, yi) position for each item i of I in the bin such that (i) the packing is 

orthogonal, (ii) the sum of the overlapping items costs does not exceed C. 
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The arrangement problem has to be solved each time the packing feasibility is checked. Since the 

check has to be done each time a solution is modified, its time efficiency is crucial. Thus, for time 

efficiency, we propose a greedy (heuristic) approach where items are scanned in an ordered list O. The 

items in O are considered and tentatively placed into the bin while satisfying constraints (i) and (ii). 

This process is done by the Solve_x_y_coordinate procedure (see Algorithm 1).  

 

The Solve_x_y_coordinate main loop uses a current position in the bin denoted by (posx, posy). It 

tries to pack as many items from O as possible at this position. Any successfully packed item from O 

is removed from O. The (posx, posy) position is first initialized at the origin (0, 0). It is then updated 

according to an increasing order of x-coordinates and y-coordinates. The way (x, y) coordinates are 

scanned allow us to state that an item i can be packed at the position (x, y) if: 

 

 

       

       

                                

  

 

where                is the sum of the items costs which are overlapping at the position (x, k). 

 

The way the positions are scanned in the arrangement is crucial. One must look for empty spaces 

reduction above the items while limiting the items stow in order to be able to successfully solve the 3 

dimensional packing in the following Step 2. 
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procedure Solve_x_y_coordinate 

input parameters 

O  : ordered set of items 

B  : bin 

output parameters 

ok : boolean (true upon packing success) 

xi
 
 : x-position of item i 

yi
 
 : y-position of item i 

local parameters 

Lx
 
 : item list ordered on x values 

sum_cost : 2-dimensional array representing the bin area 

begin 

Lx := {0}                           // ordered set of x value 

Ly := {0}                           // ordered set of y value 

ok := true 

iy := 1 

Initialize sum_cost to 0 

while ( (O ≠ ) and (ok = true) ) do 

posx := Lx[1]                    // first available position in Lx 

posy := Ly[iy]                   // next available position in Ly 

for i:=1 to Card(O) do 

item := O[i] 

if ( item can be packed at (posx, posy) ) then 

remove item from O 

(xitem, yitem) := (posx, posy) 

for k := posx to posx + item.length do 

for p := posy to posy + item.width do 

sum_cost[k][p] := sum_cost[k][p] + item.height 

add (posx + item.length) to Lx 

add (posy + item.width) to Ly 

endfor 

endfor 

endif 

endfor 

iy := iy + 1 

if (iy > Ly.size) then 

iy := 1 

remove Lx[1] from Lx 

if (Lx become empty) then ok := false endif 

endif 

endwhile 

end 

Algorithm 1: packing items in step 1 

 

The main drawback of this approach is its greediness (heuristic). This means the local choices may 

lead to a packing failure although packing could be done. To prevent such wrong answers, one could 

consider a backtracking mechanism (like a tree search). However this would be computationally too 

expensive since Solve_x_y_coordinate is called a lot of times during the GRASP process. A partial 

workaround based on a look-ahead mechanism has been added. It consists in adding an extra condition 

when trying to pack one of the last three items from O: the candidate item i can be packed at the 

position (posx, posy) only if the remaining items from O can be packed afterwards. Setting a limit of 

three remaining items has experimentally shown to be a good compromise between efficiency and 

time consumption. 

A post processing step consists in spreading items over the bin. Indeed the way x and y coordinates are 

scanned leads to the items being packed as long as at the bottom-left side of the bin. As a 

consequence, the opposite area (top-right part of the bin) is not exploited the best possible way. Thus 

packed items are scanned in the decreasing order of their right edge position. Each item is then shifted 

as much as possible to its right (without introducing new overlaps). The same process is applied on y 

coordinates. This step reduces the number of overlapping items and makes the problem at step 2 easier 

to be solved. 
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2.2.3 Step 2: solving the 3PP using the partial solution computed at step 1 

 
This step aims at computing a solution to the 3PP by using the solution found at Step 1. It consists in 

computing the    position of the items. The x and y positions have already been computed in Step 1.  

The idea is to scan the   coordinates, starting from 0. For each   value, as much items as possible are 

packed respecting their       position. This process ends when all items are packed or when the top of 

the bin is reached. The Solve_z_coordinate procedure is fully described in Algorithm 2.  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

procedure Solve_z_coordinate 

input parameters 

O  : ordered set of items 

x  : set of positions in x (xi = x-position of item i) 

y  : set of positions in y (yi = y-position of item i) 

B  : bin 

output parameters 

ok : boolean (true upon 3BPP success) 

z  : set of positions in z (zi = z-position of item i) 

local parameters 

h : array [1…L][1…W]     //h[x][y] = height already reached at (x,y) 

begin 

z := 0 

ok := true 

while ( ok = true ) do 

for ( k := 1 to Card(O) ) do 

item := O[k] 

if ( item can be packed in position (item.x, item.y, z) ) then 

update h 

zitem := z 

remove item from O 

endif 

if (z + item.height > B.height) then 

ok := false 

endif 

endfor 

endwhile 

end 

Algorithm 2 : computing z coordinate (step 2) 

2.2.4 Whole packing feasibility check 

 
As previously mentioned, a trip is feasible if (i) the total weight of the clients items does not exceed 

the vehicle capacity and if (ii) the items can be packed into the vehicle with respect to the 3PP 

constraints. Checking the first constraint is trivial. Checking the second constraint is trickier and we 

use the method described above. The global check is done by the 3D_Check_trip procedure (see 

Algorithm 3). The procedure iteratively generates an ordered list O before checking it. It stops as soon 

as a packing has been found or when the maximal number of attempts has been reached. The 

procedure Solve_x_y_coordinate tries to identify a packing which relies on the ordered set O. Upon 

success, Solve_z_coordinate is called. Otherwise, the Random_Neighboord_Generation generates 

a new list O' by randomly exchanging some items in O. Rotations are addressed by a random selection 

of item in O and by swapping their length and width.  
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20. 

21. 

22. 

23. 

24. 
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26. 
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28. 

29. 

30. 

31. 

procedure 3D_Check_trip 

input parameters 

cli: set of clients
 

nm, nm1, nm2 : maximal number of attempts 

V  : vehicle (bin) 

output parameters 

xi
 
 : x-position of item i 

yi
 
 : y-position of item i 

zi  : z-position of item i 

ok : boolean (true upon success) 

begin 

O := items from cli 

k := 1, l := 1, j := 1                      //number of iterations                                         

ok := false 

while (k < nm) and (ok = false)             //main loop 

while (l < nm1) && (ok = false)           //search for x and y coordinates 

O := Random_Neighboord_Generation(O) 

(ok, x, y) := Solve_x_y_coordinate (O, V) 

l := l+1 

endwhile 

if (ok = true) then                          //search for z coordinate    

ok = false 

while (j < nm2) and (ok = false) 

O := Random_Neighboord_Generation(O) 

(ok, z) = Solve_z_coordinate(O, x, y, V) 

j := j+1 

endwhile 

endif 

k := k + 1 

endwhile  

end 

Algorithm 3: trip checking for 3D 

 

2.2.5 Preliminary computation and storage  

 
A lot of trips are evaluated during the optimization process. Moreover, same trip can be evaluated 

several times. Thus, a way to save time consists in avoiding unprofitable calls to 3D_Check_trip 

(several runs with identical parameters) by saving the result (true or false) of each trip feasibility 

check. A dedicated data structure is used and it is updated along the GRASP ELS process.  

 

A combination of data structures can be introduced: three matrices are dedicated to trips which deliver 

from 2 to 4 costumers. Trips with a single client are trivially feasible, unless the instance is unfeasible. 

Note that items for one customer can be packable or not depending if items rotations are allowed or 

not. These matrices provide a O(1) check if the trip has already been checked, either being packing-

feasible or not. Otherwise the feasibility check is performed and the result is stored into the 

corresponding matrix. The major drawback is the huge memory footprint, especially for the last 4-

dimensional matrix. Another data structure is used for trips involving more than 4 clients. It is a red-

black tree (self-balancing binary search tree), see the seminal contributions [23] [24]. In associative 

data structures, each element is associated to a key which is used to find it back. Here the key 

corresponds to the set of clients of the trip without any relative order consideration. In order for the 

storage to be efficient, the relation between the keys and the trips should be as close as possible to a 1-

1 correspondence. We propose the following key computation: given a trip 

                         , its key is generated by first computing the number of clients n(t) in the 

trip. Then the client identification numbers are concatenated in the increasing order, leading to a 

value     . For example, if                    , then         and             . Such an 

order is total since it is always possible to compare two different trips   and   : 

http://en.wikipedia.org/wiki/Self-balancing_binary_search_tree
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The search in a red-black tree is done in O(log(n)) where n is the size of the tree. 

 

The Load_Resolution procedure (see Algorithm 4) is in charge of evaluating a trip. This happens if 

the trip has never been evaluated or if it has been submit to less than p unproductive attempts there 

have been less than p failed evaluation (packing) attempts.  For convenience, Store(t) denotes the 

storing evaluation of the trip  . It is independent of the structure used to store the trip. Store(t)has the 

following meaning: 
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procedure Load_Resolution 

input parameters 

t  : trip 

p  : number of 3D trip evaluation attempts 

nm, nm1, nm2 : maximal number of attempts for 3D_Check_trip procedure 

V  : vehicle (bin) 

output parameters 

ok : boolean (true upon success) 

local parameters 

cli : set of clients in trip t 

begin 

ok := false 

switch case: 

  case Store(t) = 1 

  ok := true 

  endcase 

  case Store(t) = -p 

  ok := false 

  endcase 

  case (Store(t) ≠ -p) and (Store(t) ≠ 1) 

  (x, y, z, ok) = 3D_Check_trip (cli, nm, nm1, nm2, V) 

  if (ok = true) then 

  Store(t) := 1 

  else 

  Store(t) := Store(t) - 1 

  endif 

  endcase 

endswitch 

end 

Algorithm 4: Vehicle Load Resolution 

 

2.3 3D packing resolution example 

Let us consider the instance E023-05s.DAT from [10]: 5 clients have to be serviced for a total of 12 

items, detailed in Table 1. 
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 1 2 3 4 5 6 7 8 9 10 11 12 

Client C20 C20 C20 C1 C13 C13 C13 C7 C7 C22 C22 C22 

Items B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

Length 36 29 29 34 14 24 15 15 22 18 22 19 

Width 10 10 8 10 9 7 10 11 6 13 8 12 

Height 10 8 9 13 11 7 8 17 12 11 11 17 

Table 1:  set of items to pack 

2.3.1 Solving the arrangement problem (Solve_x_y_coordinate) 

 
Let us consider the ordered list                                            which leads to an 

arrangement solution. The next figures (from Figure 2 to Figure 7) illustrate the evolution of the 

arrangement process at different steps. The large rectangular area (       corresponds to the bin 

while the small rectangles inside it are the items already packed. The number in the small rectangles is 

the total cost for the associated area of the bin. Let us remind that the item cost corresponds to its 

height. The limit on the cost (the bin height) is set to 30. For each figure, the last packed item is filled 

with dotted lines.  

 

9

29

8

12

26

25

19

18

8

y

x  

Figure 2: putting the first three items 

The first two items    and     are packed at 

position (0, 0) and item    is located at 

position (0, 8) as stressed in Figure 2. The 

cost at the bottom-left side is the sum of    

cost and     cost (9+17=26) since items    

and     are overlapping at this area. The costs 

in the other rectangles are computed the same 

way considering the overlapped item.  

9

29

8

12

26

25

19

18

8

21

30

29

18

19

24

7

 

Figure 3: adding   ,     and    

No items can be packed in (0, 8). Thus the 

next position investigated is (0, 12) and all the 

remaining items in the list are scanned: the 

first packable item is    and the second one is 

   . Then the position (0, 18) is eligible for 

packing   , which leads to the arrangement in 

Figure 3. 
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Figure 4: adding     

The method skips to abscissa 14, considering 

positions (14;0), (14;8) and (14;12). The item 

    can be placed at (14;12) leading to the 

packing solution of Figure 4. 
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Figure 5: adding    

No item can be put at the next positions 

investigated. The first interesting position is (18, 

12) where item    can be placed. 
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Figure 6: adding    

The next interesting position is (19, 0) where 

   is placed. The remaining items to pack are 

  ,   , and   .  
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Figure 7: Final arrangement 

Only    can be placed at position (19, 0). The 

next position successfully investigated is (34, 

0) where     is placed and finally    is placed 

at (36, 10). 

  

The Solve_x_y_coordinate procedure has produced a compact arrangement and the computed 

position for each item are given in Table 2. 

Items B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

x-coordinate 18 0 0 19 0 0 19 34 36 0 14 0 

x-coordinate 12 8 0 0 12 18 0 0 10 12 12 0 

Table 2: Items position after resolution of the arrangement problem 

2.3.2 Items shift  

Shifting the items is done iteratively along the x-axis and then along the y-axis until no further shift 

can be done. This process leads to the new items coordinates in Table 3. 

Items B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

x-coordinate 24 1 1 26 2 0 30 45 38 6 16 7 

x-coordinate 15 8 0 5 16 18 5 4 19 12 17 0 

Table 3: Items position after items shift  
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2.3.3 Items packing in z (Solve_z_coordinate procedure) 

The sequence from Figure 8 to Figure 13 illustrates the way the packing is built by 

Solve_z_coordinate. The ordered set of items is                                           . 
First coordinate     is investigated and as many items as possible are packed at this current z 

according to their (x, y) position and according to the O. Thus                and    are packed at 

    (see Figure 8). The current    is updated to the smallest available height, i.e.    .  Items    

and     can be packed leading to the partial vehicle load shown in Figure 9.  

 

 

Figure 8: Packing items at z = 0 

 

Figure 9: Packing items at z = 8 

 

Figure 10: Packing items at z = 9 

 

Figure 11: Packing items at z = 17 

 

Figure 12: Packing item     at z = 19 

 

Figure 13: Packing item    at z = 19 

 

 
This process goes on with z = 9 where only     can be packed (Figure 10),        where only    is 

packed (see Figure 11) and finally      where     and    are packed. This leads to the final items 

packing in Figure 13. 
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Packing the items according to increasing values on the z-coordinate strategy usually produces dense 

layers with as much items as possible packed at the same time.  

The final 3D-loading solution is shown in Table 4. 

Items B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 

x-coordinate 24 1 1 26 2 0 30 45 38 6 16 7 

y-coordinate 15 8 0 5 16 18 5 4 19 12 17 0 

z-coordinate 19 0 0 17 8 0 0 0 0 19 8 9 

Table 4: 3D-packing solution 

 

2.4 Split procedure 

As previously mentioned, Split is a key-procedure which converts a giant tour into a 3L-CVRP 

solution (with respect to the sequence). It is based on the classical Split procedure [19][25][26], tuned 

to address the specific 3L-CVRP constraints.  

Split first builds an auxiliary digraph HT = (X, Y, Z) where X is a set of n+1 nodes indexed from 0 to n. 

Node 0 is a dummy node, while the nodes 1…n correspond to the client sequence of the giant tour 

           . An arc (i,j) belongs to Y if a trip servicing clients vi+1 to vj (included) is both weight-

feasible and 3D-feasible. The weight of the arc         corresponds to the trip cost          

                      . Optimally splitting T can be done by computing a min-cost path from node 

0 to node n in H. An initial label is set at node 0. The labels are then propagated from node to node in 

H using the arcs. The best label at node n is kept as the optimal split. 

 

Let   
 
    

 
   

 
      be the p

th
 label assigned to node i. It corresponds to a feasible split of the initial 

clients t1...ti into trips.   
 

 
is the number of vehicles still available,   

 
 is the cost of the trips previously 

built and       is the reference to its father label, e.g.    
 , the k

th
 label at node j. The initial label at 

node 0 is defined as   
             . It corresponds to the empty solution where all the vehicles 

are available. Propagating the label   
 

 along the arc         produces the label   
 
    

 
   

 
      

the following way: 

   
 
   

 
    

   
 
   

 
      

Since a lot of labels are generated and stored at each node, the computational time can quickly grow. 

Thus dominance rules must be defined in order to keep a good time efficiency. A label   
 
 is said to 

dominate the label   
 
 if one of the following conditions holds: 

 
   

 
   

 
         

 
   

 
  

   
 
   

 
         

 
   

 
  
  

 

The critical path leading to the best final label defines the trips of the 3L-CVRP solution. The 

procedure Split is detailed in Algorithm 5. For each node i, NB[i] gives the number of associated 

labels. The procedure Check_Domination_On_Node checks if the new label L is dominated by another 

label at node j. The procedure Insert inserts this label into the set of labels from node j and removes 

the dominated labels. The number of labels is updated accordingly. 
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1. procedure Split 

2. input parameters 

3.   T: giant tour 

4. output parameters 

5.   S: 3L-CVRP solution 

6. global parameter 

7.   D  : maximal vehicle weight capacity 

8.   V  : vehicle volume 

9.   di  : total items weight of client i 

10.   vi  : total volume of items located at client i 

11.   cij : cost from client i to j 

12.   n  : number of clients 

13. begin 

14.   
             , S :=  

15. pos_last := 0 

16. for i := 1 to n do Li :=  endfor 
17. for i := 0 to n - 1 do 

18.   j := i + 1 

19.   trip := ; client :=  
20.   repeat 

21.     prev := client 

22.     client := Tj 

23.     trip := trip + client 

24.     if (j = i + 1) then 

25.       trip_load   := dclient 

26.       trip_cost   := cdepot,client + cclient,depot 

27.       trip_volume := vclient 

28.       set_boxes   :=  
29.       size        := 0 

30.     else 

31.       trip_load   := trip_load + dclient 

32.       trip_cost   := trip_cost +cprev,client +cclient,depot -cprev,depot 

33.       trip_volume := trip_volume + vclient 

34.       size        := size + 1 

35.     endif 

36.     check := (trip_load   D) and (trip_volume 9

29

8

12

26

25

19

18

29

21

30

29

18

30

24

7

36

29 28

21

8

17

10

 V) 

37.     if (check = true) then 

38.       set_boxes   := set_boxes + vclient 

39.       if (j   pos_last) and (size > 1) then 
40.          res := Solve_3D(set_boxes) 

41.       else res := true 

42.       endif 

43.       if (res = true) then // 3D packing successfully solved 

44.         for p := 1 to NBi do 

45.          let   
 
    

 
   

 
      be the current label 

46.          propagate on j:       
 
      

 
                 

47.          if (Check_Domination_On_Node(Lj , j, NBj) = false) then 

48.            call Insert(L, j, NBj) 

49.          endif 

50.         endfor 

51.       endif  

52.   j := j + 1 

53.   until (check = false) or (j > n) 

54.   pos_last := j 

55. endfor 

56. if (NBn > 0) then 

57.   S := call extract_trips () 

58. endif 

59. end 

Algorithm 5: Split for the 3L-CVRP 
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3 Computational experiments  

All procedures have been implemented in C++ and compiled using g++. Numerical experiments have 

been carried out on a 2.1 GHz Opteron computer running Linux operating system. The CPU power has 

been evaluated at around 4140 Mflops/s. The numerical experiments are based on two instance sets: 

 a set of instances previously introduced in [10]; 

 a new set of instances based on the 96 French counties. To the best of our knowledge, this is the 

first step towards the definition of realistic and available instances for the 3L-CVRP. They are 

available for further experiments at http://www.isima.fr/~toussain. 
 

Table 5 gives the set of parameters used for the two set of instances. 

 Parameters definition Parameters value 

np number of GRASP iterations 60 

ne number of ELS iterations 15 + min(6, nbVehicule) 

nd  number of neighborhoods  10 

p maximal number of 3D trip evaluation 5 

Table 5: parameters setting for the classical instances 

 

3.1 Implementation and classical benchmarks used 

We report results on the set of instances used in [10] and then in [11]. The number of clients varies 

from 15 to 100 and the total number of boxes varies from 32 to 198. The number of vehicles varies 

from 5 for the small instances to 28 for the largest ones. These instances can be downloaded at 

http://www.or.deis.unibo.it/research_pages/ORinstances/.  

 Nb clients Nb items Nb 
vehicles 

01 15 32 4 

02 15 26 5 

03 20 37 4 

04 20 36 6 

05 21 45 6 

06 21 40 6 

07 22 46 6 

08 22 43 6 

09 25 50 8 

10 29 62 8 

11 29 58 8 

12 30 63 9 

13 32 61 8 

14 32 72 9 

15 32 68 9 

16 35 63 11 

17 40 79 14 

18 44 94 11 

19 50 99 12 

20 71 147 18 

21 75 155 17 

22 75 146 18 

23 75 150 17 

24 75 143 16 

25 100 193 22 

26 100 199 26 

27 100 198 23 

Table 6: instances characteristics 

The details of the GRASP  ELS solutions are available at http://www.isima.fr/~lacomme,  

http://www.isima.fr/~toussain and http://www.isima.fr/~duhamel. The GRASP  ELS is compared 

with the Ant Colony Scheme of [11] and with the Tabu Search of [10]. 

http://www.isima.fr/~toussain
http://www.or.deis.unibo.it/research_pages/ORinstances/
http://www.isima.fr/~toussain
http://www.isima.fr/~duhamel
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The GRASP  ELS is a random search algorithm. To provide a fair comparative study with Fuellerer's 

proposal, each instance has been solved ten times, the same way they did in their experiments. We 

report the average cost as well as the average CPU time to get the best solution over the 10 

replications. Note that the best found solution over the 10 runs is also kept with the corresponding 

CPU time to reach it. The computational time of each method has been scaled by the speed factor 

presented in Table 7. This coefficient takes into account the MIPS performance of each processor. 

 Gendreau et al. [10] Fuellerer et al. [11] GRASP  ELS 

Computer PIV 3 GHz PIV 3.2 GHz Opteron 2.1 GHz 

OS ? Linux Linux 

Language C C++ C++ 

Speed factor 0.94 1 0.66 

Time limit 1h 1h 1h30 

Nb of runs 1 10 10 

Table 7: comparative performance of processors 

All previously published methods were benchmarked over 1 hour of computational time, i.e. 1 hour of 

computation is assigned for one run of the methods. Since the reference results [11] have been 

obtained on a computer which is 1.5 times faster than ours, the GRASP  ELS time limit is set to 

1h30.  

 

3.2 Average results for 3L-CVRP instances 

A summary of the results is presented in Table 8 for the three methods. For each method, the number 

of time the method gives the best published method (line 2), the number of time the method compete 

with the best one (line 3) and the number of time the method is worst (line 4) are reported. The results 

show that the GRASP  ELS find the best solution for 16 out of 27 instances and outperforms both the 

Tabu search from Gendreau et al. [10] and the Ant colony Scheme from Fuellerer et al. [11]. The 

average value 846.1 is also the best. 

 Gendreau et al. [10] Fuellerer et al. [11] GRASP  ELS GRASP  ELS 

rotation yes yes yes no 

nb best 0 2 16 14 

nb of equal 7 7 8 6 

Nb of worst 20 18 3 7 

avg value 876.31 856.7 847.04 848.88 

best value ? ? 841.96 845.48 

Table 8: average GRASPELS performance, with and without rotations 

Two versions of GRASP ELS are provided in order to evaluate the consequence of allowing items 

rotation or not. Quite surprisingly, forbidding items rotation does not deteriorate that much the 

solution. On average, our method produces solutions that are 3 units higher. Thus rotations do not 

seem to play a significant role for this set of instances. When carefully checking the results (see the 

Appendix), one can note that the solution is the same, with and without items rotation, for half the 

instances. 

3.3 Hash function performances on results 

The hash function kept in memory the 3D packing results leading to a learning algorithm in order to 

save time during process. The saving time increased over replications since the hash tables are not 

erased between replications.  

Impact of hash function can be easily evidenced in numerous instances including the instance 07 

shown in Table 9. For this instance the limit is fixed to 63000 iterations. The total time to perform 

those iterations is about 3079.4 s in the first replication. It quickly drops in the second iterations 

(1475.4 s). The time difference corresponds to the packing results kept in memory in the first 

replication since both replications have exactly the same parameters. We can notice that the total time 

decreases over the 10 replications, dropping from 3000 s to 700 s. 
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total time (s) 

Replication 1 732.51 3079.4 
Replication 2 732.51 1475.4 
Replication 3 725.70 1228.7 
Replication 4 732.51 1082.4 
Replication 5 727.27 959.7 
Replication 6 725.70 840.6 
Replication 7 732.51 854.6 
Replication 8 727.54 792.8 
Replication 9 725.43 729.9 

Replication 10 727.03 728.6 

Table 9: GRASP ELS performances over the 10 iterations 

 

3.4 Example of a 3L-CVRP solution 

Let us consider the instance 08 with 22 clients to service, 43 items to load and 8 vehicles available. 

The GRASP  ELS provides a solution of value 730 which is better than the solution given by the Ant 

Colony Scheme [11]. This solution is made of 5 trips: Figure 14 provides a graphical representation of 

the trips. 

Trip 1: Depot, 14, 17, 22, 20, 19, Depot 

Trip 2: Depot, 11, 13, 9, 5, 4, 7, Depot 

Trip 3: Depot, 16, 15, 3, 2, 1, 6, 12, Depot 

Trip 4: Depot, 21, 8, 10, Depot 

Trip 5: Depot, 18, Depot 

 

Figure 14: Solution for the instance 08 

 

For each trip, table 10 reports the total items weight, the total item volume and the trip cost. 

 
Trip number Trip weight Trip volume Trip cost 

1 1925 32861 212.611 

2 2725 34932 142.299 

3 994 26906 160.881 

4 4425 21017 170.821 

5 120 11628 44.045 

Total solution 730.657 

Table 10: trips details 
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Let us consider the trip 4. It consists in servicing clients 21, 8 and 10.  Table 11 gives the list of the 

boxes for each client, along with their dimensions. 

Client 21 Client 8 Client 10 

box 1: 24 15  8 box 1: 36 11 13 box 1: 18 11 8 

box 2: 13 14 14 box 2: 27 11 17  

 box 3: 34  7 16  

Table 11: list of boxes to pack for each client 

A feasible 3PP solution considering those boxes is as follows:  

Client 21, box 1: (31;0;0) 

Client 21, box 2: (18;11;0) 

Client 8, box 1: (0;0;17) 

Client 8, box 2: (0;0;0) 

Client 8, box 3: (0;11;14) 

Client 10, box 1: (0;11;0) 

 

 

Let us note that a 3D visualization tool can be obtained at http://www.isima.fr/~toussain/. 

 

3.5 New benchmarks 

Using the GIS system developed by Bajart and Charles [27], shortest paths are computed between 

cities with more than 100 or 500 citizens for the 96 French counties. The shortest paths are computed 

using the Google web service and they correspond to the roadmap distance in kilometers between 

cities. Thus, 96 realistic instances are provided in terms of distances, with size varying from 60 to 255 

nodes. To the best of our knowledge, those are the first available instances based on real counties. 

They can be divided into 4 subsets: 

- DLT_3LCVRP_1: 13 small instances with less than 100 nodes; 

- DLT_3LCVRP_2: 40 medium instances with 100 to 150 nodes; 

- DLT_3LCVRP_3: 33 large instances with 150 to 200 nodes; 

- DLT_3LCVRP_4: 11 very large instances with more than 200 nodes.  

 

The results for the 96 instances are available in Appendix 2. Table 12 gives the whole results with 

rotations allowed. Results without rotations are available at http://www.isima.fr/~toussain/ 

 
 DLT_3LCVRP_1 DLT_3LCVRP_2 DLT_3LCVRP_3 DLT_3LCVRP_4 

  1069.24 2522.99 3936.89 5370.56 

  3462.26 4949.80 5220.17 5493.75 

      1038.20 2457.20 3520.25 4424.02 

      3519.08 5148.23 5357.04 5532.92 

Table 12: GRASPELS performance for the new instances 

For the classical instances, allowing items rotation slightly improves the results. For this new set of 

instances, eight instances cannot be solved if rotations are forbidden since the items of some clients 

cannot be packed with the heuristic we introduced (see Table 13). For one instance, GRASPELS 

found a solution with 16 vehicles while only 15 vehicles are available. 

 

http://www.isima.fr/~toussain/
http://www.isima.fr/~toussain/
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instances client 

DLT_3LCVRP_2b 10 

DLT_3LCVRP_12 104 

DLT_3LCVRP_09 205 

DLT_3LCVRP_21 119 

DLT_3LCVRP_30 25 

DLT_3LCVRP_40 116 

DLT_3LCVRP_49 83 

DLT_3LCVRP_50 44 

Table 13: Client packing failure with the heuristic if rotations are not allowed 

 

 

4 Concluding remarks  

This article considers an extension of the well-known CVRP in which three dimensional packing 

constraints must be addressed in each trip servicing clients. This problem deals with two combinatorial 

optimization problems: vehicle routing and three-dimensional packing. The method we propose 

compete with the best published methods but the method is currently dedicated to the 3L-CVRP with 

no extra constraints. It is based on an original resolution of the 3PP based on a dedicated heuristic for 

the vehicle loading resolution. We are currently investigating the 3L-CVRP with additional 

constraints, trying to extend the original 3D-packing scheme we introduce. 
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Appendix 1 

 

instance (Gendreau et al., 2006) (Fuellerer et al., 2010) GRASP ELS 

                         
01 297.65 3.40 297.65 1.00 297.65 3.53 297.65 0.0 

02 334.96 0.60 334.96 0.10 335.67 0.06 334.96 0.0 

03 362.27 448.10 362.27 16.20 362.27 13.99 362.27 0.2 

04 430.89 11.10 430.89 0.50 430.88 0.40 430.88 0.0 

05 395.64 0.50 406.50 9.60 379.43 8.16 379.43 0.1 

06 495.85 14.70 495.85 1.20 495.85 0.30 495.85 0.0 

07 742.23 1.80 732.52 18.10 725.43 237.39 725.43 4.9 

08 735.14 104.90 735.14 13.30 735.14 36.63 735.14 1.1 

09 630.13 977.80 630.13 3.70 630.13 2.18 630.13 0.1 

10 717.90 410.70 711.45 92.60 687.57 589.11 687.57 32.1 

11 718.24 208.10 718.25 81.90 718.24 1453.35 718.24 1.8 

12 614.60 1 302.70 612.63 7.50 610.05 19.66 610.00 2.0 

13 2 316.56 2 317.30 2391.77 174.50 2306.04 1242.44 2306.04 86.9 

14 1 276.60 2 121.30 1222.17 425.90 1186.96 2423.64 1184.44 3600.2 

15 1 196.55 2 916.14 1182.86 645.00 1161.20 2144.72 1161.11 689.3 

16 698.61 863.00 698.61 2.80 698.61 2.87 698.61 0.0 

17 906.42 753.20 862.18 3.10 861.80 8.58 861.79 1.2 

18 1 124.33 2198.90 1112.18 1484.60 1084.26 1893.69 1078.41 2030.8 

19 680.29 1 390.30 671.60 414.40 670.44 3322.67 658.34 3429.6 

20 529.00 7 007.50 515.39 1436.70 510.95 2892.97 503.30 1469.7 

21 1 004.40 6 262.50 951.87 2105.70 943.05 4173.74 921.25 4697.4 

22 1 068.96 2 078.70 1030.12 1218.40 1029.87 3561.80 1009.45 3348.3 

23 1 012.51 4 314.10 971.05 1231.70 987.06 3120.66 976.46 1889.1 

24 1 063.61 1 052.50 1057.39 184.70 1056.33 2610.20 1047.75 682.8 

25 1 371.32 500.90 1207.97 3986.10 1232.73 4489.01 1219.77 4658.4 

26 1 557.12 1 075.00 1453.39 2843.60 1415.15 3484.63 1393.76 3066.6 

27 1 378.52 3 983.20 1333.16 2208.30 1317.38 3372.87 1304.82 2422.3 

Avg. Cost 876.31  856.67  847.04  841.96  

Avg. Time  1567.4  689.3  1522.56  1189.44 

Avg. Norm. 

Time  
1504.1 

 
689.3  1004.89  785.03 

Table A1:  Solution values (rotations allowed) 
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instance GRASP ELS GRASP ELS 

                                 
 Rotations allowed Rotations forbidden 

01 297.65 3.53 297.65 0.0 297.65 1.01 297.65 0.0 

02 335.67 0.06 334.96 0.0 335.67 0.06 334.96 0.0 

03 362.27 13.99 362.27 0.2 362.27 5.31 362.27 0.2 

04 430.88 0.40 430.88 0.0 430.88 0.19 430.88 0.0 

05 379.43 8.16 379.43 0.1 379.43 1.56 379.43 0.0 

06 495.85 0.30 495.85 0.0 495.85 0.34 495.85 0.0 

07 725.43 237.39 725.43 4.9 732.51 104.85 732.51 0.1 

08 735.14 36.63 735.14 1.1 730.66 115.78 730.66 0.1 

09 630.13 2.18 630.13 0.1 633.72 2.52 633.72 0.1 

10 687.57 589.11 687.57 32.1 704.97 1009.19 704.64 34.2 

11 718.24 1453.35 718.24 1.8 718.24 225.10 718.24 13.6 

12 610.05 19.66 610.00 2.0 610.00 11.62 610.00 2.7 

13 2306.04 1242.44 2306.04 86.9 2299.05 111.17 2299.05 3.9 

14 1186.96 2423.64 1184.44 3600.2 1194.57 2966.97 1192.29 612.0 

15 1161.20 2144.72 1161.11 689.3 1163.34 1975.90 1163.23 1050.3 

16 698.61 2.87 698.61 0.0 700.80 1.20 700.80 0.1 

17 861.80 8.58 861.79 1.2 861.79 7.69 861.79 2.2 

18 1084.26 1893.69 1078.41 2030.8 1091.61 2502.66 1091.28 4137.8 

19 670.44 3322.67 658.34 3429.6 665.45 2489.16 662.96 1810.9 

20 510.95 2892.97 503.30 1469.7 515.95 2340.49 513.28 3166.3 

21 943.05 4173.74 921.25 4697.4 947.30 2503.90 940.72 2945.8 

22 1029.87 3561.80 1009.45 3348.3 1039.64 2249.58 1021.02 3552.4 

23 987.06 3120.66 976.46 1889.1 980.63 2194.71 972.12 3146.3 

24 1056.33 2610.20 1047.75 682.8 1053.60 3964.98 1048.55 3697.1 

25 1232.73 4489.01 1219.77 4658.4 1224.56 2898.75 1209.81 2564.6 

26 1415.15 3484.63 1393.76 3066.6 1427.58 3053.36 1421.35 4711.4 

27 1317.38 3372.87 1304.82 2422.3 1322.02 2449.77 1298.84 3617.4 

Avg. Cost 847.04  841.96  848.88  845.48  

Avg. Time  1522.56  1189.44  1229.18  1298.87 

Table A2:  Solution values (with and without rotations) 
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Appendix 2 

 

 

  GRASP ELS 

                  

DLT_3LCVRP_01 Ain 1461.63   5361.81 1388.27 5418.4 

DLT_3LCVRP_08 Ardennes 1065.51 2764.31 1041.54 2461.0 

DLT_3LCVRP_10 Aube 1232.45 3685.94 1200.33 2580.6 

DLT_3LCVRP_11 Aude 1565.7 4491.45 1517.85 4854.3 

DLT_3LCVRP_36 Indre 2085.69 4594.17 2042.01 5324.0 

DLT_3LCVRP_39 Jura 1828.25 4174.64 1758.5 5076.3 

DLT_3LCVRP_43 Haute Loire 1361.26 4117.87 1317.93 5301.0 

DLT_3LCVRP_52 Haute Marne 1176.91 3635.08 1146.78 2618.0 

DLT_3LCVRP_55 Meuse 1103.22 2458.72 1078.8 1526.2 

DLT_3LCVRP_70 Haute Saone 1328.27 3777.12 1289.68 5052.7 

DLT_3LCVRP_75 Paris 71.6 78.82 71.6 1.3 

DLT_3LCVRP_82 Tarn et Garonne 1027.84 3704.84 1006.8 5135.5 

DLT_3LCVRP_92 Haut de Seine 256.88 2454.46 254.56 133.4 

DLT_3LCVRP_93 Seine saint denis 219.44 3020.38 216.35 4722.1 

DLT_3LCVRP_94 Val de Marne 254.01 3614.27 242.04 2581.4 

Average   1069.24 3462.26 1038.20 3519.08 

 

Table A3:  GRASP ELS performances on French counties (     ) 
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  GRASP ELS 

                  
DLT_3LCVRP_03 Allier 2139.75 4603.22 2052.27 5330.8 

DLT_3LCVRP_05 Hautes Alpes 2075.94 5099.58 2026.35 5430.4 

DLT_3LCVRP_06 Alpes Maritimes 3529.92 4613.60 3444.20 4476.5 

DLT_3LCVRP_07 Ardeche 2484.92 4229.79 2434.31 4389.0 

DLT_3LCVRP_12 Aveyron 2329.36 4804.46 2268.78 4844.2 

DLT_3LCVRP_13 Bouches du Rhone 2352.33 4739.08 2296.61 4062.9 

DLT_3LCVRP_16 Charentes 1932.30 5141.70 1872.63 5180.4 

DLT_3LCVRP_17 Charentes Maritimes 1978.44 3841.00 1929.74 4671.5 

DLT_3LCVRP_2A Corse du Sud 2864.00 4926.72 2821.78 4917.4 

DLT_3LCVRP_2B Haute Corse 3735.49 3626.75 3665.83 4552.5 

DLT_3LCVRP_21 Cote d’Or 1977.07 5353.86 1885.21 5375.1 

DLT_3LCVRP_25 Doubs 3266.13 5246.27 3159.12 5429.8 

DLT_3LCVRP_26 Drome 2700.61 4845.18 2648.82 5409.2 

DLT_3LCVRP_28 Eure et loire 2935.09 5322.84 2832.90 5414.4 

DLT_3LCVRP_30 Gard 3538.71 5335.48 3436.54 5424.6 

DLT_3LCVRP_31 Haute Garonne 1818.05 4705.95 1776.06 4792.8 

DLT_3LCVRP_34 Herault 2765.50 4951.93 2736.49 5347.4 

DLT_3LCVRP_40 Landes 3990.96 5308.65 3912.77 5438.5 

DLT_3LCVRP_41 Loir et Cher 2852.58 5370.68 2759.98 5400.7 

DLT_3LCVRP_47 Lot et Garonne 1809.77 5289.63 1778.14 5402.5 

DLT_3LCVRP_48 Lozère 2961.16 4719.93 2875.28 5407.1 

DLT_3LCVRP_51 Marne 2367.75 5259.18 2217.50 5400.4 

DLT_3LCVRP_53 Mayenne 1564.51 4675.93 1528.12 5440.7 

DLT_3LCVRP_60 Oise 2256.10 5100.09 2231.22 5300.0 

DLT_3LCVRP_61 Orne 2022.89 4310.26 1954.09 5309.2 

DLT_3LCVRP_66 Pyrénées Orientales 2916.57 5229.04 2872.76 5470.1 

DLT_3LCVRP_68 Haut Rhin 2109.04 5279.39 2042.68 5038.4 

DLT_3LCVRP_73 Savoie 3163.53 4655.41 3085.56 5188.6 

DLT_3LCVRP_74 Haute Savoie 3499.17 5096.06 3442.30 5427.2 

DLT_3LCVRP_79 Deux Sèvres 3156.48 5283.64 3077.39 4672.8 

DLT_3LCVRP_81 Tarn 2159.38 5321.56 2097.33 5390.7 

DLT_3LCVRP_83 Var 2882.99 5376.17 2811.55 4558.9 

DLT_3LCVRP_84 Vaucluse 1720.03 5283.00 1662.31 5384.2 

DLT_3LCVRP_85 Vendée 2449.78 5038.93 2361.79 5557.1 

DLT_3LCVRP_87 Haute Vienne 1540.89 5400.42 1498.54 5404.8 

DLT_3LCVRP_88 Vosges 3005.10 5075.91 2919.94 5317.4 

DLT_3LCVRP_89 Yonne 2362.85 5354.09 2314.52 5400.0 

DLT_3LCVRP_90 Territoire de Belfort 658.54 4277.14 642.05 4674.6 

Average   2522.99 4949.80 2457.20 5148.23 

Table A4:  GRASP ELS performances on French counties (         ) 
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  GRASP ELS 

                  
DLT_3LCVRP_02 Aisne 3483.94 5376.81 3411.68 5407.4 

DLT_3LCVRP_04 
Alpes Hautes 

Provence 
4001.26 5413.66 3898.77 5479.7 

DLT_3LCVRP_09 Ariege 3660.89 3677.88 3457.07 5416.9 

DLT_3LCVRP_14 Calvados 3404.01 5424.41 3341.09 5535.1 

DLT_3LCVRP_15 Cantal 4692.26 5177.38 4597.80 5426.0 

DLT_3LCVRP_24 Dordogne 5368.17 5323.03 5261.64 5274.6 

DLT_3LCVRP_29 Finistère 5499.76 5070.86 5249.17 5425.4 

DLT_3LCVRP_33 Gironde 4173.51 5537.61 4112.79 5700.6 

DLT_3LCVRP_35 Illes et Vilaine 2746.49 5198.73 2680.55 5404.7 

DLT_3LCVRP_37 Indre et Loire 3244.50 5231.54 3178.33 5232.7 

DLT_3LCVRP_42 Loire 4126.93 5340.25 4007.88 5598.0 

DLT_3LCVRP_44 Loire Atlantique 3614.01 5290.52 3513.68 5484.1 

DLT_3LCVRP_45 Loiret 3243.62 5303.97 3208.11 5552.8 

DLT_3LCVRP_50 Manche 6216.28 5369.54 6084.57 5458.6 

DLT_3LCVRP_54 Meurthe et Moselle 3888.63 5372.69 3810.19 5476.1 

DLT_3LCVRP_56 Morbihan 4415.26 5294.84 4347.93 5405.4 

DLT_3LCVRP_57 Moselle 4710.03 5341.14 4599.94 5535.2 

DLT_3LCVRP_59 Nord 3124.63 5538.69 3069.32 5422.7 

DLT_3LCVRP_63 Puy de Dome 3655.75 5281.63 3569.56 5430.4 

DLT_3LCVRP_64 
Pyrénées 

Atlantique 
4137.24 5100.74 4077.55 5044.2 

DLT_3LCVRP_67 Bas Rhin 2266.82 5072.56 2201.15 4696.7 

DLT_3LCVRP_69 Rhone 2056.44 5114.28 2031.52 4472.4 

DLT_3LCVRP_71 Saone et Loire 14494.27 5390.60 4093.28 5378.3 

DLT_3LCVRP_72 Sarthe 2632.41 5234.74 2548.62 5456.2 

DLT_3LCVRP_76 Seine Maritime 3057.31 4985.63 2977.96 5159.4 

DLT_3LCVRP_77 Seine et Marne 2754.45 5086.19 2705.95 5424.8 

DLT_3LCVRP_78 Yvelines 2744.03 5489.90 2671.51 5244.6 

DLT_3LCVRP_80 Sommes 2481.82 5349.43 2407.48 5555.6 

DLT_3LCVRP_86 Vienne 4012.49 5069.05 3962.59 5418.2 

DLT_3LCVRP_91 Essonne 2227.53 5114.22 2181.66 5231.5 

DLT_3LCVRP_95 Val d'Oise 1908.77 5252.83 1868.38 5319.8 

Average   3936.89 5220.17 3520.25 5357.04 

Table A4:  GRASP ELS performances on French counties (         ) 
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  GRASP ELS 

                  
DLT_3LCVRP_18 Cher 4612.07 5464.63 4557.44 5463.3 

DLT_3LCVRP_19 Corrèze 5255.32 5436.26 5081.43 5485.2 

DLT_3LCVRP_22 Cote d’Armor 4654.87 5563.20 4522.52 5666.8 

DLT_3LCVRP_23 Creuse 3237.73 5379.35 3161.36 5403.6 

DLT_3LCVRP_27 Eure 3775.79 5366.59 3652.64 5450.0 

DLT_3LCVRP_32 Gers 4479.75 5527.63 4414.94 5477.3 

DLT_3LCVRP_38 Isère 5482.05 5468.13 5313.02 5598.1 

DLT_3LCVRP_46 Lot 5317.21 5625.37 5170.43 5532.8 

DLT_3LCVRP_49 Maine et Loire 5968.21 5660.49 5832.03 5619.2 

DLT_3LCVRP_58 Nièvre 4016.08 5540.16 3905.81 5791.7 

DLT_3LCVRP_62 Pas de Calais 4593.95 5480.41 4484.43 5336.7 

DLT_3LCVRP_65 Hautes Pyrénées 13053.68 5412.83 2992.35 5570.3 

Average   5370.56 5493.75 4424.03 5532.92 

Table A4:  GRASP ELS performances on French counties (     ) 

 

 

 

 

 

 
 

 


