Averaging properties for periodic homogenization and large deformation

Abstract : The main motivation of this paper consists of using the periodic homogenization theory to derive several relations between macroscopic Lagrangian (e.g., deformation gradient, Piola-Kirchhoff tensor) and Eulerian (e.g., velocity gradient, Cauchy stress) quantities. These relations demonstrate that these macroscopic quantities behave formally in the same way as their microscopic counterparts. We say therefore that these relations are stable with respect to the periodic homogenization. We also demonstrate the equivalence between the two forms of the macroscopic power density expressed in the Lagrangian and Eulerian formulations. Two simple examples illustrate these results, and indicate also that the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor are not stable with respect to periodic homogenization.
Type de document :
Article dans une revue
International Journal for Multiscale Computational Engineering, Begell House, 2012, 10 (3), pp.281-293. <10.1615/IntJMultCompEng.2012002587>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00704056
Contributeur : Elena Rosu <>
Soumis le : lundi 4 juin 2012 - 16:50:57
Dernière modification le : vendredi 11 mars 2016 - 01:02:08

Identifiants

Collections

Citation

Mohamed Ben Bettaieb, Olivier Débordes, Abdelwaheb Dogui, Laurent Duchêne. Averaging properties for periodic homogenization and large deformation. International Journal for Multiscale Computational Engineering, Begell House, 2012, 10 (3), pp.281-293. <10.1615/IntJMultCompEng.2012002587>. <hal-00704056>

Partager

Métriques

Consultations de la notice

108