Correspondences between Pre-pyramids, Pyramids and Robinsonian Dissimilarities
Patrice Bertrand, Jean Diatta

To cite this version:

HAL Id: hal-00703391
https://hal.archives-ouvertes.fr/hal-00703391
Submitted on 1 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Correspondences between Pre-pyramids, Pyramids and Robinsonian Dissimilarities

Patrice BERTRAND1 and Jean DIATTA2

1CEREMADE, Université Paris Dauphine
2LIM-EA2525, Université de la Réunion

Abstract

We consider cluster structures in a general setting where they do not necessarily contain all singletons of the ground set. Then we provide a direct proof of the bijection between semi-proper robinsonian dissimilarities and indexed pre-pyramids. This result generalizes its analogue proven by Batbedat in the particular case of definite cluster structures. Moreover, the proposed proof shows that the clusters of the indexed pre-pyramid corresponding to a semi-proper robinsonian dissimilarity are particular 2-balls of the considered dissimilarity.

Keywords: Cluster structure, Compatible order, Robinsonian dissimilarity.

Structural bijections between cluster structures and dissimilarity types play an important role in cluster analysis. They not only validate the dissimilarity-based clustering approach, but make it possible to bring a cluster system specification problem back to a dissimilarity matrix determination (13; 9; 8; 10). The best known of these bijections is certainly the one between indexed hierarchies and ultrametrics (20; 5). Several extensions of this bijection have been obtained, e.g., between indexed quasi-hierarchies and quasi-ultrametrics (1; 15), between indexed pyramids and strongly robinsonian dissimilarities (17), and between weakly indexed pyramids and robinsonian dissimilarities (16). Generalizations and/or unifications of some of these bijections can be found in (3; 11; 6; 18; 7; 2; 12).

The present paper focuses on a bijection between semi-proper robinsonian dissimilarities and indexed pre-pyramids, in a general setting where cluster structures are not required to contain all singletons of the ground set, \textit{i.e.}, are not necessarily definite. We give a direct proof of this bijection, showing that the clusters of the indexed pre-pyramid corresponding to a semi-proper robinsonian dissimilarity are particular 2-balls of the considered dissimilarity. This result generalizes its analogue proven by Batbedat (4) in the particular case of definite cluster structures. Moreover, it can be thought of as the third side of a triangular correspondence between indexed pre-pyramids, weakly indexed pyramids and semi-proper robinsonian dissimilarities. Indeed, on the one hand, a bijection between indexed pre-pyramids and weakly indexed pyramids derives as an instance of the general one between indexed cluster structures and weakly indexed closed cluster structures (14). On the other hand, the Diday’s bijection (16) extends between weakly indexed (not necessarily definite) pyramids and semi-proper robinsonian dissimilarities.

1 Pyramids and Pre-pyramids

1.1 Pre-pyramids

Let E be a finite nonempty set. A cluster structure on E is a collection \mathcal{C} of subsets of E, satisfying conditions (CS1), (CS2) and (CS2') below:
(CS1) the empty set is not a member of \(\mathcal{C} \) whereas the ground set \(E \) is, i.e., \(\emptyset \notin \mathcal{C} \) and \(E \in \mathcal{C} \);

(CS2) the set of minimal members of \(\mathcal{C} \) (w.r.t. set inclusion) partitions \(E \); in other words, these minimal members are non-empty, pairwise disjoint, and they cover \(E \) (i.e. their union equals \(E \));

(CS2') every non-minimal member of \(\mathcal{C} \) is the union of members of \(\mathcal{C} \) it properly contains, i.e., for all \(X \in \mathcal{C} \): \(\cup \{Y \in \mathcal{C} : Y \subset X\} \in \{\emptyset, X\} \);

(CS3) there is a linear order, say \(\theta \), on \(E \), of which each member \(C \) of \(\mathcal{C} \) is an interval, i.e., for all \(x, y, z \in E \): \(x, y \in C \) and \(x \theta z \theta y \) imply \(z \in C \).

The pair of conditions (CS2) and (CS2') is often replaced by a stronger condition requiring each singleton to be a member of \(\mathcal{C} \). Actually, a cluster structure satisfying this strong requirement is said to be total or definite.

A pre-pyramid on \(E \) is a cluster structure \(\mathcal{C} \) on \(E \), satisfying the condition (CS3) below:

\[(CS3)\] there is a linear order, say \(\theta \), on \(E \), of which each member \(C \) of \(\mathcal{C} \) is an interval, i.e., for all \(x, y, z \in E \): \(x, y \in C \) and \(x \theta y \theta z \) imply \(z \in C \).

The order \(\theta \) and the collection \(\mathcal{C} \) are said to be compatible with each other, and subset collections satisfying condition (CS3) are said to admit a compatible order. The condition (CS3) is the specific condition of interval-type subset collections.

1.2 Pyramids

To every subset collection can be associated its closure consisting of arbitrary intersections of its members. As we are concerned with collections of nonempty subsets of finite sets, we will consider only finite nonempty intersections. The closure of a subset collection \(\mathcal{C} \) under (finite) nonempty intersections will be denoted by \(\overline{\mathcal{C}} \), and \(\mathcal{C} \) will be said to be closed when it satisfies the condition (CS4) below:

\[(CS4)\] the intersection of two members of \(\mathcal{C} \) is either empty or a member of \(\mathcal{C} \), i.e., \(X, Y \in \mathcal{C} \) implies \(X \cap Y \in \mathcal{C} \cup \{\emptyset\} \).

A pyramid is a closed pre-pyramid. It can be checked that conditions (CS2) and (CS2') are equivalent under (CS1) and (CS4). Pyramidal classification has been introduced by Diday (16) and considered or investigated in several works among which we can mention (21; 19).

To show that \(\overline{\mathcal{C}} \) is a pyramid when \(\mathcal{C} \) is a pre-pyramid, it suffices to check that \(\overline{\mathcal{C}} \) verifies (CS2). Now this derives from the fact that, by Lemma 1 and Lemma 2 below, every minimal member of \(\mathcal{C} \) is also a minimal member of \(\overline{\mathcal{C}} \).

Lemma 1 (14) The conjunction of conditions (CS2) and (CS2') is equivalent to the conjunction of conditions (a) and (e), where:

\[(a_1)\] \(C, C' \in \mathcal{C} \) and \(C \) minimal in \(\mathcal{C} \) imply \(C \cap C' \in \{\emptyset, C\} \);

\[(a_2)\] minimal members of \(\mathcal{C} \) cover \(E \).

Lemma 2 (14) The following conditions are equivalent for a collection \(\mathcal{C} \) of nonempty subsets of \(E \).

\[(a_1)\] \(C, C' \in \mathcal{C} \) and \(C \) minimal in \(\mathcal{C} \) imply \(C \cap C' \in \{\emptyset, C\} \).

\[(a_3)\] Every minimal member of \(\mathcal{C} \) is minimal in \(\overline{\mathcal{C}} \).
1.3 Indexed pre-pyramids and weakly indexed pyramids

Let \(C \) be a cluster structure on \(E \). A pre-index on \(C \) is an order preserving map \(f : (C, \subseteq) \rightarrow (\mathbb{R}_+, \leq) \) taking the zero value on minimal members of \(C \), i.e.,

(i) \(C \) minimal implies \(f(C) = 0 \);
(ii) \(C \subseteq C' \) implies \(f(C) \leq f(C') \).

In the sequel, we will assume that a pre-index \(f \) takes the value zero only on minimal members, hence, \(f(C) = 0 \) if and only if \(C \) is minimal. A canonical pre-index \(f_c \) can be obtained by letting \(f_c(C) \) be the number of elements of the union of members of \(C \) properly contained in \(C \). An index on \(C \) is a strict pre-index, i.e., a pre-index \(f \) such that \(C \subset C' \) implies \(f(C) < f(C') \).

A weak index on \(C \) is a pre-index \(f \) such that

\[
[C \subset C' \text{ and } f(C) = f(C')] \implies [C = \bigcap\{C'' \in C : C \subset C''\}].
\]

When \(f \) is a pre-index (resp. an index, a weak index) on a cluster structure \(C \), the pair \((C, f)\) is said to be pre-indexed (resp. indexed, weakly indexed). Let \((C, f)\) be a pre-indexed cluster structure on \(E \). Let \(\text{Inter}(C, f) \) denote the pair \((\overline{C}, \overline{f})\), where \(\overline{f} \) is defined on \(\overline{C} \) by

\[
\overline{f}(C) = \min\{f(C') : C' \in C \text{ and } C \subseteq C'\}.
\]

On the other hand, define an \(f \)-maximal member of \(C \) to be a non-minimal member \(C \in C \) such that there is no member \(C' \in C \) such that \(C \subset C' \) and \(f(C) = f(C') \). Let \(\text{Strict}(C, f) \) denote the pair \((\underline{C}, \underline{f})\), where \(\underline{C} \) is composed of minimal and \(f \)-maximal members of \(C \), and \(\underline{f} \) the restriction of \(f \) on \(\underline{C} \). Then \(\text{Strict}(C, f) \) is clearly an indexed cluster structure. Moreover, the following result shows that indexed pre-pyramids correspond to weakly indexed pyramids in a one-to-one way. A proof can be found in (14).

Theorem 1

(i) If \((C, f)\) is an indexed cluster structure on \(E \), then \(\text{Inter}(C, f) \) is a weakly indexed closed cluster structure on \(E \). Moreover, \(\text{Strict}(\text{Inter}(C, f)) = (C, f) \).

(ii) Conversely, if \((C, f)\) is a weakly indexed closed cluster structure on \(E \), then \(\text{Strict}(C, f) \) is an indexed cluster structure on \(E \). Moreover, \(\text{Inter}(\text{Strict}(C, f)) = (C, f) \).

2 Correspondences with robinsonian dissimilarities

2.1 Robinsonian dissimilarities

Let us recall that a dissimilarity on \(E \) is a map \(d : E \times E \rightarrow \mathbb{R}_+ \) satisfying \(d(x, x) = 0 \) and \(d(x, y) = d(y, x) \). It is said to be semi-proper if \(d(x, y) = 0 \) implies \(d(x, z) \leq d(y, z) \) for all \(z \).

A robinsonian dissimilarity is a dissimilarity admitting a compatible order, i.e., such that there exists a linear order \(\theta \) on \(E \) such that

\[
x \theta y \theta z \implies \max\{d(x, y), d(y, z)\} \leq d(x, z).
\]

Robinsonian dissimilarities play an important role in unidimensional scaling problems in archaeology (23) and in the analysis of DNA sequences (22). See also (24) for more references.
2.2 Semi-proper robinsonian dissimilarities and indexed pre-pyramids

In this section, we show that semi-proper robinsonian dissimilarities correspond to indexed pre-pyramids via their associated 2-balls. Let \(d \) be a dissimilarity on \(E \). Given \(x \in E \) and \(r \geq 0 \), the \(d \)-ball of center \(x \) and radius \(r \) is the set \(B^d(x, r) \) defined as \(B^d(x, r) = \{ z \in E : d(x, z) \leq r \} \).

Let now \(x, y \) be two (not necessarily distinct) elements of \(E \). Then, the \((d, 2)\)-ball (or simply 2-ball) generated by the pair \(x, y \) is the set \(B^d_{xy} \) defined as \(B^d_{xy} = B^d(x, d(x, y)) \cap B^d(y, d(x, y)) \).

It may be noted that \(B^d_{xy} = B^d(x, d(x, x)) \) when \(x = y \).

Let \(\text{diam}_d \) be the function defined on nonempty subsets \(X \) of \(E \) by \(\text{diam}_d(X) = \max \{ d(x, y) : x, y \in X \} \) and let \(B_d \) be the set defined by

\[
B_d = \{ B^d_{xy} : x, y \in E \text{ and } \text{diam}_d(B^d_{xy}) = d(x, y) \}.
\]

We will use the two following lemmas to prove the bijection between indexed pre-pyramids and semi-proper robinsonian dissimilarities.

Lemma 3 (17) If \(d \) is a robinsonian dissimilarity, then for all compatible order \(\theta \) and all \(x, y \in E \), \(B^d_{xy} \) is an interval of \(\theta \).

Lemma 4 (17) If \(d \) is a robinsonian dissimilarity, then for any compatible order \(\theta \), each member \(B \) of \(B_d \) is of the form \(B^d_{xy} \), where \(x \) and \(y \) are the bounds of \(B \) relatively to \(\theta \).

Theorem 2 If \(d \) is a semi-proper robinsonian dissimilarity on \(E \), then \((B_d, \text{diam}_d)\) is an indexed pre-pyramid. Conversely, if \((\mathcal{C}, f)\) is an indexed pre-pyramid on \(E \), then there exists a unique semi-proper robinsonian dissimilarity \(d \) such that \((B_d, \text{diam}_d) = (\mathcal{C}, f)\).

Proof. Let \(d \) be a a semi-proper robinsonian dissimilarity on \(E \). Clearly, \(E \in B_d \) since \(E = B^d_{xy} \) with \(x, y \) such that \(d(x, y) = \text{diam}_d(E) \). Moreover, as \(d \) is semi-proper, the 2-balls of the form \(B^d_{xy} \) are the minimal members of \(B_d \). Hence they cover \(E \), and, for all \(x, y, z \), \(B^d_{xz} \cap B^d_{yz} \in \{ \varnothing, B^d_{xy} \} \).

Finally, by Lemma 3, the elements of \(B_d \) are intervals of any order compatible with \(d \), proving that \(B_d \) is a pre-pyramid on \(E \). On the other hand, it is a clear fact that, for \(B \in B_d \), \(\text{diam}_d(B) = 0 \) if and only if \(B = B^d_{xx} \) for some \(x \in E \), as \(d \) is semi-proper, i.e., if and only if \(B \) is minimal. Moreover, it follows obviously from Lemma 4 that \(\text{diam}_d \) is an index on \(B_d \), proving the direct assertion.

Conversely, let \((\mathcal{C}, f)\) be an indexed pre-pyramid on \(E \). For all \(x, y \in E \), denote by \(\mathcal{C}(x, y) \) the collection of members of \(\mathcal{C} \) that contain \(x \) and \(y \), i.e. \(\mathcal{C}(x, y) = \{ C \in \mathcal{C} : x, y \in C \} \). Let \(d \) be the dissimilarity on \(E \) defined by \(d(x, y) = \min \{ f(C) : C \in \mathcal{C}(x, y) \} \).

The dissimilarity \(d \) is robinsonian. Let \(x \theta y \theta z \), where \(\theta \) is an order compatible with \(\mathcal{C} \). Then every member of \(\mathcal{C} \) containing \(x \) and \(z \) contains also \(y \). Therefore,

\[
\max \{ d(x, y), d(y, z) \} = \max \left\{ \min_{C \in \mathcal{C}(x, y)} f(C), \min_{C \in \mathcal{C}(y, z)} f(C) \right\} \leq \min_{C \in \mathcal{C}(x, z)} f(C) = d(x, z),
\]

as required.

The dissimilarity \(d \) is semi-proper. Indeed, let \(x, y \in E \) such that \(d(x, y) = 0 \). Then there is a member of \(\mathcal{C} \) containing \(x, y \), say \(C_{xy} \), such that \(f(C_{xy}) = 0 \). On the other hand, by condition (CS2), there is a minimal member of \(\mathcal{C} \) containing \(x \), say \(C_x \). Thus \(C_{xy} = C_x \) since \(f(C_x) = 0 = f(C_{xy}) \) and \(f \) is an index. Let \(z \in E \). Now \(C_{xy} \) being minimal, for all \(C \in \mathcal{C}(x, z) \) we have, by Lemma 1-(a1), \(C_{xy} \subseteq C \). Therefore, every member of \(\mathcal{C} \) containing \(x, z \) contains also \(y, z \), so that

\[
d(y, z) = \min_{C \in \mathcal{C}(y, z)} f(C) \leq \min_{C \in \mathcal{C}(x, z)} f(C) = d(x, z).
\]
The pairs \((B_d, \text{diam}_d)\) and \((C, f)\) are equal. Let \(B := B_{xy}^d \in B_d\). By Lemma 4, we assume, w.l.o.g., its bounds be \(x\) and \(y\). Let \(A_{xy} \in \text{Argmin}\{f(C) : C \in \mathcal{C}(x, y)\}\). Then \(B \subseteq A_{xy}\) since \(A_{xy}\) is an interval of \(\theta\). Let us prove the reverse inclusion. Denoting \(u\) and \(v\) the bounds of \(A_{xy}\), we have \(d(u, v) \leq f(A_{xy}) = d(x, y)\).

Now, as \(x, y \in A_{xy}\) we get \(d(x, y) \leq d(u, v) = \text{diam}(A_{xy})\).

Then, by compatibility of \(d\) with \(\theta\), we have

\[
\max\{d(x, u), d(x, v), d(y, u), d(y, v)\} \leq d(u, v) = d(x, y),
\]

i.e., \(u, v \in B\), proving that \(B = A_{xy}\), hence \(B_d \subseteq C\). To prove the reverse inclusion, let \(C \in C\) with bounds \(x\) and \(y\) (\(x \theta y\)). Then, as \(B_{xy}^d\) is an interval of \(\theta\), \(C \subseteq B_{xy}^d\). In order to prove the reverse inclusion, let \(v \notin C = [x, y]\). Let us first consider the case where \(v \theta x\). Then for all \(X \in \mathcal{C}(v, y)\), \(d(x, y) \leq f(C) < f(X)\), because \(C \subset X\), so that

\[
d(x, y) < \min_{X \in \mathcal{C}(v, y)} f(X) = d(v, y).
\]

Assume now that \(y \theta v\). By an argument of symmetry, we can deduce from the previous case that

\[
d(x, y) < \min_{X \in \mathcal{C}(x, v)} f(X) = d(x, v).
\]

Thus \(v \notin B_{xy}^d\), proving that \(B_{xy}^d \subseteq C\). Therefore, \(C = B_{xy}^d\) and, by the way, \(x\) and \(y\) are the bounds of \(B_{xy}^d\). Hence \(C \in B_d\), proving that \(B_d = C\). In addition every \(C(x, y)\) contains \(C\), so that \(f(C) = d(x, y) = \text{diam}_d(B_{xy}^d)\), proving that \((B_d, \text{diam}_d) = (C, f)\).

The dissimilarity \(d\) is unique. Let \(d'\) be a semi-proper robinsonian dissimilarity such that \((B_{d'}, \text{diam}_{d'}) = (C, f)\). Let \(x, y \in E\) with \(x \theta y\). Let \(u\) be the smallest element of \(E\) (w.r.t. \(\theta\)) such that \(d'(u, y) = d'(x, y)\) and let \(v\) be the greatest element of \(E\) such that \(d'(u, v) = d'(u, y)\) (\(u \theta x\) and \(y \theta v\)). Then

\[
d'(u, v) = d'(x, y) \text{ and } B_{uw}^{d'} = [u, v] \in B_{d'} = C = B_d.
\]

Thus, as \(x, y \in B_{uw}^{d'}\) (since \(u \theta x \theta y \theta v\) and \(B_{uw}^{d'}\) is an interval containing \(u\) and \(v\)),

\[
d(x, y) \leq f(B_{uw}^{d'}) = \text{diam}_{d'}(B_{uw}^{d'}) = d'(u, v) = d'(x, y).
\]

Assume now that there exists a member \(X \in \mathcal{C}(x, y)\) such that \(f(X) < d'(x, y)\). If \(w\) and \(z\) are the bounds of \(X\) with \(w \theta z\), then \(w \theta x \theta y \theta z\). But \(X \in \mathcal{C} = B_{d'}\) implies \(X = B_{uw}^{d'}\), so that \(f(X) = \text{diam}_{d'}(B_{uw}^{d'}) = d'(w, z)\). It follows then that \(d'(w, z) < d'(x, y)\), which contradicts the compatibility of \(d'\) with \(\theta\). Hence

\[
d'(x, y) \leq \min_{C \in \mathcal{C}(x, y)} f(C) = d(x, y),
\]

proving that \(d'(x, y) = d(x, y)\). Therefore \(d' = d\), as required. \(\square\)

It should be noticed that Theorem 2 still holds and the Diday’s bijection (16) can be derived form it, when “\(B_d\)” and “indexed” are replaced by “\(\overline{B_d}\)” and “weakly indexed”, respectively (17).

References

6

