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Abstract— This paper deals with the 3D reconstruction of
sparse data in X-ray rotational imaging. Due to the cardiac
motion, the number of available projections for this recon-
struction is equal to four, which leads to a strongly under-
sampled reconstruction problem. We address thus this illness
problem through a regularized iterative method. The whole
algorithm is divided into two steps. Firstly, a minimal path
segmentation step extracts artery tree boundaries. Secondly, a
MAP reconstruction comparing L0-norm and L1-norm priors
is applied on this extracted coronary tree. The reconstruction
optimization process relies on a separable paraboloidal (SPS)
algorithm. Some preliminary results are provided on simulated
rotational angiograms.

Index Terms— reconstruction, Maximum a posteriori (MAP),
minimal path, non-local active contours, X-ray rotational coro-
nary angiography

I. INTRODUCTION

Rotational X-ray imaging devices provide a new way to

explore the possibly existing artery pathologies enhanced

after injection of a dye product, the complete range of projec-

tions (80 up to 150), giving a pseudo 3-D view of the coro-

nary tree with all the structures moving all together. However

the challenge remains today the 3D coronary reconstruction

that will provide the ground for a platform dedicated to the

planning and execution of percutaneous coronary interven-

tions. Due to the rotation of the source detector system, all

the structures are moving and their features (including the

most basic one, the intensity, e.g the attenuation) are varying

over time and space. The object of interest, the coronary

tree, is patient dependent (changes in its branching structure,

complex-shaped vessels), has low nonstationary contrast and

crossings, superimpositions in the image sequence planes

represent additional difficulties to deal with. The coronary

motions, determined by the myocardium contraction, can

not be reduced to rigid transformations: strong deformations

occur with slow and fast phases and movement inversions.
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Different approaches have been proposed for this recon-

struction depending on whether we consider the set of avail-

able projections or only the one acquired at the same phase

of the cardiac cycle [1]. In the first option, the 3D+T motion

is first estimated throughout the cardiac cycle to perform a

motion compensated tomographic reconstruction at a given

instant of the cardiac cycle using all the available projections

[2]. The construction of this motion model generally relies

on modeling techniques to extend the information to the

time domain and is most often estimated from extracted 2D

centerlines [3]. In the second option, the reconstruction is

carried out from a limited number of views (typically 4 - 6

projections), corresponding to a single cardiac phase selected

by ECG-gating. This reconstruction can be obtained by solv-

ing a static tomographic inverse problem. But the low number

of projections leading to a severe angular undersampling,

prior information is often introduced to improve the quality

and accuracy of this reconstruction [4]. Other methods still

make use of the epipolar geometry constraints and feature

matching techniques to find corresponding structures in each

view and recover their geometry [5].

We address here this illness problem considering back-

ground subtracted projections so that a vessel only 3D recon-

struction can be performed, introducing thus a sparse repre-

sentation of the data in the space domain. The reconstruction

procedure goes through a preliminary segmentation stage and

a lp norm regularization (p < 2) within a statistical MAP

reconstruction algorithm. These two methods are described

in Section II. Preliminary results are given in Section III on

simulated data.

II. METHOD

The segmentation algorithm takes benefit of both min-

imal path and level set evolution methods to extract the

coronary tree on each projection of the sequence. Then,

the background is estimated to build background subtracted

images and deal with sparse data. We address respectively,

for comparison, the l0 and l1 norm regularizations within a

maximum a posterior (MAP) estimation. The optimization

process relies on a separable paraboloidal surrogate (SPS)

algorithm which was introduced by Erdogan et al. for PET

image reconstruction under Poisson statistics [6] and later for

MSCT reconstruction [7]. SPS functions are applied here in

the frame of a gaussian distribution data model.



A. Proposed segmentation method

The minimal path technique introduced by Cohen and

Kimmel [10] has been extensively used for the extraction

of tree or tubular tree structures. This approach has several

advantages such as finding global minima, fast computation,

easy implementation, and more powerful incorporation of

user input. On the other hand, level set evolution techniques

have a nice advantage, which is that they capture and

represent the boundary of object directly, not just some

path running through their interior as in the minimal path

approach. Recently, an active contour model [12] was pro-

posed in the level set framework, which constrains the local

homogeneity of image features. This is crucial to overcome

the difficulty of segmentation due to image inhomogeneity

that is often seen in medical images.

1) Minimal Paths: The minimal path technique character-

izes a boundary extraction approach that globally minimizes

a geodesic active contour energy between two user supplied

end points. The model is formulated as

min
γ∈Ax0,x

{
E(γ) =

∫ L

0

w + P (γ(s))ds =

∫ L

0

P̃ (γ(s))ds
}

where Ax0,x is the set of all paths linking x0 and x, s
represents the arc-length, and w > 0 is a constant imposing

regularity on the curve. P > 0 is a potential cost function

computed from the image, which takes lower values on the

interesting features of the image.

To compute the solution associated with the source point

x0 of this problem, a Hamiltonian approach was proposed

in [10]. This finds the geodesic weighted distance U0 by

solving the Eikonal equation: ‖∇U0(x)‖ = P̃ (x), ∀x ∈ Ω,

with U0(x0) = 0. Then, the minimal path γ can be retrieved

with a simple gradient descent on U0 from x to x0, by solving

the ordinary differential equation:
dγ(s)
ds = −∇U0(γ(s)) with

γ(0) = x. To solve the Eikonal equation, one can use the

Fast Marching algorithm [10] due to its lower complexity.

2) Non-local Active Contours: The non-local active con-

tours model [12] aims at finding a contour that represents

the boundary of object of interest, and minimizes the energy

incorporated with a level set function φ : Ω → R,

F (φ) =

∫
Ω

∫
Ω

ρ(H(φ(x)), H(φ(y)))K(x, y)dxdy + γL(φ)

where K(x, y) = Gσ(x − y)d(px, py) with Ga(t) =

e−‖t‖2/2a2

, a patch px around the pixel x and a metric

d(·, ·) ≥ 0 that accounts for the similarity between patches,

and where L(φ) =
∫
Ω
‖∇H(φ(x))‖dx. H is a smoothed

Heaviside function, and ρ is an indicator function such

that ρ(u, v) = 1 if u = v, 0 otherwise (e.g. ρ(u, v) =
uv+(1−u)(1−v)). The parameter σ > 0 controls the scale of

the local homogeneity one requires for the segmented object.

The second term enforces the smoothness of the contour, thus

γ > 0 is a regularization parameter.

The solution of the minimization problem is computed by

solving the evolution equation for an artificial time t ≥ 0:
∂φ(t,x)

∂t = −∇F (φ(t, x)) with φ(0, x) = φ0(x). See [12] for

more details.

3) Proposed Segmentation Algorithm: In the proposed

algorithm, the minimal path technique is first used for an

initial estimation of the tubular tree structure. The non-local

active contours model is then performed, to make a level set

function constructed from the minimal paths move towards

the boundary. Thus, the segmentation algorithm is as follows:

• (Estimation step) Given x0 and end points {xi}ki=1,

• Compute minimal paths γx0,xi (i = 1, ..., k).

• Compute an initial level set function φ0 as a signed

distance function along the minimal paths.

• (Correction step) Solve the non-local segmentation model

starting with the initial level set function φ(0, ·) = φ0.

B. 3D reconstruction stage

Rotational imaging provides a sequence of 2D projections

acquired under continuous rotation of the C-arm. The ac-

quisition trajectory is limited to a circular arc with a fixed

caudo-cranial angulation. Let consider Y = {Y1, Y2, ..., YL}
to be the projection images acquired at primary angles

θ = {θ1, θ2, ..., θL}, L being the number of considered

rotation angles. If we assume the cardiac motion is relatively

regular and periodical, then through ECG gating, we can

choose a set of projections Y s, which corresponds to the

same 3D heart motion (i.e the same cardiac phase s). The

3D coronary tree fs at a given instant s of the cardiac

cycle, will be reconstructed from a very few number of

projections, which renders the problem strongly ill-posed.

We will further simplify the notation by using Y instead

of Y s for conciseness. Projections Y are non-subtracted i.e

they include both the background tissues and the coronary

tree enhanced with the contrast agent. Thus, the expectation

of the measurement E(Y ) can be written under the following

form:

Ȳi = Ȳbi exp (−[A.f ]i) (1)

with [Af ]i =
∑

j aijfj (j = 1, ..., J , i = 1, ..., I) and

(J, I) being the voxel and pixel numbers in the volume

and on the detector plane respectively. A is the cone beam

projection operator, aij denotes the contribution of voxel j
in the computation of pixel i, and Ybi is the ith element of

the background tissues Yb. The logarithm application on eq.

1 provides a new image that only contains the structure of

interest: ḡi = [A.f ]i with ḡi = − log Ȳi

Ȳbi

. The data are thus

supposed to follow a Gaussian distribution model:

P (gi|f) = 1

σi
√
2π

exp

(
−1

2

(
gi − gi
σi

)2
)

(2)

1) MAP model: According to the Bayesian theory, the

estimate of the unknown object f is computed as a function

which maximizes the posterior density P (f |g) and is given

by:

f̂(g) = arg min
f≥0

(− logP (g|f)− logP (f |β)) (3)

The log-likelihood function logP (g|f) = L(g|f) is:

L(g|f) = −1

2
(g − ĝ)

T
Σ−1(g − ĝ)

T − const (4)



where ĝ = Af and Σ is the covariance matrix:

Σ = diag{σi}2 with σ2
i = max(σ2

min, log (ĝ)). The

prior function has the form of a Gibbs distribution

P (f |β) = exp (−βR(f))
Z(β) , Z(β) being a scaling constant. Thus,

logP (f |β) = −βR(f) with:

R(f) =

J∑
j=1

∑
k∈Nj

ωjkψ(fj − fk) (5)

where Nj defines the neighborhood of the jth voxel, and

ωjk is a positive value that expresses the interaction degree

in clique kj. ψ(t) is a symmetric function that penalizes the

pairwise differences between neighbouring voxels. Various

kinds of potential function ψ have been proposed in the

literature that are l2 norm [4], l1 norm [3] and l0 norm

[4]. We compare 2 of these priors: l0 norm and l1 norm

respectively defined by: ψ(t) = |sgn(t)| and ψ(t) = |t|.
The l0 norm is non convex and not continuous around zero.

This brings some difficulty for the optimization. A way

for solving it is to go through surrogate Functions. Any

function satisfying: limρ→0 ψ(t, ρ) = |sgn(t)| can be taken

as surrogates, such as ψ(t, ρ) = 2
π arctan |t|

ρ .

2) Optimization: The key of the SPS method is to find

a decomposition of the objective function into a simple

quadratic form that simplifies its optimization, guaranties

a faster global convergence and reduces the computational

time [5]. We define: L(ĝ) =
∑

i Li(ĝi) =
∑

i
(gi−ĝi)

2

2σi
2 .

Then L̃j(fj , f̂) =
∑

i Li(gi, ĝi). The voxel based quadratic

likelihood function is then given by Q̃j(fj) = L̃j(f̂) +

L̇j(fj)(fj−f̂j)− 1
2dj(fj − f̂j)

2
with L̇j(fj) =

∑
i aijL̇i(ĝi)

and dj =
∑

i aij
2σi

2. In the case of the non convex prior, we

apply an update into 2 steps: fj
k+1,1 = max(0, fj

k − Q̇k
j

Q̈k
j

)

and fj
k+1,2 = max(0, fj

k+1,1 + β ∂R(f)
∂fj

).

III. RESULTS

Evaluations have been carried out on simulated data ob-

tained from a 3D dynamic sequence acquired on a 64-slice

GE LightSpeed CT scan [9]. A sequence of 20 3D binary

coronary trees was built corresponding to 20 different cardiac

phases. A C-arm rotational R-X coronary angiography was

then simulated using the Siemens Axiom System imaging

protocol. The detector plane (200mm)2 was uniformly sam-

pled into 512 pixels. Reconstructions were performed within

a volume of (110mm)3, 80 projections of the 3D binary tree

were generated, uniformly spaced over the range RAO 90◦ to

LAO 90◦. 4 cardiac cycles were considered, this means that

a volume (associated with a phase s of the cardiac cycle)

was projected 4 times during the acquisition, according to

different viewpoints. The projection operator A has been

computed according to [8]. We used then the method of

low order polynomials approximation to build background

tissues images from the CT scan datasets. Fig. 1 displays

four simulated projections Y s, s being the phase 0 and the

projection angles RA0 90◦, RAO 30◦, LAO 30◦ and LAO

90◦.

Fig. 1. Simulated projections at phase 0. Projection angles are respectively
(RA0 90◦, RAO 30◦, LAO 30◦ and LAO 90◦).

Fig. 2. Segmentation results. (1st) original image, (2nd-4th) minimal paths,
resulting curves of NLAC, extracted vessels. Blue and green points represent
a starting point and end points respectively.

A. Segmentation results

The fig. 2 presents segmentation results of the algorithm

described in II-A. For the potential P , we computed an

enhanced image f0 = Gb∗f−f with b = 10, which cleaned

the original image f by subtracting the smoothly varying

background. We used P̃ (x) = w + |f0(x) − maxxf
0(x)|

with w = 0.001. For the non-local active contours, we used

the L2 distance d based on the image f with patches of size

3× 3 pixels, Gσ of size 15× 15 pixels with σ = 1000, and

we set γ = 40. The curve evolution method could correct

erroneously segmented (or missing) parts that are initially

estimated by the minimal path technique.

B. Reconstruction results

Background images Yb were then estimated by subtracting

the segmented images (fig. 3) from original projections Y
and applying an inpainting method on Yb to interpolate the

missing background data (at the coronary tree location). The

background segmented images g are then obtained by the

logarithmic subtraction (log Yb − log Y ).
The hyperparameter β = 0.002 for l0 norm, β = 0.0005

and for l1 norm. We applied a relaxation scheme to estimate

the optimal value ρ in the l0 norm prior computation. Fig.

4 displays the 3D coronary reconstruction obtained from

background segmented images. The reconstruction quality

is evaluated using DICE overlap criterion. This criterion is

equal to 0.42 for both l0 and l1 norms. For comparison, we

performed the reconstruction of ideal coronary trees directly



Fig. 3. Segmented images g for the four projections of the phase 0 of the
cardiac cycle.

obtained from the 3D reference sequence and got a DICE

of 0.99 for l0 norm and 0.97 for l1 norm. This result shows

that the reconstruction algorithm is highly dependent on the

segmentation-based background estimation.

Fig. 4. Coronary tree reconstruction from the 4 projections depicted in the
fig. 1. First line: reconstruction from the ideal tree (left: with l0 norm, right:
with l1 norm). Second line: reconstruction from the background segmented
images (left: with l0 norm, right: with l1 norm).

IV. CONCLUSION

The coronary artery tree reconstruction from a very few

number of projections appears to be a very strong ill-posed

problem. Indeed the cardiac motion leads to a severe angular

undersampling. Moreover, we restricted the projection num-

ber to four for the static reconstruction in order to position

ourself in situation of clinical routine where the acquisition is

made over a period of 4 seconds. We proposed to solve this

problem by simplifying the image contents with a prelimi-

nary segmentation stage, which is based on minimal paths

and non local active contours to build background subtracted

projections. We compared then l0 and l1 norm regularizations

within a statistical MAP reconstruction algorithm to deal

with the spatial sparsity of the data. Evaluations have been

performed by means of a realistic phantom representing an

arterial tree extracted from a sequence of MDCT datasets in

order to get a ground truth. Preliminary results make appear

that the reconstruction algorithm is very sensitive to the

quality of the segmentation and the background estimation.

Our further objective will thus be to improve the background

estimation as well as to work on a new prior that will better

discriminate the coronary/background structures during the

reconstruction process.
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