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ABSTRACT: This study examined the effect of increasing pressure on biogenic silica dissolution and
on prokaryotic assemblages associated with diatom detritus. Experiments were carried out in hyper-
baric bottles subjected to a gradual increase in pressure and compared to incubations at atmospheric
pressure. To examine only pressure effects and to simulate detritus degradation in the Mediterranean
Sea, the incubation temperature was kept constant (13°C), while pressure was increased by 1.5 MPa
d!, simulating a fall of particles at a sinking rate of 150 m d~! over 8 d. Aminopeptidase activity was
significantly lower (nearly 5-fold) under increasing pressure than under atmospheric pressure condi-
tions. Lower aminopeptidase activity under increasing pressure affected biogenic silica dissolution,
at least at the beginning of the incubation, corresponding to a simulated depth of the first 800 m of
the water column. Silicic acid regeneration rates were very low (0.07 + 0.02 umol 1"! h™!) under
increasing pressure conditions during the first 4 d (i.e. between 200 and 800 m), while rates were
much higher under atmospheric pressure (0.32 + 0.05 umol I"! h™1). However, orthosilicic acid concen-
trations in the incubations under increasing pressure approached those of the atmospheric pressure
incubations by the end of the experiment. In contrast, the taxonomic composition of prokaryotic com-
munities was not affected by increasing pressure, but the input of fresh diatom detritus led to an
increase in the relative abundance of the Cytophago-Flavobacter cluster and y-Proteobacteria.
These results suggest that hydrostatic pressure affects the function rather than the broad taxonomic
structure of prokaryotic communities associated with sinking detrital particles.

KEY WORDS: Hydrostatic pressure - Particle sinking - Decomposition processes - Ectoenzymatic
activity - Silica dissolution - Prokaryotic diversity - Mesopelagic waters - Bathypelagic waters
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INTRODUCTION

Attached bacteria play an important biogeochemical
role in the oceanic carbon flux and are implicated in
the remineralization and enzymatic dissolution of par-
ticulate organic matter (POM) during its descent
through the water column (Cho & Azam 1988, Turley &
Mackie 1994, 1995). Remarkably little is known about
the composition of POM as it sinks through
mesopelagic and bathypelagic waters (Wakeham et al.
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1997, Hedges et al. 2000). It is known that a large com-
ponent of the sinking flux consists of diatoms, which
dominate phytoplankton communities at specific times
of the year in many oceanic systems (Honjo et al. 1995,
Smith et al. 1996, Tréguer & Pondaven 2000).

The fate of sinking biogenic mineral particles
depends on the remineralization of the organic matrix,
as well as on the dissolution of the mineral matrix. Both
processes could be mediated by microbial activities.
Milliman et al. (1999), for instance, suggested the exis-
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tence of a biologically mediated dissolution of calcium
carbonate. Other studies demonstrated that bacteria
accelerate diatom opal dissolution by colonizing and
enzymatically degrading the organic matrix of diatom
frustules (Bidle & Azam 1999, 2001). Bidle et al. (2002)
found that the control by temperature of marine
bacteria degrading diatom detritus strongly influences
the coupling of biogenic silica and organic carbon
preservation.

Recently, based on data from the equatorial Pacific,
Armstrong et al. (2002) and Francois et al. (2002)
argued that fluxes of ballast minerals (biogenic silica or
diatom opal, carbonate biominerals, and dust) deter-
mine deep-water particulate organic carbon (POC)
fluxes, so that a mechanism-based model of POC
export must simultaneously model both POC and the
fluxes of ballast minerals. According to these models,
the deep-water fluxes of organic carbon are directly
proportional to the total fluxes of ballast minerals at
these depths. Therefore, the ability to quantify cor-
rectly the remineralization processes at each depth in
the water column is critical. This is especially neces-
sary for using models of POC remineralization reliably.
In fact, models of POC mineralization, such as that of
Martin et al. (1987), assume that there is a tight quan-
titative relationship between export production and
the amount of carbon reaching the sediments. If so, the
organic carbon flux can be predicted at any depth
solely from the carbon flux at some near-surface depth.

In spite of numerous studies showing that decom-
pression of deep samples may lead to underestimates
of prokaryotic activity rates (ZoBell 1970, Tabor et al.
1981, Jannasch & Wirsen 1982, Bianchi & Garcin 1993,
Deming 2001, Tamburini et al. 2002, 2003), degrada-
tion rates of sinking particles are usually measured
under atmospheric pressure (Bidle & Azam 1999, 2001,
Sempéré et al. 2000, Bidle et al. 2002, Panagiotopoulos
et al. 2002). As a consequence, current biogeochemical
models of the silica cycle do not take into account the
possible effects of hydrostatic pressure on decomposi-
tion during sinking. These models are based on the
assumption that biogenic silica dissolution is controlled
by temperature, zooplankton grazing, and diatom
aggregation rate (Tréguer et al. 1989, Nelson et al.
1995, Dugdale & Wilkerson 1998), and implicitly
assume that pressure has no effect.

The purpose of this study was to examine the effect
of a gradual increase in pressure on surface prokary-
otic communities enriched with axenic diatom detritus.
Parallel incubations were set up under controlled pres-
sure conditions, and prokaryotic ectoenzymatic activ-
ity and dissolution of biogenic silica rates, as well as
the structure of the prokaryotic communities, were
monitored over time. The experiments were based on
the experimental design of Bidle & Azam (1999, 2001)

and Bidle et al. (2002, 2003), but were modified to
study pressure effects.

MATERIALS AND METHODS

Synthesis of diatom detritus from Thalassiosira
weissflogii. An axenic culture of T. weissflogii (CCMP
1336) was obtained from the Provasoli Guillard Center
for Culture of Marine Phytoplankton (West Boothbay
Harbor, Maine, USA) and grown in /2 medium (Guil-
lard 1975). This culture was verified by microscopy to
be axenic. Fresh diatom detritus was obtained from
cell suspensions by rapidly freeze-thawing (dry
ice/ethanol bath followed by a 55°C water bath)
diatom cells for 7 cycles. The detritus was stored at
—20°C until further use. A fresh diatom detritus sample
was diluted with 0.8 pm filtered seawater to obtain a
final concentration of 400 pg POC 17! in order to mimic
a decaying diatom bloom. This concentration corre-
sponded to a cell density of 10% to 10* cells m1™L.

Incubation under increasing pressure. Two experi-
ments were carried out in January 2002 and February
2004. Mediterranean seawater (13°C) was collected off
Marseille, France, above the Cassidaigne Trench at
200 m depth (February 2002) and at the surface (Janu-
ary 2004). Natural prokaryotic assemblages were ob-
tained by gentle filtration through 0.8 pm polycarbon-
ate filters. Incubations under increasing pressure were
carried out in hyperbaric bottles, which can reproduce
the increase in hydrostatic pressure observed in the
ocean with increasing depth. These high-pressure bot-
tles were the same as the ones used in previous studies
to obtain undecompressed deep-sea water samples
(Bianchi et al. 1999, Tamburini et al. 2003). The 500 ml
high-pressure bottles were first autoclaved, filled with
seawater containing the natural bacterial assemblage,
and subsequently amended with the fresh diatom de-
tritus mixture. Diatom detritus was kept in suspension
by rotation (half-revolution each minute) using a spe-
cialized apparatus designed for high-pressure bottles.
The incubation was at 13°C, corresponding to the aver-
age temperature of the water column below 200 m in
the Mediterranean Sea. One bottle was kept at atmos-
pheric pressure, while a second bottle was subjected to
a pressure increase of 1.5 MPa d', to simulate a sink-
ing rate of 150 m d~'. For the first experiment (January
2002), pressure was increased by 1.5 MPa d~!. For the
second one (February 2004), pressure was increased
continuously by a programmable computer-driven
system. The experimental system will be described in
detail elsewhere (C. Tamburini et al. unpubl. data).
According to laboratory and field studies (Alldredge &
Gotschalk 1988), the sinking speed used in these ex-
periments is applicable to mid-density particles such
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as those from diatoms or clay aggregates. Settling ve-
locities of marine snow range from 1 to 370 m d!, de-
pending on the composition, size, and abundance of
the particles, as well as on the hydrodynamic features
of the environment. Two types of controls were per-
formed: (1) one with sterilized seawater, i.e. without
any prokaryotes, but with diatom detritus, and (2) an-
other with the natural prokaryote assemblage, but
without any added diatom detritus.

Every 2 d, community structure and silicic acid con-
centrations were sampled in the incubations, while
maintaining the pressure conditions of the incubation.
To measure total community aminopeptidase activity,
50 ml was transferred to 2 new sterilized high-pressure
bottles (one for the atmospheric incubation, the other
for the pressurized incubation); for the bottle main-
tained under atmospheric pressure, transfer and incu-
bation were performed under atmospheric pressure.
For the bottle under increasing pressurization, transfer
and incubation were performed without any change in
pressure. For example, on Day 4, the pressure of the
culture under increasing pressure was 8 MPa, and
transfer and incubation for aminopeptidase activity
measurements were done at 8 MPa. All incubations
were done at in situ temperature (13°C).

Aminopeptidase activity and silicic acid measure-
ment. The fluorogenic substrate L-leucine-7-amino-4-
methylcoumarin (Leu-MCA, Sigma Chemical; Chrost
1991) was added at a final concentration of 100 ntM
(Bidle & Azam 1999, 2001). Ectoenzymatic assays were
done over 4 h, and the increase in fluorescence was
measured using a Kontron SFM 25 spectrofluorometer
(emission and excitation wavelengths at 455/365 nm).
Orthosilicic acid [Si(OH),] concentrations were mea-
sured using a colorimetric method (Strickland & Par-
sons 1972) on a CECIL (CE 1011) spectrophotometer,
with a detection limit of 50 nM.

Fluorescence in situ hybridization (FISH). The re-
lative abundance of the major prokaryotic groups in

natural communities was analyzed by FISH using Cy3-
labeled oligonucleotides (Table 1). Samples were pre-
pared following the method of Glockner et al. (1996),
as modified by Cottrell & Kirchman (2000a). Sub-sam-
ples were fixed with paraformaldehyde (final concen-
tration 2%) and stored overnight at 4°C. They were
sonicated to homogenize them and filtered onto 0.2 pm
pore size polycarbonate filters (Millipore), rinsed twice
with 0.2 pm filtered Milli-Q water, and stored at —20°C.
For each probe, a filter piece (cell-adherent side) was
placed on a Parafilm (Pechiney Plastic Packaging)-
covered glass slide and overlaid with a 30 pl drop of
hybridization solution using a final probe concentra-
tion of 2.5 ng ul"!. We used the same concentration for
unlabeled competitor probes, i.e. unlabeled Gam42a
with labeled Bet42a and unlabeled Bet42a with la-
beled Gam42a (Manz et al. 1992). The glass slides
were placed in a closed 50 ml tube and incubated
overnight at 42°C. The hybridization solution con-
tained 0.9 M NaCl, 20 mM Tris-HC1 (pH 7.4), 5 mM
edatic acid (EDTA), 0.01% sodium dodecyl sulfate
(SDS), and the concentration of formamide was deter-
mined to achieve the best specificity for the bacterial
groups targeted by the different probes (Zarda et al.
1997, Eilers et al. 2000). After hybridization, each piece
of filter was transferred into 1 ml of a pre-warmed
wash solution containing 20 mM Tris-HCI (pH 7.4), 10
mM EDTA, 0.01% SDS, and a concentration of NaCl
appropriate for the probe (Zarda et al. 1997, Eilers et
al. 2000). The concentrations of formamide and NaCl
used are listed in Table 1. Filters were mounted using a
mixture (4:1) of Citifluor (Ted Pella) and Vectashield
(Vector Labs) containing 2 ng ml™* of 4', 6-diamidino-2-
phenylindole (DAPI). Cells were counted using semi-
automated image analysis on an Olympus Provis AX70
microscope fitted with a Cy3 filter 41007a (Chroma)
and a DAPI filter 31000 (Chroma) with a SPOT-RT (Di-
agnostic Instruments) and with ImagePro Plus (Media
Cybernetics) software (Cottrell & Kirchman 2003).

Table 1. The 16S rRNA-targeted oligonucleotide probes used in this study. FA: formamide

Probe Sequence (5' to 3') of probe Target organisms % [NaCl] Source

FA (mM)
Eub338 GCT GCC TCC CGT AGG AGT Domain of Bacteria 30 102 Amann et al. (1990)
NegControl TAG TGA CGC GCT CGA For non-specific probe binding 30 102 Karner & Fuhrman (1997)
Alf968 GGT AAG GTT CTG CGC GTT Most of a-subclass of Proteobacteria 30 102 Glockner et al. (1999)
Gam42a GCCTTC CCA CATCGTTT v-subclass of Proteobacteria 30 102 Manz etal. (1992)
Bet42a GCCTTCCCACTTCGTTT B-subclass of Proteobacteria 30 102 Manz etal. (1992)
CF319a TGG TCC GTG TCT CAG TAC Cytophaga—-Flavobacter cluster 35 80 Manz et al. (1996)
Arch915 GTG CTC CCC CGC CAATTC CT Archaea 20 308 Stahl & Amann (1991)
Crenb37 TGA CCA CTT GAG GTG CTG Crenarchaea 20 308 Teira et al. (2004)
Eury806 CAC AGC GTT TAC ACC TAG Euryarchaea 20 308 Teira et al. (2004)
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Fig. 1. Prokaryotic abundance over time. Detritus—Increas-
ing pressure: incubation of natural prokaryotic community
with fresh diatom detritus under increasing hydrostatic pres-
sure conditions (1.5 MPa d! in order to simulate pressure
experienced during a sinking fall of 150 m d!); Detritus—
Atmospheric: incubation with detritus at atmospheric pres-
sure; Control—Increasing pressure: incubation without detri-
tus under increasing hydrostatic pressure conditions (1.5 MPa
d™!); Control—Atmospheric: incubation without detritus at
atmospheric pressure. Sampling date: February 2004

RESULTS
Prokaryotic abundance over time

Prokaryotic abundances increased more quickly and
reached higher levels in incubations with diatom detri-
tus than in the control incubation without diatom detri-
tus. Increasing pressure appears to cause a lag in bac-
terial growth compared to the sample incubated at
atmospheric pressure, although growth rates and cell
yields in both incubations reached similar levels
(Fig. 1). For all incubations, after a lag of 2 d, prokary-
otic abundance increased greatly until Day 6 and
remained constant until Day 8. The abundance of
prokaryotes increased from 2.8 + 0.4 x 10° cells ml™! at
the beginning of the incubations to 2.6 + 0.3 x 107 cells
ml~! at the end of the incubations, with diatom detritus
both at atmospheric pressure and under increasing
pressure conditions. Without diatom detritus, prokary-
otic abundance reached only 5.2 + 0.4 x 10° cells ml™!
by the end of the incubations.

Aminopeptidase rates and Si(OH), concentration

Total aminopeptidase activity was always lower
when the pressure was increased over time than at
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atmospheric pressure (Fig. 2A). During the incubation
with diatom detritus, aminopeptidase rates increased
from 0.15 pmol MCA-Leu hydrolyzed I"! h™! at Time 0
to 1.39 umol MCA-Leu hydrolyzed 1"! h™! at Day 6,
when the pressure was 11 MPa (1100 m simulated
depth), 2.5-fold lower than the atmospheric control.

The second experiment confirmed that aminopepti-
dase activity under increasing pressure was lower than
at atmospheric pressure (Fig. 3A). The differences in
aminopeptidase activity were due to differences in
cell-specific activity (amol cell"! h™') rather than in the
abundance of prokaryotes. Aminopeptidase rates were
6.3 to 311.3 amol cell'! h™! as the pressure increased
over time, around half the rates at atmospheric pres-
sure (10.1 to 508.7 amol cell"! h™!).

During the first 4 d of incubation, Si(OH), concentra-
tions were higher in the atmospheric pressure incuba-
tion than in the incubation with increasing pressure, in
both experiments (Figs. 2B & 3B). The initial silicic acid
regeneration rates were very low (0.07 + 0.02 pmol I"?
h7!) during the first 4 d of incubation under increasing
pressure (simulating a fall of particles between 200
and 800 m), whereas rates under atmospheric pressure
conditions were easily measured (0.32 + 0.05 pmol 17!
h™!). However, Si(OH), concentrations in the increas-
ing pressure incubations approached those of the
atmospheric pressure incubations by the end of the
experiment. Overall, rates were 0.21 + 0.05 and 0.24 +
0.03 umol I"! h~! under increasing pressure and atmos-
pheric pressure conditions, respectively, at the end of
the first experiment (Fig. 2B) and 0.70 + 0.08 and 0.68 +
0.29 numol I"! h™!, respectively, at the end of the second
experiment (Fig. 3B).

Two controls were performed: one with sterilized
seawater and diatom detritus and the other in the same
seawater without fresh diatom detritus. Si(OH), con-
centrations did not change under atmospheric pres-
sure or under increasing pressure over time in these
controls.

Response of prokaryotic community structure to
pressure and diatom detritus

At the beginning of the incubation, the prokaryotic
community consisted of 17% of the Cytophaga-
Flavobacter cluster, 23 % of o-Proteobacteria and 33 %
of y-Proteobacteria, and 25 % of Crenarchaea and 13 %
of Euryarchaea (Fig. 4). From Day 2, Bacteria were
dominant (close to 90%) among prokaryotes, in-
creasing 2-fold from Day 0. In contrast, Archaea (Cre-
narchaea and Euryarchaea) drastically decreased to
negligible levels by the end of the incubation. Cren-
archaea represented <2% of total prokaryotes and
Euryarchaea <0.5 % of total prokaryotes.
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Fig. 3. Cell-specific (A) aminopeptidase rates and (B) Si(OH),

concentrations over time. Natural prokaryotic assemblages

were incubated with detritus under increasing hydrostatic

pressure conditions simulating a particle fall of 150 m d™! (1.5

MPa d!) and under atmospheric pressure. Sampling date:
January 2002

Among the Bacteria, the Cytophaga-Flavobacter
cluster appeared to dominate in incubations with
diatom detritus; this cluster was always more numer-
ous and constituted a higher percentage of the total
prokaryotes than the y-Proteobacteria group, which
was the second most abundant group. Without detri-
tus, the y-Proteobacteria group dominated the first half
of the incubation (Days O to 4), but drastically
decreased after Day 4, when the Cytophaga-
Flavobacter cluster became dominant until the end of
the incubation. Community structure changed under
increasing pressure conditions in a fashion similar to
how it changed in the atmospheric pressure condition
treatment. Whatever the conditions, the o-Proteobac-
teria group appeared negligible from Day 2, constitut-
ing <3 % of the total prokaryotes.
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Fig. 4. Percent of total prokaryotes (DAPI-stained cells) detected by fluorescence in situ hybridization over time. Detritus—High

pressure: incubation with fresh diatom detritus under increasing hydrostatic pressure conditions; Detritus— Atmospheric: incu-
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Cytophaga-Flavobacter cluster of the Cytophaga—Flavobacter—Bacteroides division; Gam42a, Alf968: y-subclass and o-subclass
of Proteobacteria; Cren537: Crenarchaea; Eury806: Euryarchaea; Arch915: Archaea. Sampling date: February 2004

DISCUSSION

When diatoms die, they tend to aggregate and sink
through the water column (Alldredge et al. 1995).
Because it is difficult to follow in situ degradation of
organic matter and regeneration of biogenic elements
considered as mineral ballast (e.g. silica, calcium car-
bonates, and dust), we designed an experiment to sim-
ulate the sinking of diatom detritus. Our experimental
design was based on that of Bidle & Azam (1999, 2001)
and Bidle et al. (2002, 2003), changing only 1 parame-
ter: the pressure. Temperature was maintained at
13°C, which corresponds to the temperature in the

mesopelagic and bathypelagic zones of the Mediter-
ranean. A gradual increase in pressure was applied to
surface water samples during the incubation. This
pressure increase corresponded to a sinking rate of 150
m d~!. This sinking rate is well within the vast range of
rates reported in the literature. For example, Smayda
(1970) gave a settling range for the phytoplankton of 1
to 510 m d~!. Shanks & Trent (1980) calculated a sink-
ing rate for marine snow of between 43 and 95 m d!
(with a mean of 68 m d!), while McCave (1975) esti-
mated a sinking rate of 105 m d'. Other field and
experimental studies report values ranging from 1 to
370 m d! (see references in Alldredge et al. 1995).



Tamburini et al.: Pressure effects on biogenic silica dissolution 273

All measurements were done on the entire prokary-
otic community, not just on the prokaryotes firmly
attached to the diatom detritus, because it was impos-
sible to separate free from attached bacteria in these
experiments. In any case, there is a tight coupling
between particle fluxes and free-living prokaryotes
(Cho & Azam 1988, Nagata et al. 2000). Moreover,
sinking particles are surrounded by a plume of nutri-
ents, carbon, and microbes that can create hotspots of
growth and carbon cycling by free-living bacteria
(Kigrboe & Jackson 2001, Long & Azam 2001). Also, in
the experiments of this study, it seems likely that pres-
sure affected both free-living and attached bacteria.
Turley (1993) demonstrated that both free-living bacte-
ria and bacteria attached to sinking particles were
affected by pressure increases.

The results indicate that increasing hydrostatic pres-
sure significantly affected the aminopeptidase activity
of prokaryotic populations during our incubation
under increasing pressure conditions and certainly
when particles were sinking. In fact, the activity rates
were always lower under increasing pressure than
under atmospheric pressure. This low aminopeptidase
activity was associated with low initial silicic acid
regeneration rates, consistent with the results of Bidle
& Azam (1999, 2001). These previous studies hypothe-
sized that regeneration of silicic acid from diatom
detritus depends on hydrolysis of proteins in the silicic
acid-protein matrix of the frustrales. However, even-
tually silicic acid concentrations under pressure
approached those observed in the atmospheric pres-
sure incubation, although aminopeptidase activity did
not, suggesting that even low aminopeptidase activity
is sufficient to eventually release silicic acid from
diatom frustrales. These results suggest some degree
of uncoupling between organic material degradation
and silicic acid regeneration as particles sink through
the water column. Experiments on diatom aggregates
at atmospheric pressure have shown that dissolution
rates of silica are lower for aggregated cells than for
dispersed cells (Passow et al. 2003). Organic sub-
stances might chemically protect diatom frustules
within aggregates and reduce dissolution by prokary-
otic activity. Our data showing that pressure decreases
ectoenzymatic activity suggest that dissolution rates
are reduced when diatoms embedded within sinking
aggregates fall through the water column.

It is well known that major environmental variables,
such as temperature (Ward et al. 1998), nutrient status
(Broughton & Gross 2000), pollutants (Muller et al.
2001, Castle & Kirchman 2004), and predation (Jir-
gens & Matz 2002) influence the composition of
prokaryotic communities. To our knowledge, this is the
first study to examine the effect of pressure on the
structure of prokaryotic communities. Results from

FISH and denaturing gradient gel electrophoresis
(data not shown) indicated that increasing pressure did
not affect prokaryotic community structure any differ-
ently than constant atmospheric pressure during the 8
d of incubation. However, Archaea decreased in all
incubations as soon as the experiment started. These
results are consistent with those from previous experi-
ments carried out on surface samples, suggesting that
Archaea do not play a significant role in promoting sili-
cic acid regeneration (Bidle & Azam 2001). Since our
data confirm that Archaea are not enriched on parti-
cles in surface waters (Simon et al. 2002), we suggest
that the high densities of free-living Archaea found in
the deep sea (Delong 1998, Delong et al. 1999, Karner
et al. 2001, Church et al. 2003, Teira et al. 2004) are not
related to vertical transport by sinking particles.

In parallel treatments with and without increasing
pressure, the diatom detritus seemed to have an influ-
ence on prokaryotic diversity during the 8 d of incuba-
tion. In particular, the enrichment with axenic diatom
detritus stimulated an increase in the relative abun-
dance of the Cytophaga-Flavobacter—Bacteroides
group and of the y-Proteobacteria, the second most
dominant group. These results agree with those of sev-
eral studies carried out on the diversity of prokaryotic
communities degrading organic carbon and nitrogen
in diatom aggregates (Bidle & Azam 2001, Grossart
& Ploug 2001). The Cytophaga-Flavobacter, o.-
Proteobacteria, and y-Proteobacteria clusters seem to
dominate communities associated with marine snow in
oceanic systems (DeLong et al. 1993, Ploug & Grossart
1999, Simon et al. 2002) and in the Mediterranean Sea
(Acinas et al. 1999, Moeseneder et al. 2001). Using
FISH, Ploug & Grossart (1999) showed that members of
the Cytophaga-Flavobacter cluster constituted around
30% of the DAPI-stained cells on marine snow in the
Southern California Bight. Bidle & Azam (2001) also
analyzed the bacterial community on aggregates of
diatom detritus incubated with a natural bacterial
assemblage in coastal waters off California by de-
naturing gradient gel electrophoresis and found a
dominance of the y-Proteobacteria and Cytophaga-—
Flavobacter clusters. These observations are consistent
with other studies, suggesting that, although the
Cytophaga-Flavobacter and y-Proteobacteria clusters
play a major role in the degradation of high molecular
weight organic carbon (Cottrell & Kirchman 2000b,
Kirchman 2002), o.-Proteobacteria seems to dominate
uptake of low molecular weight material (Cottrell &
Kirchman 2000a, Malmstrom et al. 2005).

This study found that organic matrix hydrolysis and
silica dissolution are influenced by pressure as diatoms
and associated prokaryotes fall through the water col-
umn. This initial study focused on a single factor (pres-
sure) and its effect on the remineralization of sinking
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particles. The instrumentation used in this study can
be modified to examine the other factors, such as tem-
perature, that may affect detritus degradation and sil-
ica dissolution. However, this initial study should help
us to understand the role of prokaryotes in the miner-
alization of organic matter and their contribution to
regeneration of the mineral ballast (e.g. silica and car-
bonates). This information is essential for improving
models to describe organic matter mineralization by
prokaryotes and the transfer of carbon and energy to
the dark ocean and for exploring the consequences of
these processes in the global carbon cycle. Moreover,
the strategy proposed in this study will provide us with
useful information about links between the structure
and function of the bacterial compartment involved in
the transfer of organic carbon from the surface to the
deep layers of the water column.
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