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ANALYTICAL REGULARIZING EFFECT FOR THE RADIAL

AND SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

LEO GLANGETAS AND MOHAMED NAJEME

ABSTRACT. In this paper, we consider a class of spatially homogeneous Boltzmann equa-

tion without angular cutoff. We prove that any radial symmetric weak solution of the

Cauchy problem become analytic for positive time.

1. INTRODUCTION

This paper deals with the analytic regularity of the radially symmetric solutions of the

following Cauchy problem for the spatially homogeneous Boltzmann equation :

(1.1)
∂ f

∂ t
= Q( f , f ), v ∈R

3, t > 0; f |t=0 = f0,

where f (t,v) : R+×R
3 −→ R is the probability density of a gas, v ∈ R

3 the velocity and

t ≥ 0 the time. The Boltzmann collision operator Q(g, f ) is a bi-linear functional given by

Q( f ,g) =

∫

R3

∫

S2
B(v− v∗,σ)

{
f (v′∗)g(v

′)− f (v∗)g(v)
}

dσdv∗,

where, for σ ∈ S2,

v′ =
v+ v∗

2
+

|v− v∗|

2
σ , v′∗ =

v+ v∗

2
−

|v− v∗|

2
σ .

Theses relations between the post and pre-collisional velocities follow from the conser-

vation of momentum and kinetic energy. The non-negative function B(z,σ) is called the

Boltzmann collision kernel, depends only on |z| and on the cosine of the deviation angle θ

cosθ = 〈
v− v∗

|v− v∗|
, σ〉

and is defined by

B(v− v∗,cosθ ) = Ψ(|v− v∗|)b(cosθ ), 0 ≤ θ ≤
π

2
.

We will consider the Maxwellian case ψ ≡ 1 and we suppose that the cross-section kernel

b has a singularity at θ = 0 (the so-called non-cutoff problem) and satisfies :

(1.2) B(v− v∗,cosθ ) = b(cosθ )∼ |θ |−2−2s when θ → 0, 0 < s < 1.
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2 LEO GLANGETAS AND MOHAMED NAJEME

We put 〈v〉 =
(
1+ v2

) 1
2 for v ∈ R

n and we shall use the following standard weighted

Sobolev spaces, for k, ℓ ∈R, as

L
p
ℓ (R

n) =
{

f ; 〈v〉ℓ f ∈ Lp(Rn)
}

,

Hk
ℓ (R

n) =
{

f ∈ S
′(Rn) ; 〈v〉ℓ f ∈ Hk(Rn)

}

,

L logL(Rn) =
{

f ∈ S
′(Rn) ; ‖ f‖L logL =

∫

Rn | f (v)| log(1+ | f (v)|)dv < ∞
}
.

The Gevrey space is given for α > 0 by:

G
1
α (Rn) =

{

f ; ec0〈D〉α
∈ L2(Rn)

}

,

where 〈D〉= (1+ |Dv|
2)

1
2 . Remark that G1(Rn) is the usual analytical functions space.

A solution of Boltzmann equation is known to satisfy the conservation of mass, kinetic

energy and the entropy inequality:
∫

R3
f (t,v)dv =

∫

R3
f0(v)dv,

∫

R3
f (t,v)|v|2dv =

∫

R3
f0(v)|v|

2dv,
∫

R3
f (t,v) log( f (t,v))dv,≤

∫

R3
f0(v) log( f0(v))dv.

We say that a function f (v) is spatially radially symmetric with respect to v ∈R
3 if for any

rotation A in R
3

f (v) = f (Av).

A lot of progress has been made on the study of the non cut-off problems. For the

existence of weak solutions, see [17] and the references therein.

In [13], Lions proved that strong compactness is available at the level of renormalized

solutions. Then Desvillettes proved in [6] that there is a regularizing effect in the case for

radially symmetric solutions of the Cauchy problem for a 2D Boltzmann equation with

Maxwellian molecules. And this is definitively different from the cutoff case, for which

there is no smoothing effect. The Sobolev smoothing effect for solutions of the Cauchy

problem was then studied in other works (see [1, 9, 2, 11, 15]).

Some gain of regularity is also obtained for a solution to the Cauchy problem of a

modified 1D model of the Boltzmann equation involving a kinetic transport term (see [8]).

For recent works on the non-homogeneous Boltzmann equation, see [3, 4, 5].

In [16], Ukai showed that the Cauchy problem for the Boltzmann equation has a unique

local solution in Gevrey classes. Then Desvillettes, Furioli and Terraneo proved in [7]

the propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian

molecules. For the non-Maxwellian case, Morimoto and Ukai considered in [14] the

Gevrey regularity of C∞ solutions in the case with a modified kinetic factor Ψ(|v− v∗|) =

(1+ |v−v∗|
2)

γ
2 and recently Zhang and Yin in [18] the case with the general kinetic factor

Ψ(|v− v∗|) = |v− v∗|
γ . In [15], it was proved that the solutions of the linearized Cauchy

problem are in the Gevrey space G
1
s (R3) for any 0 < s < 1.

Recently, Lekrine and Xu have proved in [12] that, in the case 0< s < 1
2
, any symmetric

weak solution of the Boltzmann equation belongs to the Gevrey space G
1

2s′ (R3) for any

0 < s′ < s and time t > 0.

In this work, we consider the case 1
2
≤ s < 1 and we get the following result.
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Theorem 1.1. Assume that the cross-section kernel B satisfies (1.2) with 1
2
< s < 1 and the

initial datum f0 ∈ L1
2+2s

⋂
L logL(R3), f0 ≥ 0 is radially symmetric. If f is a nonnegative

radially symmetric weak solution of the Cauchy problem for the Boltzmann equation (1.1)

such that f ∈ L∞(]0,∞[; L1
2+2s ∩L logL(R3)), then f (t, ·) ∈ G1(R3) for any t > 0.

However, for s = 1
2
, we have f (t, ·) ∈ G1/α(R3) for any 0 < α < 1 and t > 0.

It is well-known that the study of radially symmetric solutions of the Boltzmann equa-

tion can be reduced to the study of the solutions of the following Kac equation (see [6] and

also section 5)

(1.3)

{
∂ f

∂ t
= K( f , f ),

f |t=0 = f0,

where f = f (t,v) is the density distribution function with velocity v ∈ R and the Kac’s

bilinear collisional operator K is given by

K( f ,g) =

∫

R

∫ π
2

− π
2

β (θ )
{

f (v′∗)g(v
′)− f (v∗)g(v)

}
dθdv∗,

where

v′ = vcosθ − v∗ sinθ , v′∗ = vsin θ + v∗ cosθ .

The non-negative cross-section β satisfies

(1.4) β (θ ) = b0
|cosθ |

|sin θ |1+2s
when θ → 0

for 0 < s < 1 and b0 > 0. Remark that

(1.5)

∫ π/2

−π/2
β (θ )|θ |2dθ < ∞.

There is also conservation of the mass, the kinetic energy and the entropy inequality for

the solutions of the Kac’s equation. We will prove the following result:

Theorem 1.2. Assume that the cross-section kernel β satisfies (1.4) with 1
2
< s < 1, the

initial datum f0 ∈ L1
2+2s

⋂
L logL(R). For T0 > 0, if f ∈ L∞([0,∞[;L1

2+2s

⋂
L logL(R)) is a

nonnegative weak solution of the Cauchy problem of the Kac’s equation (1.3), then f (t, ·)∈
G1(R) for any t > 0.

However, for s = 1
2
, we have f (t, ·) ∈ G1/α(R) for any 0 < α < 1 and t > 0.

Same as in the paper of [12], the Theorem 1.1 is a direct consequence of the Theo-

rem 1.2. We are reduced to study the Cauchy problem for spatially homogeneous Kac’s

equation.

This paper is organized as follows: In the next section, we prove some estimates which

will be used in section 4. In section 3, we study the regularity in weighted Sobovev spaces

for the weak solutions of the Cauchy problem of the Kac’s equation. The section 4 is

devoted to the proof of the Theorem 1.2 and in section 5 we conclude the proof the Theo-

rem 1.1.

2. ESTIMATES OF THE COMMUTATORS

In this section, we will get the estimates of some terms that we call “commutators”

and we will see in section 4 that they are the main point to get the regularity of weak

solutions for the Cauchy problem of the Kac’s equation. We recall the following coercivity

inequality deduced from the non cut-off of collision kernel.
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Proposition 2.1. (see [1]) Assume that the cross-section and satisfies the assumption (1.4).

Let f ≥ 0, f 6= 0, f ∈ L1
1(R)

⋂
L logL(R), then there exists a constant c f > 0, depending

only of, β , ‖ f‖L1
1

and ‖ f‖L logL, such that

−(K( f ,g), g)L2 ≥ c f ‖g‖2
Hs − C‖ f‖L1‖g‖2

L2

for any smooth function g ∈ Hs(R).

Remark. From [11, 15], if m, ℓ ∈ R, 0 < s < 1 and f and g are suitable functions, the Kac

collision kernel has the following regularity (ℓ+ = max(0, ℓ))

‖K( f ,g)‖Hm
ℓ
≤C‖ f‖L1

ℓ++2s

‖g‖
Hm+2s

(ℓ+2s)+
.

As in [15], we introduce the following mollifier

(2.1) Gδ (t,ξ ) =
ec0t〈ξ 〉α

1+ δec0t〈ξ 〉α

where 〈ξ 〉 = (1+ |ξ |2)
1
2 , ξ ∈ R, c0 > 0 and 0 < δ < 1 will be chosen small enough and

α ∈]0,2[ are fixed. It is easy to check that, for any 0 < δ < 1,

Gδ (t,ξ ) ∈ L∞(]0,T [×R).

We denote by f̂ the Fourier transform of f

f̂ (ξ ) = F ( f )(ξ ) =

∫

R

e−iv.ξ f (v)dv

and by Gδ (t,Dv) the Fourier multiplier of symbol Gδ (t,ξ ) (see [10])

Gδ g(t,v) = Gδ (t,Dv)g(t,v) = F
−1 (Gδ (t, ·)ĝ(t, ·))(v).

The proof of Theorem 1.2 will be based on the uniform estimate with respect to 0 < δ < 1

of ‖Gδ (t,Dv) f (t, ·)‖L2
1

where f (t, ·) is a weak solution of the Cauchy problem of the Kac’s

equation (1.3).

In the following, C will represent a generic constant independent of δ and t ∈ [0,T ]
(but it will depend on the kernel β and the norms ‖ f (t, ·)‖L1

2
, ‖ f (t, ·)‖L logL used for the

coercivity).

Lemma 2.2. Let T > 0. We have that for any 0 < δ < 1 and ≤ t ≤ T,ξ ∈ R,

|∂tGδ (t,ξ )| ≤ c0〈ξ 〉
α Gδ (t,ξ ),

∣
∣∂ξ Gδ (t,ξ )

∣
∣≤ αc0t〈ξ 〉α−1Gδ (t,ξ ),

∣
∣
∣∂ 2

ξ Gδ (t,ξ )
∣
∣
∣≤C〈ξ 〉2α−2Gδ (t,ξ )

with C > 0 independent of δ and t ∈ [0,T ].

Proof. We compute

∂tGδ (t,ξ ) = c0
〈ξ 〉α

1+ δec0t〈ξ 〉α Gδ (t,ξ ),

∂ξ Gδ (t,ξ ) = αc0t ξ (1+ |ξ |2)
α
2 −1Gδ (t,ξ )

1

1+ δec0t〈ξ 〉α ,

∂ 2
ξ Gδ (t,ξ ) =

(

αc0t ξ (1+ |ξ |2)
α
2 −1
)2

Gδ (t,ξ )
1− δec0t〈ξ 〉α

(
1+ δec0t〈ξ 〉α

)2

+αc0t
(

(1+ |ξ |2)
α
2 −1 +(α − 2)ξ 2 (1+ |ξ |2)

α
2 −2
)

Gδ (t,ξ )
1

1+ δec0t〈ξ 〉α ,
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and the estimates of the lemma follow easily. �

Lemma 2.3. There exists C > 0 such that for all 0 < δ < 1 and ξ ∈ R

|Gδ (t,ξ )−Gδ(t,ξ cosθ )| ≤C sin2 θ
2
〈ξ 〉α Gδ (t,ξ cosθ )Gδ (t,ξ sinθ ),

∣
∣(∂ξ Gδ )(t,ξ )− (∂ξ Gδ )(t,ξ cosθ )

∣
∣≤C sin2 θ

2
〈ξ 〉2α−1Gδ (t,ξ cosθ )Gδ (t,ξ sinθ ).

Proof. This lemma 2.3 is proved by Taylor formula, the estimates from lemma 2.2 and the

following inequality :

(2.2) Gδ (t,ξ )≤ 3Gδ (t,ξ cosθ )Gδ (t,ξ sinθ ).

�

We now estimate the commutator of the Kac’s operator with the mollifier:

Proposition 2.4. Assume that 0 < α < 2. Let f ,g ∈ L2
1 and h ∈ Hα/2(R), then we have

|
(
Gδ K( f ,g),h

)

L2 −
(
K( f ,Gδ g),h

)

L2 | ≤C‖Gδ f‖L2
1
‖Gδ g‖

Hα/2‖h‖
Hα/2 .

Proof. By definition, of Gδ we have for a regular f ,

F (Gδ f )(ξ ) = Gδ f̂ (ξ ),

and

F (vGδ f )(ξ ) = i∂ξ

(
Gδ (t,ξ ) f̂ (t,ξ )

)
.

We recall the Bobylev formula

(2.3) F (K( f ,g)) (ξ ) =

∫ π
2

− π
2

β (θ )
{

f̂ (ξ sinθ )ĝ(ξ cosθ )− f̂ (0)ĝ(ξ )
}

dθ .

From the Bobylev and Plancherel formulas
(
Gδ K( f ,g),h

)

L2 −
(
K( f ,Gδ g),h

)

L2

=

∫

Rξ

∫ π
2

− π
2

β (θ )Gδ (t,ξ )
{

f̂ (ξ sinθ )ĝ(ξ cosθ )− f̂ (0)ĝ(ξ )
}

dθ ĥdξ

−

∫

Rξ

∫ π
2

− π
2

β (θ )
{

f̂ (ξ sinθ )F (Gδ g)(ξ cosθ )− f̂ (0)F (Gδ g)(ξ )
}

ĥ(ξ )dθdξ

=

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ (ξ sin θ ){Gδ (ξ )−Gδ (ξ cosθ )} ĝ(ξ cosθ )ĥ(ξ )dθdξ .

By the previous formula, lemma 2.3 and the Cauchy-Schwarz inequality we have
∣
∣
∣

(
Gδ K( f ,g),h

)

L2 −
(
K( f ,Gδ g),h

)

L2

∣
∣
∣

≤

∫

Rξ

∫ π
2

− π
2

β (θ )sin2 θ
2
|Gδ (ξ sinθ ) f̂ (ξ sinθ )|

× |Gδ (ξ cosθ )ĝ(ξ cosθ )|〈ξ 〉α |ĥ(ξ )|dθdξ

≤C‖Gδ f̂‖L∞‖Gδ g‖
Hα/2‖h‖

Hα/2

≤C‖Gδ f‖L2
1
‖Gδ g‖Hα/2‖h‖Hα/2

where we have used the following continuous embedding

L2
1(R)⊂ L1(R)

and the assumption (1.5) on the kernel β . �
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We again estimate the commutator of the Kac’s operator with the mollifier weighted as

in [12]. We will need to use a property of symmetry for the Kac’s operator.

Proposition 2.5. Assume that 1
2
< s < 1 and let f ,g ∈ L1

2(R) and h ∈ H
1
2 (R). Then we

have
∣
∣
(
(vGδ )K( f ,g),h

)

L2 −
(
K( f ,(vGδ )g),h

)

L2

∣
∣

≤ C

(

‖ f‖L1
2
+C‖Gδ f‖L2

1

)

‖Gδ g‖
H

1
2

1

‖h‖
H

1
2
.

Remark. For s = 1
2
, the previous estimate is not enough accurate. In order to use some

interpolation argument, we will need the following estimate.

Proposition 2.6. Assume that s = 1
2

and let 0 < α,α ′ < 1, f ,g ∈ L1
2(R), and h ∈ H

α
2 (R).

Then we have
∣
∣
(
(vGδ )K( f ,g),h

)

L2 −
(
K( f ,(vGδ )g),h

)

L2

∣
∣

≤ C‖ f‖L1
1+α′

‖Gδ g‖
H

α′
2

‖h‖
H

α′
2

+C‖Gδ f‖L2
1
‖Gδ g‖

H
α
2
‖h‖

H
α
2
.

We will prove these Propositions by using the Bobylev formula (2.3) and the Plancherel

formula. We can write

(
(vGδ )K( f ,g),h

)

L2 −
(
K( f ,(vGδ )g),h

)

L2 = i

∫

Rξ

∫ π
2

− π
2

β (θ )A(ξ ,θ ) ĥ(ξ )dθdξ

where

A(ξ ,θ ) = ∂ξ

{
f̂ (ξ sinθ )Gδ (ξ )ĝ(ξ cosθ )

}
− f̂ (ξ sinθ )∂ξ {Gδ ĝ}(ξ cosθ ).

We decompose A = A1 +A2 +A3 where

A1 = sinθ (∂ξ f̂ )(ξ sinθ )Gδ (ξ ) ĝ(ξ cosθ ),

A2 = f̂ (ξ sinθ ){Gδ (ξ )cosθ −Gδ (ξ cosθ )} (∂ξ ĝ)(ξ cosθ ),

A3 = f̂ (ξ sinθ )
{

∂ξ Gδ (ξ )− (∂ξ Gδ )(ξ cosθ )
}

ĝ(ξ cosθ ),

and we put for k = 1,2,3

Ik = i

∫

Rξ

∫ π
2

− π
2

β (θ )Ak(ξ ,θ ) ĥ(ξ )dθdξ .

Therefore we have

(2.4)
∣
∣
(
(vGδ )K( f ,g),h

)

L2 −
(
K( f ,(vGδ )g),h

)

L2

∣
∣≤ |I1|+ |I2|+ |I3|.

In the following, we will estimate the three terms I1, I2 and I3.

Estimate of I1. We decompose I1 = I1a + I1b where

I1a = i

∫

Rξ

∫ π
2

− π
2

β (θ ) sinθ (∂ξ f̂ )(ξ sinθ )Gδ (ξ cosθ )ĝ(ξ cosθ )ĥ(ξ )dθdξ ,

I1b = i

∫

Rξ

∫ π
2

− π
2

β (θ ) sinθ (∂ξ f̂ )(ξ sinθ )(Gδ (ξ )−Gδ (ξ cosθ )) ĝ(ξ cosθ )ĥ(ξ )dθdξ .

Lemma 2.7. Suppose that 1
2
< s < 1. Then there exists a constant C such that

|I1a| ≤C‖ f‖L1
2
‖Gδ g‖

H
1
2
‖h‖

H
1
2
.
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Proof. We use some symmetry property of the Kac’s equation. We write the first term

I1a =
1
2
I1a +

1
2
I1a and we use the change of variables θ →−θ . We then have

(2.5) I1a =
∫

Rξ

∫ π
2

− π
2

β (θ )sin θ Ã(ξ ,θ )Gδ (ξ cosθ )ĝ(ξ cosθ )ĥ(ξ )dθdξ

where

Ã(ξ ,θ ) =
1

2

(
∂ξ f̂ (ξ sinθ )− ∂ξ f̂ (−ξ sinθ )

)
.

We compute

Ã(ξ ,θ ) =

∫

R

vsin(ξ vsinθ ) f (v)dv

and we estimate

|Ã(ξ ,θ )| ≤ |ξ | |sinθ |‖ f‖L1
2
≤ 〈ξ 〉 |sin θ |‖ f‖L1

2
.

Finally we obtain

|I1a| ≤C‖ f‖L1
2
‖Gδ g‖

H
1
2
‖h‖

H
1
2
.

�

Lemma 2.8. Suppose that s = 1
2
. Then for any 0 < α ′ < 1, there exists a constant C such

that

|I1a| ≤C‖ f‖L1
1+α′

‖Gδ g‖
H

α′
2

‖h‖
H

α′
2

.

Proof. Following the proof of the previous lemma, we consider again the identity (2.5)

where

Ã(ξ ,θ ) =
∫

R

vsin(ξ vsinθ ) f (v)dv.

We then estimate

|Ã(ξ ,θ )| ≤ |ξ |α
′
|sinθ |α

′
‖ f‖L1

1+α′
≤ 〈ξ 〉α ′

|sin θ |α
′
‖ f‖L1

1+α′
.

Finally we obtain

|I1a| ≤C‖ f‖L1
1+α′

‖Gδ g‖
H

α′
2

‖h‖
H

α′
2

.

�

Lemma 2.9. There exists a constant C such that

|I1b| ≤C

(

‖Gδ f‖L2
1
+ ‖Gδ f‖

H(α−1)+

)

‖Gδ g‖
H

α
2

1

‖h‖
H

α
2
.

Proof. We estimate

I1b = i

∫

Rξ

∫ π
2

− π
2

β (θ ) sinθ (∂ξ f̂ )(ξ sinθ )(Gδ (ξ )−Gδ(ξ cosθ )) ĝ(ξ cosθ )ĥ(ξ )dθdξ .

By using lemma 2.3,

|I1b| ≤

∫

Rξ

∫ π
2

− π
2

β (θ ) sin2 θ
2
|sinθ |Gδ (ξ sinθ )

∣
∣(∂ξ f̂ )(ξ sinθ )

∣
∣

〈ξ 〉
α
2 Gδ (ξ cosθ )|ĝ(ξ cosθ )|〈ξ 〉

α
2 ĥ(ξ )dθdξ .

From

‖〈·〉
α
2 Gδ ĝ‖L∞ ≤ ‖Gδ g‖

H
α
2

1
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and the Cauchy-Schwarz inequality, we get

∫

Rξ

∫ π
2

− π
2

β (θ ) sin2 θ
2
|sinθ |Gδ (ξ sinθ )

∣
∣(∂ξ f̂ )(ξ sinθ )

∣
∣〈ξ 〉

α
2 ĥ(ξ )dθdξ

≤

(
∫

Rξ

∫ π
2

− π
2

β (θ ) sin2 θ
2
|sinθ |Gδ (ξ sinθ )2

∣
∣(∂ξ f̂ )(ξ sinθ )

∣
∣2 dθdξ

)1/2

(
∫

Rξ

∫ π
2

− π
2

β (θ ) sin2 θ
2
|sinθ | 〈ξ 〉

α
2 |ĥ(ξ )|2 dθdξ

)1/2

≤‖Gδ ∂ξ f̂ ‖L2 × ‖〈·〉
α
2 ĥ‖L2 .

We then observe that from lemma 2.2

‖Gδ (∂ξ f̂ )‖L2 ≤ ‖∂ξ (Gδ f̂ )‖L2 + ‖(∂ξ Gδ ) f̂ ‖L2

≤C‖Gδ f‖L2
1
‖〈·〉α−1 f̂ ‖L2

and we conclude

|I1b| ≤C
(

‖Gδ f‖L2
1
+ ‖Gδ f‖

H(α−1)+

)

‖Gδ g‖
H

α
2

1

‖h‖
H

α
2
.

�

Estimate of I2. We decompose I2 = I2a + I2b where

I2a = i

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ (ξ sinθ )(cosθ − 1) Gδ (ξ )(∂ξ ĝ)(ξ cosθ )ĥ(ξ )dθdξ ,

I2b = i

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ (ξ sinθ )(Gδ (ξ )−Gδ (ξ cosθ )) (∂ξ ĝ)(ξ cosθ )ĥ(ξ )dθdξ .

Lemma 2.10. There exists a constant C such that

|I2a| ≤C‖Gδ f‖L2
1
‖Gδ g‖

H(α−1)+ ‖h‖L2 .

Proof. For I2a we use (2.2) and cosθ − 1 =−2sin2 θ
2

:

I2a ≤C‖Gδ f‖L2
1
‖Gδ (vg)‖L2‖h‖L2

≤C‖Gδ f‖L2
1

(
‖Gδ g‖L2 + ‖Gδ g‖

H(α−1)+

)
‖h‖L2 .

�

Lemma 2.11. There exists a constant C such that

|I2b| ≤C‖Gδ f‖L2
1

(

‖Gδ g‖
H

α
2

1

+ ‖Gδ g‖
H
( 3α

2
−1)+

)

‖h‖
H

α
2
.

Proof. Using lemma 2.3 we get

I2b ≤C‖Gδ f‖L∞ ‖〈·〉
α
2 Gδ (∂ξ ĝ)‖L2‖〈·〉

α
2 ĥ‖L2

and

‖〈·〉
α
2 Gδ (∂ξ ĝ)‖L2 ≤ ‖〈·〉

α
2 ∂ξ (Gδ ĝ)‖L2 + ‖〈·〉

α
2 (∂ξ Gδ )ĝ‖L2 .

�
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Estimate of I3 We recall

I3 = i

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ (ξ sinθ )
{

∂ξ Gδ (ξ )− (∂ξ Gδ )(ξ cosθ )
}

ĝ(ξ cosθ ) ĥ(ξ )dθdξ .

Lemma 2.12. There exists a constant C such that

I3 ≤C‖Gδ f‖L2
1
‖Gδ g‖

H
(α− 1

2
)
‖h‖

H
(α− 1

2
)
.

Proof.

I3 ≤C‖Gδ f̂ ‖L∞‖〈·〉(α− 1
2 )Gδ ĝ‖L2‖〈·〉(α− 1

2 )ĥ‖L2 .

�

Proof of Proposition 2.5. We use the previous lemmas 2.7 and 2.9-2.12. By summing the

above estimates, we deduce from (2.4)
∣
∣
(
(vGδ )K( f ,g),h

)

L2 −
(
K( f ,(vGδ )g),h

)

L2

∣
∣

≤ C‖ f‖L1
2
‖Gδ g‖

H
1
2
‖h‖

H
1
2
+C‖Gδ f‖

H
(α−1)+

1

‖Gδ g‖
H

α
2
‖h‖

H
α
2

+C‖Gδ f‖L2
1
‖Gδ g‖

H
( 3α

2
−1)

+

1

‖h‖
H

α
2
+C‖Gδ f‖L2

1
‖Gδ g‖

H
(α− 1

2 )
+‖h‖

H
(α− 1

2 )
+ .

Taking α = 1, this finishes the proof of Proposition 2.5. �

Proof of Proposition 2.6. We recall s = 1
2
. We have from (2.4)

∣
∣
(
(vGδ )K( f ,g),h

)

L2 −
(
K( f ,(vGδ )g),h

)

L2

∣
∣ ≤ |I1a|+ |I1b|+ |I2a|+ |I2b|+ |I3|.

We use the lemma 2.8 and the lemmas 2.9-2.12 taking 0 < α < 1, and this concludes the

proof. �

We now estimate some scalar product terms which involve the derivative of the mollifier

with respect to time:

Lemma 2.13. There exists C > 0 such that

(2.6) |((∂tGδ )(t,Dv) f (t, ·) , Gδ (t,Dv) f (t, ·))L2 | ≤C‖Gδ f‖2
Hα/2 ,

and

(2.7) |(v(∂tGδ )(t,Dv) f (t, ·) , vGδ (t,Dv) f (t, ·))L2 | ≤C

(

‖Gδ f‖2

H
α/2
1

+ ‖Gδ f‖2

H
α− 1

2
1

)

.

Proof. We have by the Plancherel formula

((∂tGδ )(t,Dv) f (t, ·) , Gδ (t,Dv) f (t, ·))L2 =
∫

(∂t Gδ ) f̂ Gδ f̂ dξ .

The estimate (2.6) can be deduced directly from lemma 2.2. For (2.7), we compute
(
v(∂tGδ )(t,Dv) f (t, ·) , vGδ (t,Dv) f (t, ·)

)

L2

=

∫ {

∂ξ

(
c0〈ξ 〉

α

1+ δec0t〈ξ 〉α

)

(Gδ f̂ ) +

(
c0〈ξ 〉

α

1+ δec0t〈ξ 〉α

)

∂ξ (Gδ f̂ )

}

∂ξ (Gδ f̂ )dξ

and we use the following estimate
∣
∣
∣
∣
∂ξ

(
〈ξ 〉α

1+ δec0t〈ξ 〉α

)∣
∣
∣
∣
≤C〈ξ 〉2α−1.

�
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3. SOBOLEV REGULARIZING EFFECT FOR KAC’S EQUATION

In this section, we prove the regularity in weighted Sobolev spaces of the weak solutions

for the Cauchy problem of the Kac’s equation.

Theorem 3.1. Assume that the initial datum f0 ∈ L1
2+2s

⋂
L logL(R), and the cross-section

weak β satisfies (1.4) with 1
2
≤ s < 1. If f ∈ L∞(]0,+∞[;L1

2+2s

⋂
L logL(R)) is a nonnega-

tive weak solution of the Cauchy problem (1.3), then f (t, ·) ∈ H+∞
2 (R) for any t > 0.

Remark. This Theorem has been proved in [12] in the case 0 < s < 1
2
.

We also obtain the following propagation of Sobolev regularity:

Corollary 3.2. Under the assumptions of Theorem 3.1, for any T0 > 0, there exists a

constant C which depends only on β and ‖ f‖L∞(]0,+∞[;L1
2+2s

⋂
L logL(R)) such that

∀t ≥ T0, ‖ f (t, ·)‖H2
2
≤ eC(t−T0)‖ f (T0, ·)‖H2

2
.

Throughout this section, we will distinguish the case 1
2
< s < 1 and the limit case s = 1

2
.

We introduce as in [15] the mollifier of polynomial type

Mδ (t,ξ ) =
〈ξ 〉Nt−1

(1+ δ |ξ |2)N0

for 0 < δ < 1, t ∈ [0,T0] and 2N0 = T0N + 4.

Lemma 3.3. We have that for any 0 < δ < 1 and 0 ≤ t ≤ T0, ξ ∈R,

|∂tMδ (t,ξ )| ≤ N log(〈ξ 〉)Mδ (t,ξ ).

For − π
4
≤ θ ≤ π

4
,

|Mδ (t,ξ )−Mδ (t,ξ cosθ )| ≤C sin2 θ
2

Mδ (t,ξ cosθ ),
∣
∣(∂ξ Mδ )(t,ξ )− (∂ξ Mδ )(t,ξ cosθ )

∣
∣≤C sin2 θ

2
〈ξ 〉−1Mδ (t,ξ cosθ ),

∣
∣
∣(∂ 2

ξ Mδ )(t,ξ )− (∂ 2
ξ Mδ )(t,ξ cosθ )

∣
∣
∣≤C sin2 θ

2
〈ξ 〉−2Mδ (t,ξ cosθ ).

Proof. We compute

logMδ (t,ξ ) =
Nt − 1

2
log(1+ ξ 2)−N0 log(1+ δξ 2),

∂tMδ (t,ξ ) =
N

2
log(1+ ξ 2)Mδ (t,ξ ).

Using the estimates
∣
∣
∣∂ k

ξ (Mδ (t,ξ ))
∣
∣
∣≤Ck〈ξ 〉

−kMδ (t,ξ ),

|Mδ (t,ξ )| ≤CMδ (t,ξ cosθ )

and the Taylor formula, we obtain the proof of the lemma. �

We estimate the first commutator:

Proposition 3.4. Let f ,g ∈ L2
1 and h ∈ L2(R), then we have that

∣
∣
(
Mδ K( f ,g),h

)

L2 −
(
K( f ,Mδ g),h

)

L2

∣
∣≤C‖ f‖L1‖Mδ g‖L2‖h‖L2 .
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Proof. By the definition of Mδ , we have

F (Mδ f )(ξ ) = Mδ f̂ (ξ ),

F (vMδ f )(ξ ) = i∂ξ

(
Mδ (t,ξ ) f̂ (ξ )

)
.

We now use the Bobylev formula (2.3) and the Plancherel formula
(
Mδ K( f ,g),h

)

L2 −
(
K( f ,Mδ g),h

)

L2

=

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ (ξ sinθ ){Mδ (ξ )−Mδ(ξ cosθ )} ĝ(ξ cosθ )ĥ(ξ )dθdξ .

By the previous formula, lemma 3.3, the Cauchy-Schwarz inequality and (1.5) we have
∣
∣
(
Mδ K( f ,g),h

)

L2 −
(
K( f ,Mδ g),h

)

L2

∣
∣

≤
∫

Rξ

∫ π
2

− π
2

β (θ )sin2 θ
2
| f̂ (ξ sin θ )|× |Mδ(ξ cosθ )ĝ(ξ cosθ )ĥ(ξ )|dθdξ

≤C‖ f̂‖L∞‖Mδ g‖L2‖h‖L2

≤C‖ f‖L1‖Mδ g‖L2‖h‖L2 .

�

In the same spirit of Proposition 2.5, we will use some symmetry property of the Kac’s

equation to estimate the weighted commutator.

Proposition 3.5. Suppose that 1
2
< s < 1. We then have :

∣
∣
(
(v2Mδ )K( f ,g),h

)

L2 −
(
K( f ,(v2Mδ )g),h

)

L2

∣
∣≤C‖ f‖L1

2
‖Mδ g‖

H
1
2

2

‖h‖
H

1
2
.

Proof. We have
(
(v2Mδ )K( f ,g),h

)

L2 −
(
K( f ,(v2Mδ )g),h

)

L2

=−
∫ ∫ π

2

− π
2

β (θ )(sin2 θ )(∂ 2
ξ f̂ )(ξ sinθ )Mδ (ξ )ĝ(ξ cosθ )ĥ(ξ )dθdξ

− 2

∫ ∫ π
2

− π
2

β (θ )sinθ (∂ξ f̂ )(ξ sinθ )∂ξ

(

Mδ (ξ ) ĝ(ξ cosθ )
)

ĥ(ξ )dθdξ

−
∫ ∫ π

2

− π
2

β (θ ) f̂ (ξ sin θ )
{

∂ 2
ξ

(

Mδ (t,ξ ) ĝ(ξ cosθ )
)

− ∂ 2
ξ

(

Mδ ĝ
)

(ξ cosθ )
}

ĥ(ξ )dθdξ

= B1 +B2 +B3.

Then

|B1| ≤C‖ f‖L1
2
‖Mδ g‖L2 ‖h‖L2 .

For B2, we will use the symmetry and the change of variables θ →−θ (see proof of lemma

2.7). We write B2 = B2a +B2b where

B2a =−2

∫

Rξ

∫ π
2

− π
2

β (θ )sin θ (∂ξ f̂ )(ξ sinθ )
(
∂ξ Mδ

)
(ξ ) ĝ(ξ cosθ )ĥ(ξ )dθdξ ,

B2b =−2

∫

Rξ

∫ π
2

− π
2

β (θ )sin θ (∂ξ f̂ )(ξ sinθ )
(
∂ξ ĝ
)
(ξ cosθ ) cosθ Mδ (ξ )ĥ(ξ )dθdξ .
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The symmetry and the estimate of lemma 3.3 implies

|B2a| ≤C

∫

Rξ

∫ π
2

− π
2

β (θ )(sin2 θ )|ξ |‖∂ 2
ξ f̂ ‖L∞〈ξ 〉−1Mδ (ξ cosθ ) |ĝ(ξ cosθ )|× |ĥ(ξ )|dθdξ

≤C‖ f‖L1
2
‖Mδ g‖L2‖h‖L2 .

We note that

‖〈ξ 〉
1
2 Mδ ∂ξ ĝ‖L2 = ‖Mδ (vg)‖

H
1
2
≤C‖Mδ g‖

H
1
2

1

.

Using again the symmetry and the previous estimate, we get

|B2b| ≤C

∫

Rξ

∫ π
2

− π
2

β (θ )sin2 θ 〈ξ 〉‖∂ 2
ξ f̂ ‖L∞ |Mδ (ξ cosθ )∂ξ ĝ(ξ cosθ )|× |ĥ(ξ )|dθdξ

≤C‖ f‖L1
2
‖Mδ g‖

H
1
2

1

‖h‖
H

1
2
.

For B3 we have

B3 =−

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ (ξ sinθ )

{

∂ 2
ξ

(

Mδ (t,ξ ) ĝ(ξ cosθ )
)

− ∂ 2
ξ

(

Mδ ĝ
)

(ξ cosθ )
}

ĥ(ξ )dθdξ

and we compute

∂ 2
ξ

(

Mδ (t,ξ ) ĝ(ξ cosθ )
)

− ∂ 2
ξ

(

Mδ ĝ
)

(ξ cosθ ) = D1 +D2 +D3 +D4 +D5

where

D1 =
(

∂ 2
ξ Mδ (ξ )− ∂ 2

ξ Mδ (ξ cosθ )
)

ĝ(ξ cosθ ),

D2 = (Mδ (ξ )−Mδ (ξ cosθ )) ∂ 2
ξ ĝ(ξ cosθ ),

D3 = (cos2 θ − 1)Mδ (ξ cosθ )∂ 2
ξ ĝ(ξ cosθ ),

D4 = 2
(
∂ξ Mδ (ξ )− ∂ξ Mδ (ξ cosθ )

)
∂ξ ĝ(ξ cosθ ),

D5 = 2(cosθ − 1)∂ξ Mδ (ξ )∂ξ ĝ(ξ cosθ ).

For 1 ≤ i ≤ 5, we note Ji =−

∫

Rξ

∫ π
2

− π
2

β (θ ) f̂ )(ξ sinθ )Di(ξ ,θ )ĥ(ξ )dθdξ .

We successively estimate :

|J1| ≤C‖ f̂‖L∞

∫

Rξ

∫ π
2

− π
2

β (θ )sin2 θ
2

Mδ (ξ cosθ )|ĝ(ξ cosθ ) ĥ(ξ )|dθdξ

≤C‖ f‖L1 ‖Mδ g‖L2‖h‖L2 ,

|J2|+ |J3| ≤C‖ f̂‖L∞

∫

Rξ

∫ π
2

− π
2

β (θ )(sin2 θ
2
+ sin2 θ )Mδ (ξ cosθ )|∂ 2

ξ ĝ(ξ cosθ ) ĥ(ξ )|dθdξ

≤C‖ f‖L1 ‖Mδ g‖L2
2
‖h‖L2 ,

|J4|+ |J5| ≤C‖ f̂‖L∞

∫

Rξ

∫ π
2

− π
2

β (θ )sin2 θ
2
)Mδ (ξ cosθ )|∂ξ ĝ(ξ cosθ ) ĥ(ξ )|dθdξ

≤C‖ f‖L1 ‖Mδ g‖L2
1
‖h‖L2 .
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From the previous inequalities we deduce

|B3| ≤C‖ f‖L1 ‖Mδ g‖L2
2
‖h‖L2

and this finishes the proof of the Proposition 3.5. �

For the case s = 1
2
, we will need a different estimate of the weighted commutator.

Proposition 3.6. Assume that s = 1
2
. Then for any 0 < α ′ < 1 we have

(3.1)
∣
∣
(
(v2Mδ )K( f ,g),h

)

L2 −
(
K( f ,(v2Mδ )g),h

)

L2

∣
∣≤C‖ f‖L1

2
‖Mδ g‖

H
α′
2

2

‖h‖
H

α′
2
.

The proof of this Proposition use the same arguments of Proposition 3.5 and lemma 2.8.

Proof of the Theorem 3.1.

- Case : 1
2
< s < 1.

We consider f ∈ L1
2+2s ∩L logL a weak solution of the Cauchy problem (1.3) and we

multiply the equation with the test function

ϕ(t,v) = Mδ (t,Dv)(1+ v4)Mδ (t,Dv) f (t,v).

Therefore we obtain the equality

(3.2) (∂t f ,ϕ)L2 = (K( f , f ),ϕ)L2 .

Using some similar arguments in [15], we can suppose that ϕ ∈ C1([0,T0];H5
−2+2s(R)).

We compute

(Mδ ∂t f ,Mδ f )L2 +(v2Mδ ∂t f ,v2Mδ f )L2

= (Mδ K( f , f ),Mδ f )L2 +(v2Mδ K( f , f ),v2Mδ f )L2 .

We will use the following notations

time0 = ((∂tMδ ) f ,Mδ f )L2 ,

time2 =
(
v2(∂tMδ ) f ,v2Mδ f

)

L2 ,

and, concerning the commutators of the Kac operator and the weighted mollifier,

com0 = (Mδ K( f , f ),Mδ f )L2 − (K( f ,Mδ f ),Mδ f )L2 ,

com2 =
(
v2Mδ K( f , f ),v2Mδ f

)

L2 −
(
K( f ,v2Mδ f ),v2Mδ f

)

L2 .

Therefore the relation (3.2) become

1

2

d

dt

(

‖M f‖2
L2 + ‖v2M f‖2

L2

)

− (K( f ,Mδ f ) , Mδ f )L2 − (K( f ,v2Mδ f ) , v2Mδ f )L2

= time0 + time2 + com0 + com2.

From the coercivity inequality of Proposition 2.1, we derive the following differential in-

equation

1

2

d

dt

(

‖M f‖2
L2 + ‖v2M f‖2

L2

)

+ c f‖M f‖2
Hs

2
(3.3)

≤ time0 + time2 + com0 + com2 +C‖ f‖L1‖Mδ f‖L2
2
.

Lemma 3.7. Assume that 0 < s < 1 and ε > 0. Then there exists a constant Cε such that :

|((∂tMδ ) f ,Mδ f )L2 | ≤ ε ‖Mδ f‖2
Hs

2
+Cε‖Mδ f‖2

L2 ,
∣
∣
(
v2(∂tMδ ) f ,v2Mδ f

)

L2

∣
∣≤ ε ‖Mδ f‖2

Hs
2
+Cε‖Mδ f‖2

L2 .
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Proof. We compute

time0 =

(
N

2
log(1+ ξ 2)Mδ f̂ , Mδ f̂

)

L2

.

For ε > 0, there exists a constant Cε such that :

(3.4)
N

2
log(1+ ξ 2) ≤ ε(1+ ξ 2)s +Cε .

Therefore

|time0| ≤ ε
(
(1+ ξ 2)sMδ f̂ , Mδ f̂

)

L2 +Cε

(
Mδ f̂ , Mδ f̂

)

L2 .

We estimate the term time2 =
(

∂ 2
ξ

(
∂tMδ f̂

)
, F (v2Mδ f )

)

L2
. We compute

∂ 2
ξ

(
∂tMδ f̂

)
= ∂ 2

ξ

(
N

2
log(1+ ξ 2)

)

︸ ︷︷ ︸

≤C

Mδ f̂ + 2∂ξ

(
N

2
log(1+ ξ 2)

)

︸ ︷︷ ︸

≤C

∂ξ

(
Mδ f̂

)

+
N

2
log(1+ ξ 2)∂ 2

ξ

(
Mδ f̂

)
.

Using again the inequality (3.4),

|time2| ≤C
∣
∣
(
Mδ f̂ , F (v2Mδ f )

)

L2

∣
∣+C

∣
∣
∣

(
∂ξ

(
Mδ f̂

)
, F (v2Mδ f )

)

L2

∣
∣
∣

+ ε
∣
∣
∣

(

∂ 2
ξ

(
Mδ f̂

)
, F (v2Mδ f )

)

L2

∣
∣
∣+Cε

∣
∣
∣

(

(1+ ξ 2)s∂ 2
ξ

(
Mδ f̂

)
, F (v2Mδ f )

)

L2

∣
∣
∣

where
∣
∣
(
Mδ f̂ , F (v2Mδ f )

)

L2

∣
∣= ‖vMδ f‖2

L2
2
≤ ‖Mδ f‖2

L2
2
,

∣
∣
∣

(
∂ξ (Mδ f̂ ) , F (v2Mδ f )

)

L2

∣
∣
∣=
∣
∣
(
vMδ f , v2Mδ f

)

L2

∣
∣≤ ‖Mδ f‖L2

2
,

∣
∣
∣

(

∂ 2
ξ (Mδ f̂ ) , F (v2Mδ f )

)

L2

∣
∣
∣=
∣
∣
(
v2Mδ f , v2Mδ f

)

L2

∣
∣≤ ‖Mδ f‖L2

2
,

∣
∣
∣

(

(1+ ξ 2)s∂ 2
ξ

(
Mδ f̂

)
, F (v2Mδ f )

)

L2

∣
∣
∣= ‖Mδ f‖2

Hs
2
.

This concludes the proof of lemma 3.7. �

Plugging the estimates of Propositions 3.4, 3.5 and lemma 3.7 into (3.3), we get

1

2

d

dt

(

‖Mδ f‖2
L2 + ‖v2Mδ f‖2

L2

)

+ c f‖Mδ f‖2
Hs

2

≤ ε‖Mδ f‖2
Hs

2
+Cε‖ f‖2

L2
2
+C‖ f‖L1

2
‖Mδ f‖2

H
1
2

2

.

From the interpolation estimate

(3.5) ‖g‖2

H
1
2
≤ λ‖g‖2

Hs +λ
−1

2s−1 ‖g‖2
L2 ,

we deduce

1

2

d

dt

(

‖Mδ f‖2
L2 + ‖v2Mδ f‖2

L2

)

+ c f ‖Mδ f‖2
Hs

2

≤
(

ε +Cλ‖ f‖L1
2

)

‖Mδ f‖2
Hs

2
+
(

Cε +Cλ
−1

2s−1 ‖ f‖L1
2

)

‖Mδ f‖2
L2

2
.

Choosing ε and λ small enough, we get

(3.6)
1

2

d

dt

(

‖Mδ f‖2
L2 + ‖v2Mδ f‖2

L2

)

≤C‖Mδ f‖2
L2

2
≤C

(

‖Mδ f‖2
L2 + ‖v2Mδ f‖2

L2

)

.
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From Gronwall’s lemma we have

‖Mδ f‖2
L2 + ‖v2Mδ f‖2

L2 ≤ e2Ct
(
‖Mδ (0) f0‖

2
L2 + ‖v2Mδ (0) f0‖

2
L2

)
,

that is

‖Mδ f‖2
L2

2
≤ e2Ct‖Mδ (0) f0‖

2
L2

2
.

We write :

‖(1− δ∆)−N0 f‖2

HNt−1
2

≤ e2Ct‖(1− δ∆)−N0 f0‖
2

H−1
2

.

By Fatou’s lemmas, letting δ → 0,

‖ f‖2

HNt−1
2

≤ e2Ct‖ f0‖
2

H−1
2

≤C′e2Ct‖ f0‖
2
L1

2
.

For t ∈ [0,T0] we have proved

(1+ |Dv|
2)m f (t, ·) ∈ L2

2(R)

for all T0 > 0 and m = Nt − 1 > 0. Therefore we have obtained that f (t, ·) ∈ Hm
2 (R) and

that concludes the proof of Theorem 3.1 in the case 1
2
< s < 1.

- Case s = 1
2
. The proof is similar to the case 1

2
< s < 1. We choose α ′ = 1

2
in Proposition

3.6 and we plug the estimate of Proposition 3.1 in the differential inequation (3.3). We get

the same estimate (3.6) and from Gronwall’s lemma we conclude the proof of Theorem 3.1.

�

Proof of Corollary 3.2.

We consider the case 1
2
< s < 1. We first note that, from Theorem 3.1, f (t, ·) ∈ H+∞

2 (R)
for all t > 0. We introduce the mollifier

M(ξ ) = 1+ ξ 2

which corresponds to the differential operator M = 1−∆v.

By a proof similar to that of propositions 3.4 and 3.5, since M satisfies obviously the

estimates of lemma 3.3, we can prove the following estimates of the commutators: For

f ,g ∈ L2
1 and h ∈ L2(R), we have

∣
∣
(
MK( f ,g),h

)

L2 −
(
K( f ,Mg),h

)

L2

∣
∣≤C‖ f‖L1‖Mg‖L2‖h‖L2 ,

∣
∣
(
(v2M)K( f ,g),h

)

L2 −
(
K( f ,(v2M)g),h

)

L2

∣
∣≤C‖ f‖L1

2
‖Mg‖

H
1
2

2

‖h‖
H

1
2

where C depends only on β and ‖ f‖L∞(]0,+∞[;L1
2+2s

⋂
L logL(R)).

Following the proof of Theorem 3.1 and the same notations, we get a differential in-

equation similar to (3.3) (remark that the mollifier M is independent of the time)

1

2

d

dt

(

‖M f‖2
L2 + ‖v2M f‖2

L2

)

+ c f‖M f‖2
Hs

2
≤ com0 + com2 +C‖ f‖L1‖M f‖2

L2
2
.

The previous estimates of the commutators imply

1

2

d

dt

(

‖M f‖2
L2 + ‖v2M f‖2

L2

)

+ c f ‖M f‖2
Hs

2
≤C‖ f‖L1

2
‖M f‖2

H
1
2

2

.

Using the interpolation estimate (3.5) we deduce the following differential inequation

1

2

d

dt

(

‖M f‖2
L2 + ‖v2M f‖2

L2

)

≤C
(

‖M f‖2
L2 + ‖v2M f‖2

L2

)

and from Gronwall’s lemma we derive

‖M f‖2
L2

2
≤ e2Ct‖M f0‖

2
L2

2
.

That concludes the proof of Corollary 3.2 in the case 1
2
< s < 1.
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The proof in the case s = 1
2

is similar. �

4. ANALYTICITY PROPERTY FOR KAC’S EQUATION

From the Theorem 3.1, we know that the weak solution of the Cauchy problem of the

Kac’s equation (1.3) has the following regularity: for any t0 > 0, f ∈ L∞([t0,T0];H2
2 (R)).

Therefore f is a solution of the following Cauchy problem :






∂ f

∂ t
= K( f , f ),

f |t=0 = f0 ∈ H2
2 (R).

and we can suppose that the initial datum is f0 ∈ H2
2 (R)

⋂
L1

2(R).
We have the local analytic regularizing effect of Cauchy problem.

Theorem 4.1. Assume that the cross-section kernel β satisfies (1.4), the initial datum

f0 ∈ L1
2+2s

⋂
H2

2 (R) and f ∈ L∞([0,T0];H2
2

⋂
L1

2(R)) is a nonnegative weak solution of the

Cauchy problem of the Kac’s equation (1.3) for some T0 > 0.

- Case 1
2
< s < 1.

There exist 0 < T∗ ≤ T0 and c0 > 0 such that

ec0t<Dv> f ∈ L∞([0,T∗];L2
1(R)).

Therefore we have f (t, ·) ∈ G1(R) for any 0 < t ≤ T∗.

- Case s = 1
2
.

For any 0 < α < 1, there exist 0 < T∗ ≤ T0 and c0 > 0 such that

ec0t<Dv>
α

f ∈ L∞([0,T∗];L2
1(R)).

Therefore for any 0 < α < 1 and 0 < t ≤ T∗ we have f (t, ·) ∈ G1/α(R).

Proof of the Theorem 4.1.

We choose the test function

ϕ̃(t, ·) =
(
Gδ (t,Dv)〈v〉

2Gδ (t,Dv) f
)
(t, ·) ∈ L∞(]0,T0[;H2(R))

where the mollifier Gδ is given in section 2 by (2.1).

We have

(∂t f , ϕ̃)L2 = (K( f , f ) , ϕ̃)L2 .

First, the left-hand side term is

(∂t f , ϕ̃)L2 =
1

2

d

dt
‖Gδ f‖2

L2
1
− ((∂tGδ ) f , Gδ f )L2 − (v(∂tGδ ) f ) , vGδ f )L2 .

The rights-hand side is

(K( f , f ) , ϕ̃)L2 =
(
Gδ (K( f , f ) , (1+ v2)Gδ f

)

L2

= (K( f ,Gδ f ) , Gδ f )L2 +(K( f ,vGδ f ) , vGδ f )L2

+(Gδ K( f , f )−K( f ,Gδ f ) , Gδ f )L2

+(vGδ K( f , f )−K( f ,vGδ f ) , vGδ f )L2 .

Therefore we can write :

1

2

d

dt
‖Gδ f‖2

L2
1
− (K( f ,Gδ f ) , Gδ f )L2 − (K( f ,vGδ f ) , vGδ f )L2(4.1)

= (time term)+ (commutator)
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where

(time term) =− ((∂tGδ )(·,Dv) f , Gδ (t,Dv) f (t, ·))L2

− (v(∂tGδ )(·,Dv) f , vGδ (t,Dv) f )L2

and

(commutator)=(Gδ K( f , f )−K( f ,Gδ f ) , Gδ f )L2

+(vGδ K( f , f )−K( f ,vGδ f ) , vGδ f )L2 .

Furthermore,

‖Gδ f‖2
Hs

1
≤ ‖Gδ f‖2

Hs + ‖vGδ f‖2
Hs + ‖Gδ f‖2

L2

and by the Proposition 2.1,

−(K( f ,Gδ f ),(Gδ f ))L2 ≥ c f ‖Gδ f‖2
Hs −C‖ f‖L1‖Gδ f‖2

L2

and

−(K( f ,vGδ f ),v(Gδ f ))L2 ≥ c f ‖vGδ f‖2
Hs −C‖ f‖L1‖vGδ f‖2

L2 .

Then the equality (4.1) became

1

2

d

dt
‖Gδ f‖2

L2
1
+ c f‖Gδ f‖2

Hs
1

(4.2)

≤C‖ f‖L1‖Gδ f‖2
L2

1
+ (time term)+ (commutator).

- Case : 1
2
< s < 1.

We consider the mollifier Gδ defined in (2.1) and chosen with α = 1

Gδ (t,ξ ) =
ec0t〈ξ 〉

1+ δec0t〈ξ 〉
.

Remark 4.2. This is the optimal choice for α ∈]0,2[ as it can be seen in the estimates

of section 2 : for example, from lemma 2.11, the term ‖Gδ f‖
H
( 3α

2
−1)+‖Gδ f‖

H
α
2

can be

controlled by the coercivity only if α ≤ 1.

Using the Propositions 2.4, 2.5 and the lemma 2.13 of section 2, we get :

- Estimate of commutators terms:

(4.3) |(Gδ K( f , f )−K( f ,Gδ f ) , Gδ f )L2 | ≤C‖Gδ f‖L2
1
‖Gδ f‖2

H1/2

and

(4.4) |(vGδ )K( f , f )−K( f ,(vGδ ) f ) , vGδ f )L2 | ≤C(‖ f‖L1
2
+ ‖Gδ f‖L2

1
)‖Gδ f‖2

H
1
2

1

.

- Estimate of the terms involving the derivative with respect to time:

(4.5) |((∂tGδ )(t,Dv) f (t, ·) , Gδ (t,Dv) f (t, ·))L2 | ≤C‖Gδ f‖2

H1/2 ,

and

(4.6) |(v(∂tGδ )(t,Dv) f (t, ·) , vGδ (t,Dv) f (t, ·))L2 | ≤C‖Gδ f‖2

H
1/2
1

.

Therefore, plugging the estimates (4.3)-(4.6) into (4.2), we obtain

1

2

d

dt
‖Gδ f‖2

L2
1
+ c f‖Gδ f‖2

Hs
1
≤C‖Gδ f‖2

H
1
2

1

+C‖Gδ f‖L2
1
‖Gδ f‖2

H
1
2

1

.

From the interpolation inequality (3.5) we have

C‖Gδ f‖2

H
1
2

1

≤Cλ1‖Gδ f‖2
Hs

1
+Cλ

−1
2s−1

1 ‖Gδ f‖2
L2

1
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and

C‖Gδ f‖L2
1
‖Gδ f‖2

H
1
2

1

≤Cλ2‖Gδ f‖L2
1
‖Gδ f‖2

Hs
1
+Cλ

−1
2s−1

2 ‖Gδ f‖3
L2

1
.

Choosing λ1 and λ2 such that Cλ1 = c f /4 and Cλ2‖Gδ f‖L2
1
= c f /4 we get

1

2

d

dt
‖Gδ f‖2

L2
1
≤C1‖Gδ f‖2

L2
1
+C2‖Gδ f‖

1
2s−1+3

L2
1

for t ∈ [0,T0], with C1,C2 > 0 are independent of t and δ > 0. Then

d

dt
‖Gδ f‖L2

1
≤C1‖Gδ f‖L2

1
+C2‖Gδ f‖

γ

L2
1

where γ = 1
2s−1

+ 2. We set ψ(t) = ‖Gδ f (t, ·)‖L2
1
. Therefore

d

dt
ψ(t)≤C1ψ(t)+C2ψ(t)γ .

Solving the previous differential inequation, we easily get

ψ(t)≤
eC1t ψ(0)

(

1− C2
C1

(
e(γ−1)C1t − 1

)
ψ(0)γ−1

) 1
γ−1

,

that is

‖Gδ f (t, ·)‖L2
1
≤

eC1 t ‖ f0‖L2
1

(

1− C2
C1

(

e

s

s− 1
2

t

− 1

)

‖ f0‖

s

s− 1
2

L2
1

) s− 1
2

s

.

We now choose 0 < T∗ ≤ T0 small enough so that for t ∈ [0,T∗]

(4.7) 1−
C2

C1

(

e

s

s− 1
2

t

− 1

)

‖ f0‖

s

s− 1
2

L2
1

≥

(
1

2

) s

s− 1
2 ,

and taking δ → 0, we have for t ∈]0,T∗],

‖ec0t<Dv> f (t, ·)‖L2
1
≤ 2eC1t‖ f0‖L2

1
.

This concludes the proof of Theorem 4.1 in the case 1
2
< s < 1.

- Case : s = 1
2
.

We consider the mollifier Gδ defined in (2.1) with 0<α < 1. Taking α ′ = 1
2

in the estimate

of the commutator in Proposition 2.6 we obtain

1

2

d

dt
‖Gδ f‖2

L2
1
+ c f ‖Gδ f‖2

H
1
2

1

≤

C‖ f‖L1
2
‖Gδ f‖2

H
1
4

1

+C‖Gδ f‖L2
1
‖Gδ f‖2

H
α
2

1

+C‖Gδ f‖2

H
α
2

1

.

From an interpolation estimate similar as (3.5), we get the following differential inequation

1

2

d

dt
‖Gδ f‖2

L2
1
≤C′

1‖Gδ f‖2
L2

1
+C′

2‖Gδ f‖
α

1−α +3

L2
1

.

where C′
1,C

′
2 > 0 are independent of δ > 0. This concludes the proof of the Theorem 4.1.

�

Proof of the propagation of analyticity and end of the proof of Theorem 1.2.

We could use the Theorem 2.6 of [7] (propagation of Gevrey regularity in the case of an

even initial datum f0). We present below a direct proof.
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We consider the case 1
2
< s < 1. Let f a nonnegative weak solution of the Cauchy

problem (1.3) which fulfills the assumptions of Theorem 1.2: From Theorem 3.1, we have

f (t, ·) ∈ H2
2 (R) for all t > 0.

Let us consider some arbitrary and fixed 0 < T0 < T1. From Corollary 3.2, there exists a

constants C0 which depends only on β , ‖ f‖L∞(]0,+∞[;L1
2+2s

⋂
L logL(R)), T0, T1 and ‖ f (T0, ·)‖H2

2

such that

(4.8) ∀t ∈ [T0, T1 + 1], ‖ f (t, ·)‖H2
2
≤C0.

We then consider t0 ∈ [T0,T1] and we apply Theorem 4.1 for the initial value f̃0 = f (t0, ·)
and for t ∈ [0,1]. There exist 0 < T∗ ≤ 1 and some constants c0 > 0 and C1 > 0 such that

∀t ∈]t0, t0 +T∗], ‖ec0(t−t0)<Dv> f (t, ·)‖L2
1
≤ 2eC1(t−t0)‖ f (t0, ·)‖L2

1
.

In addition, we remark from the proof of Theorem 4.1 and the inequality (4.7) that the time

T∗ depends only on T0, T1 and ‖ f‖L∞([T0,T1+1];H2
2

⋂
L1

2(R))
, which is controlled by ‖ f0‖L1

2
and

by the constant C0 from (4.8),

Hence T∗ > 0 can be chosen independent of t0 ∈ [T0,T1]. Therefore f (t, ·) ∈ G1(R) for

all t ∈]t0, t0 +T∗], and this will remain true for t ∈]T0,T1]. Since T0 < T1 are arbitrary, the

solution of the Cauchy problem (1.3) satisfies f (t, ·) ∈ G1(R) for any t > 0.

The proof for the case s = 1
2

is similar. This concludes the proof of Theorem 1.2. �

5. ANALYTICITY PROPERTY FOR BOLTZMANN EQUATION

In this section, we will prove the analyticity of the radially symmetric solutions of the

Boltzmann equation (Theorem 1.1)

∂ f

∂ t
= Q( f , f ), v ∈R

3, t > 0; f |t=0 = f0.

Using the Bobylev’s formula, we have for ξ ∈ R
3

F (Q( f ,g)) (ξ ) =

∫

S2
b

(
ξ

|ξ |
.σ

)
{

f̂ (ξ−)ĝ(ξ+)− f̂ (0)ĝ(ξ )
}

dσ

where

ξ+ =
ξ + |ξ |σ

2
, ξ− =

ξ −|ξ |σ

2
.

We define θ by

cosθ = 〈
ξ

|ξ |
, σ〉.

We then have

|ξ+|= |ξ | |cos θ
2
|, |ξ−|= |ξ | |sin θ

2
|.

Let f be a radially symmetric function. That is f (Av) = f (v) for any orthogonal 3× 3

matrix A. Therefore f (v) = f (0,0, |v|). We compute the Fourier transform in R
3 :

F
R3( f )(ξ ) =

∫

R3
e−iξ .v f (v)dv =

∫

R3
e−i|ξ |v3 f (v)dv =

∫

R

e−i|ξ |uF(u)du

where

(5.1) F(u) =

∫

R2
f (v1,v2,u)dv1dv2.

Then

(5.2) f̂ (ξ ) = F̂(|ξ |)
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is also radially symmetric. Let us consider two radially symmetric functions f and g and

let us denote F and G the associated functions defined by (5.1). We compute

F (Q( f ,g)) (ξ ) =

∫

S2
b

(
ξ

|ξ |
.σ

)
{

F̂(|ξ−|)Ĝ(|ξ+|)− F̂(0)Ĝ(|ξ |)
}

dσ

=

∫ π
2

− π
2

β (θ )
{

F̂(|ξ−|)Ĝ(|ξ+|)− F̂(0)Ĝ(|ξ |)
}

dθ

where

β (θ ) = 2π sinθ b(cosθ ).

Let f (t, ·) be a solution of the Boltzmann equation. We put for t ≥ 0

F(t,u) =

∫

R2
f (t,v1,v2,u)dv1dv2.

Therefore f̂ (t, ·) is solution of the equation

∂t f̂ (t,ξ ) = F
(
Q( f (t, ·), f (t, ·))

)
(ξ )

and from (5.2) we prove that F(t, ·) is a solution of the equation

∂t F̂(t, |ξ |) =

∫ π
2

− π
2

β (θ )
{

F̂(t, |ξ sin θ
2
|)F̂(t, |ξ cos θ

2
|)− F̂(t,0)F̂(t, |ξ |)

}
dθ .

We use the following lemma (see [12]):

Lemma 5.1. Let f ∈ L1
k(R

3) radially symmetric, f ≥ 0 and define F by (5.1). Then

F ∈ L1
k(R). Assume that f is also uniformly integrable f ≥ 0. Then F is also uniformly

integrable.

From lemma 5.1, F(t, ·) ∈ L1
2+2s(R), but we do not have F(t, ·) ∈ L logL(R). However

F is uniformly integrable, and it is enough to get the coercivity property of proposition 2.1.

Proof of Theorem 1.1.

Case 1
2
< s < 1 (the proof for the case s = 1

2
is similar). We apply the Theorem 1.2 : for a

fixed t > 0, there exists a constant c0 such that

‖ec0〈·〉F̂(t, | · |)‖L2(R) < ∞

that is F(t, ·) ∈ G1(R). Since

ec0〈ξ 〉F̂(t, |ξ |) = ec0〈ξ 〉 f̂ (t,ξ )

we have

‖e
c0
2 〈·〉 f̂ (t, ·)‖L2(R3) ≤C‖ec0〈·〉 f̂ (t, | · |)‖L2(R) < ∞

and therefore f (t, ·) ∈ G1(R3).
The proof for the case s = 1

2
is similar. This concludes the proof of Theorem 1.1. �
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