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ANALYTICAL REGULARIZING EFFECT FOR THE RADIAL
AND SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION

LEO GLANGETAS AND MOHAMED NAJEME

ABSTRACT. In this paper, we consider a class of spatially homogeneous Boltzmann equa-
tion without angular cutoff. We prove that any radial symmetric weak solution of the
Cauchy problem become analytic for positive time.

1. INTRODUCTION

This paper deals with the analytic regularity of the radially symmetric solutions of the
following Cauchy problem for the spatially homogeneous Boltzmann equation :

d
i L_0(ff), vERL 150 o=,

where f(t,v) : R* x R — R is the probability density of a gas, v € R3 the velocity and
t > 0 the time. The Boltzmann collision operator Q(g, f) is a bi-linear functional given by

0(f.8) = [, [ BO=v.i0) {£()g(r) = F(v)g0) } dodv.

where, for o € §2,

v,_v—i—v* [v—vy] v,_v+v*_|v—v*|
2 2 o 2 2
Theses relations between the post and pre-collisional velocities follow from the conser-

vation of momentum and kinetic energy. The non-negative function B(z, o) is called the
Boltzmann collision kernel, depends only on |z| and on the cosine of the deviation angle 6

o)

— Vg

v
COSG:<|v7v i
*

and is defined by
B(v—v,,cos0) = ¥(|v—v.|)b(cosh), 0<8O< g

We will consider the Maxwellian case ¥ = 1 and we suppose that the cross-section kernel
b has a singularity at 8 = O (the so-called non-cutoff problem) and satisfies :

(1.2)  B(v—vs,co88) =b(cosB) ~ 07> when 60, 0<s<l.

2010 Mathematics Subject Classification. 35A20, 35B65, 35D10, 35H20, 35Q20, 76P05, 82C40.
Key words and phrases. Boltzmann equation, Non-cutoff Kac’s equation, smoothing effect of Cauchy pro-
blem, analytical regularizing, Gevrey regularizing.
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2 LEO GLANGETAS AND MOHAMED NAJEME

1
We put (v) = (1+v*)? for v € R” and we shall use the following standard weighted
Sobolev spaces, for k,¢ € R, as

LR ={f: W' f e/ @],
H®R) = {f € 7" (R"): 0)'f € HHR") |,
LlogL(R") = {f € " (R"); || flltogr = Jun |f(v)|og (1 +|f(v)])dv < oo}
The Gevrey space is given for o > 0 by:

1

GH (R = {1: 0" e ()

where (D) = (1+|D,|?) 2. Remark that G (R™) is the usual analytical functions space.
A solution of Boltzmann equation is known to satisfy the conservation of mass, kinetic
energy and the entropy inequality:

/]R3f(t,v)dv: /]R}fo(v)dv,
L remiPav= [ )P
[ Fogtraan < [ ) togtfo(v)ds
R R

We say that a function f(v) is spatially radially symmetric with respect to v € R3 if for any
rotation A in R3
fv) = f(Av).

A lot of progress has been made on the study of the non cut-off problems. For the
existence of weak solutions, see [17] and the references therein.

In [13], Lions proved that strong compactness is available at the level of renormalized
solutions. Then Desvillettes proved in [6] that there is a regularizing effect in the case for
radially symmetric solutions of the Cauchy problem for a 2D Boltzmann equation with
Maxwellian molecules. And this is definitively different from the cutoff case, for which
there is no smoothing effect. The Sobolev smoothing effect for solutions of the Cauchy
problem was then studied in other works (see [1, 9, 2, 11, 15]).

Some gain of regularity is also obtained for a solution to the Cauchy problem of a
modified 1D model of the Boltzmann equation involving a kinetic transport term (see [8]).
For recent works on the non-homogeneous Boltzmann equation, see [3, 4, 5].

In [16], Ukai showed that the Cauchy problem for the Boltzmann equation has a unique
local solution in Gevrey classes. Then Desvillettes, Furioli and Terraneo proved in [7]
the propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian
molecules. For the non-Maxwellian case, Morimoto and Ukai considered in [14] the
Gevrey regularity of C* solutions in the case with a modified kinetic factor ¥(|v — v,|) =
(I+v—vs |2)% and recently Zhang and Yin in [18] the case with the general kinetic factor
W(|v —v4]) = [v—v4|". In [15], it was proved that the solutions of the linearized Cauchy
problem are in the Gevrey space G3 (R3) forany 0 <s < 1.

Recently, Lekrine and Xu have proved in [12] that, in the case 0 < s < %, any symmetric

L
weak solution of the Boltzmann equation belongs to the Gevrey space G2 (R?) for any
0 < s’ <sandtimet > 0.

In this work, we consider the case % <s < 1 and we get the following result.
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Theorem 1.1. Assume that the cross-section kernel B satisfies (1.2) with % < s < 1andthe
initial datum fy € L£+2s NLlogL(R?), fo > 0 is radially symmetric. If f is a nonnegative
radially symmetric weak solution of the Cauchy problem for the Boltzmann equation (1.1)

such that f € L(]0,e0[; L} ., N L1og L(R?)), then f(t,-) € G'(R?) for any t > 0.

However, for s = %, we have f(t,-) € G'/*(R?) forany 0 < o < 1 and t > 0.
It is well-known that the study of radially symmetric solutions of the Boltzmann equa-
tion can be reduced to the study of the solutions of the following Kac equation (see [6] and

also section 5)

af
(1.3) { 5, = K(f: ),
f|t:0 :f()a

where f = f(¢,v) is the density distribution function with velocity v € R and the Kac’s
bilinear collisional operator K is given by

%
K(£8) = [ [ BO){£0)e() ~ F(n)g(v)} doav..
-2
where
vV =vcos@ —v,sin@, Vv, =vsin@+v,cosH.
The non-negative cross-section 3 satisfies

|cos 0]
for 0 < s < 1 and by > 0. Remark that
/2
(1.5) / B(6)|6|°d6 < .
-/2

There is also conservation of the mass, the kinetic energy and the entropy inequality for
the solutions of the Kac’s equation. We will prove the following result:

Theorem 1.2. Assume that the cross-section kernel B satisfies (1.4) with % <s <1, the
initial datum fy € L} ., (\LlogL(R). For Ty >0, if f € L*([0,o[;L} ., NLlogL(R)) is a
nonnegative weak solution of the Cauchy problem of the Kac’s equation (1.3), then f(t,-) €
G'(R) for anyt > 0.

However, for s = %, we have f(t,-) € G'/*(R) forany 0 < a < 1 and t > 0.

Same as in the paper of [12], the Theorem 1.1 is a direct consequence of the Theo-
rem 1.2. We are reduced to study the Cauchy problem for spatially homogeneous Kac’s
equation.

This paper is organized as follows: In the next section, we prove some estimates which
will be used in section 4. In section 3, we study the regularity in weighted Sobovev spaces
for the weak solutions of the Cauchy problem of the Kac’s equation. The section 4 is
devoted to the proof of the Theorem 1.2 and in section 5 we conclude the proof the Theo-
rem 1.1.

2. ESTIMATES OF THE COMMUTATORS

In this section, we will get the estimates of some terms that we call “commutators”
and we will see in section 4 that they are the main point to get the regularity of weak
solutions for the Cauchy problem of the Kac’s equation. We recall the following coercivity
inequality deduced from the non cut-off of collision kernel.
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Proposition 2.1. (see [1]) Assume that the cross-section and satisfies the assumption (1.4).
Let f >0, f #0, f € LI(R)NLlogL(R), then there exists a constant cy > 0, depending
only of, B, f||L11 and || f||LiogL, such that

—(K(f.8): &) = csllgllis — Cllfllligl
Sfor any smooth function g € H*(R).

Remark. From [11, 15],if m,£ € R,0 < s < 1 and f and g are suitable functions, the Kac
collision kernel has the following regularity (¢* = max(0, £))

K8l <Cl Ny, elgess
As in [15], we introduce the following mollifier
ecot{&)*
T 14 8e0 @

where (&) = (1+ & |2)%, EeR,cop>0and0< 5 <1 will be chosen small enough and
o €]0,2][ are fixed. It is easy to check that, for any 0 < § < 1,

Gs(1,6) € L7(]0,T[xR).
We denote by f the Fourier transform of f

8 = (1)) = [ 45y
and by Gg(t,D,) the Fourier multiplier of symbol G (¢, &) (see [10])
Ggg(t,V) = G5(t7DV)g(t7V) - :g;*l (Gﬁ(ta ')gA(ta )) (V)

The proof of Theorem 1.2 will be based on the uniform estimate with respectto 0 < 6 < 1
of ||Gs(t,Dy) f(2,") ||L% where f(z,-) is a weak solution of the Cauchy problem of the Kac’s
equation (1.3).

In the following, C will represent a generic constant independent of § and ¢ € [0,7|
(but it will depend on the kernel 8 and the norms || f(¢, )HL% f(t,-)||L10gz used for the

coercivity).
Lemma 2.2. Let T > 0. We have that for any0 < 6 < 1and <t <T,E € R,

0G5 (t,8)| < c0()*G5(t,8),
|0:G5(t,€)| < acot (£)* 'G5 (1,€),
02G5(1.8)| < C(6)* 2G5 (1,¢)
with C > 0 independent of § andt € [0,T].
Proof. We compute

2.1 Gs(t,8)

1+ isiz:;@a G5(t7§)7

deG5(1,€) = acor E (1 +1E)271G5(1,€)

9,Gs(t,8) = co
1

1+ 6e00t<‘:>a ’
1 — §ecot(&)*

(1+ 5eCO’<5>“)2

+acor (1417 +(a=2) 2 (1+[E)F2) Gs(1.8)

2G5(1.8) = (ocor§ 14167 F) Gs(0,8)

1
14 Secor @’
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and the estimates of the lemma follow easily. ([
Lemma 2.3. There exists C > 0 such that forall 0 < 6 < 1 and £ € R
G5(t,&) — Gs(t,E cos0)| < Csin® §(E)*Gs(1,E cos0)Gs (1, & sinH),
(9:G5)(t,&) — (9:Gs)(t,E cos )| < Csin® $(£)2*~1G(t,& cos0)G(t,E sin 0).

Proof. This lemma 2.3 is proved by Taylor formula, the estimates from lemma 2.2 and the
following inequality :

(2.2) Gs(t,E) <3Gg(t,Ecos0)Gg(1,EsinH).

We now estimate the commutator of the Kac’s operator with the mollifier:
Proposition 2.4. Assume that 0 < o < 2. Let f,g € L} and h € H*/>(R), then we have
[(GsK(f.8):h) 2 — (K(f,G58).h) 2| < CllGs £l 211Gs8 ] yraselll yase-

Proof. By definition, of G5 we have for a regular f,

F(Gsf) (&) =Gs/(&),
and
F(vGsf)(§) =ide (G5(t,6)/(1,6)) -

We recall the Bobylev formula

/\

23)  FK( / B(6) { £ (& sinB)3(E cosB) — F(0)3(£)} d6.
From the Bobylev and Plancherel formulas

(GSK(fa )a ) 7( (faGSg)vh)LZ
7/ /77[3 )Gs(t,€) { (& sin0)g(& cosB) — f(0) }dehdé

- / PO F(E5in6) 7 (Gag) (€ 056) — 7(0) 7 (Gag) (&)} iE a0

= [ [ B(6)7Esin6) (Ga(&) - Gs(Ecos6)) (& cosO)EId0E.
 )-E
By the previous formula, lemma 2.3 and the Cauchy-Schwarz inequality we have

‘(GSK(f,g),h)Lz — (K(f,Gs8),h),»
S/R; /,Z B(6)sin® §G5(&sin0)F(& sin )|

% |G5(& cos8)g(§ cos 0)[(§)*|A(&)|d6dE
<C||Gs fll=1IGsgll ras2 1Al a2
<C|Gsfll2IGsellgarz 1Al a2
where we have used the following continuous embedding
Li(R) c L'(R)
and the assumption (1.5) on the kernel 3. (]
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We again estimate the commutator of the Kac’s operator with the mollifier weighted as
in [12]. We will need to use a property of symmetry for the Kac’s operator.

Proposition 2.5. Assume that 1 < s <1 andlet f,g € L\(R) and h € H? (R). Then we
have

|(vG5)K(f.8).1) 2 = (K(f,(vG5)g) ) 1|
< €(Iflly +ClGsf11z) Gl 1 1,
Remark. For s = %, the previous estimate is not enough accurate. In order to use some
interpolation argument, we will need the following estimate.

Proposition 2.6. Assume thats =% andlet0 < a,a’ <1, f,g € L}(R), and h € HE (R).
Then we have

‘((VG5)K(fag)ah)L2 - (K(fa (VGﬁ)g)ah)[}‘
<Clfly IGasl g Il +ClIGsf31Gasl, 5 il g

We will prove these Propositions by using the Bobylev formula (2.3) and the Plancherel
formula. We can write

((VGS)K(fag)ah) ( (fa (VGS L2 —l/ ‘/7_ /:l(é)dedé

where
A(,0) = 9 { /(£ 5in8)G5(£)8(E cos8)} — F(& sin8); {Gs &} (€ cosB).
We decompose A = A + A, + A3 where
A; =sin6 (85]?)(5 sin@)Gg(E) g(Ecos ),
Ay = J(&sin8) {G5(£) cos 8 — Gs(Ecos8) } (9 )(é cose>
= f(Esin0) {9:G5(E) — (9:G5) (& cosB) } &(
and we put for k=1,2,3

=i [ [ BO)ALE.0)HE)dodc.
VT2

Therefore we have
(24) |((vG)K(f.8),h) ;2 — (K(f,(vGs)g),h),2| < ||+ |b] + |L3].
In the following, we will estimate the three terms I, I, and I3.

Estimate of /;,. We decompose I} = I}, + I, where

[la_l/R / ) sin 6 ( 8§f)(§sm6)G5(§cos6) (€ cos 0)h(E)dOdE,
g

;' Nla

11,3*1/ / ) sin 6 (3 /) (€ sin 8) (G5 (&) — G (€ cos 8)) 2(E cos 0)i(&)dOdE.

Lemma 2.7. Suppose that 5 < s < 1. Then there exists a constant C such that
al < CIfl Gl 1]y
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Proof. We use some symmetry property of the Kac’s equation. We write the first term
I, = %Ila + %Ila and we use the change of variables 6 — —6. We then have

2.5) L :/R /7 B(0)sinOA(E,0)Gs(E cos0)8(E cos 0)(E)dOIE
&2

where |
A(&,0) = 3 (85f(‘g' sin@) — 85fA(f§ sine)) )
We compute

4(5,6):/ﬂ%vsin(ivsine)f(v)dv
and we estimate

A(E,0)] < [€][sin®] ][ £y < (&) sin®]]|fI]-
Finally we obtain
(al < CU 1y Gaglly 1]y
O

Lemma 2.8. Suppose that s = % Then for any 0 < o’ < 1, there exists a constant C such
that

ol <ClSfllr NGsgll o lIAll o -
1+ H?2 H?2

o

Proof. Following the proof of the previous lemma, we consider again the identity (2.5)
where

A(E,0) = / vsin(Evsin6) £(v)dv.
JR
We then estimate
AE.0)] < (€| sin|” If]]1,

Finally we obtain

’oo. /
< (&) Isin0| | flly
o I+a

ol SClSfllr NGsgll o lIAll o -
I+o H?2 H?2

Lemma 2.9. There exists a constant C such that
ol < € (163113 +1Go ) 1G5 Wiy

Proof. We estimate

=i /R / * B(0) sin6 (9:f)(& sin6) (G5 (&) — Gs(§ c0s0)) 4(& cos 0)h(E) dOdE.
&V T2

By using lemma 2.3,
ol < [, ; / B(6) 5in* & 5in0] G (s ) (9 & sin6)
(€)5 Gs (€ cos 0)|8(E cos 0)|(E) T h(E)dOdE.

From

a A
16)2 Godll- < [IGasll g
1
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and the Cauchy-Schwarz inequality, we get

/Rg |, B(8) sin® §[5in6| G (& 5in0)| (2 )& sin6)|(€) (&) dbaE

z 1/2
< (/ /1;3(9) sin & sin 6] G5 (& sin 0)2] (3¢ ) (& sine)]zdedz;>
Re /=3

1/2
(/R/ sm2g|sine|<§>%|h(.»;)|2ded.»;>
3 2

<[1G59z f iz x 11¢) £l 2-
We then observe that from lemma 2.2
1G5 )2 < 19 (Gs )l 2 + (0 Go) Fll 2
<ClIGsfllz 1) fll.2
and we conclude

101 <€ (1G5 i3+ 1Go ) 1G] Wil -

Estimate of I,. We decompose I, = I, + I;, where

IZa_z/ / ésmG)(cosG—1)G5(§)(85§)(50039)ﬁ( )d6dé,

;' NI:a

121,:1/ /ﬂﬁ F(EsinB) (G5(E) — G5 (& cos8)) (9 §)( cos )A(E) dOdE.

Lemma 2.10. There exists a constant C such that
2| < ClIGsfll 2 1Gs8ll a1+ 12 2-

Proof. For I, we use (2.2) and cos0 — 1 = —2 sm2 8.

he < CHGsflng||G5(vg)||L2HhHL2
<ClGsfl (1Gs8ll2 + 1G58l eyt ) 12l 2-

Lemma 2.11. There exists a constant C such that
) < ClGs i (IGsel g +1Gasl ey ) Wil -

Proof. Using lemma 2.3 we get

by < C)|Gs = 1) G5 (9z8) 211 () 2 Al 2
and
()2 Gs(9e&)llr2 < [1{)2 (G2 +11() 2 (P Gs)él 2
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Estimate of /35 We recall

=i g [, B(O)F(E5in6) {3:Gs(8) — (9:Gi) (£ cos0)} 4(& cos6)(E) dOE.

Lemma 2.12. There exists a constant C such that
B <ClGsf I 1Gagl o Al oy
Proof.
15 < C|[Gsfl=]1 () * DGl | ) * Dl 2.
O

Proof of Proposition 2.5. We use the previous lemmas 2.7 and 2.9-2.12. By summing the
above estimates, we deduce from (2.4)

|((VG5)K(f7g)7h)L27(K(fv(VG5)g)vh)L2‘
< ClfllulGsel s Il 3 +ClGs A, <a7|>+||GagH g lnll ¢

+C1Gsfl31Gasl] g+l ¢ +C1Gs Gl (o eI oy

Taking o = 1, this finishes the proof of Proposition 2.5. O
Proof of Proposition 2.6. We recall s = % We have from (2.4)

|(vG3)K(f.8):h) 2 — (K(f, (vG5)g),h) 12| < [hal + [Tip| + | Boal + |Fop| + |]-

We use the lemma 2.8 and the lemmas 2.9-2.12 taking O < o < 1, and this concludes the
proof. O

We now estimate some scalar product terms which involve the derivative of the mollifier
with respect to time:

Lemma 2.13. There exists C > 0 such that
(2.6) |((0Gs)(t,Dy)f(t,-), Gs(t,Dy) f(t,")) 2| < CHGSfHHa/Zv

and

Q1) (AGs) (DS 1), vGs (D))l < C (1G22 + 16112,y ).
Proof. We have by the Plancherel formula
((4G5)(1.D)f (1), G5(0.D)f(1.)),2 = [ (8.Gy)f Gsfae.

The estimate (2.6) can be deduced directly from lemma 2.2. For (2.7), we compute

(v(9Gs) (1, Dy)f(1,7), vGs(t, D) f(t,")) 2
/{ <1+Secotaé ) (Gsf) + <%> aE(Géf)} 9:(Gsf)dE

and we use the following estimate

9 (e )| <l
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3. SOBOLEV REGULARIZING EFFECT FOR KAC’S EQUATION

In this section, we prove the regularity in weighted Sobolev spaces of the weak solutions
for the Cauchy problem of the Kac’s equation.

Theorem 3.1. Assume that the initial datum fy € L}, N\ Llog L(R), and the cross-section
weak B satisfies (1.4) with 1 <s < 1. If f € L*(]0, +oo]; L}, NLlogL(R)) is a nonnega-
tive weak solution of the Cauchy problem (1.3), then f(t,-) € H+°°( ) for anyt > 0.

Remark. This Theorem has been proved in [12] in the case 0 < 5 < %
We also obtain the following propagation of Sobolev regularity:

Corollary 3.2. Under the assumptions of Theorem 3.1, for any Ty > 0, there exists a
constant C which depends only on B and || f|| ;o teoliL), ) (LlogL(R)) SUCh that
bR

Ve = To, (1) lgp < €TONF (Do) -

Throughout this section, we will distinguish the case % < s < 1 and the limit case s = %
We introduce as in [15] the mollifier of polynomial type

(I
(148]8[*)Mo
for0 < d < 1,1 € [0,Tp] and 2Ny = TyN + 4.

Mﬁ(tvé) =

Lemma 3.3. We have that forany0 < 6 <1and0<t<Tp, & € R,

0:M;(1,8)| < Nlog((§))M;(t,E).

[Ms(t,E) — Ms(t, écos9)|<Cs1n Ms(t,&cosB),
‘(8§M5 (t, 5) (9:M3s)(t,& cos@)] < Csin® $(E)~'Ms(t,& cos 0),
— (92M5)(1,E cos6) ’<Csin2%<.§>*2M5(t,§cose).

Proof. We compute

logMj(t,&) = YL log(1 + £2) — Nolog(1 + 6&2),

N
UMs(1,6) = 5 log(1+ &%) M5 (1, ).
Using the estimates
|5 (M5 (1,8))| < Cul&) M5 (1.8).
|Ms(t,6)| < CM5(t,E cos )
and the Taylor formula, we obtain the proof of the lemma. ([
We estimate the first commutator:
Proposition 3.4. Let f,g € L2 and h € L*(R), then we have that

|(MsK(f,8):h) > — (K(f:M58),h) 2| < Clfll[Msgll2 Il -
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Proof. By the definition of Mg, we have
F(Msf)(§) =Ms (&),
F(vMsf)(&) = i (M5(1,5)f(8)).

We now use the Bobylev formula (2.3) and the Plancherel formula
(MEK(fv )7 ) 7( (f7M5g)7h)L2
-/ / B(6)f (£ sinB) {Ms(&) — Ms(& cos 0)} §(E cos 0)h(E)dOdE.
.

By the previous formula, lemma 3.3, the Cauchy-Schwarz inequality and (1.5) we have

| (MsK(f,8):h) 12 = (K(f,M58). ) |
/Rgfz )sin % |7(Esin@)| x |Ms(E cos0)g(E cos0)h(E)|dOdE

yig

< C||Flle=[1Msgl| 2 1Al 2
S Cl Al IMsgll 2llA]l 2
O

In the same spirit of Proposition 2.5, we will use some symmetry property of the Kac’s
equation to estimate the weighted commutator.

Proposition 3.5. Suppose that % < s < 1. We then have :
[(V*M5)K(f.8),h) 2 — (K(f.(vVM5)g),h) 2| <CIIfls Msgll 4 HhH

Proof. We have
((VZMS) (f7 )7h) 2 (K(f7 (szS)g)vh)Lz

== [ [, o) in 0)(32 sin )£ )G cos o) E o

2//%7r 0)sinO( 85f)(‘g' sin @) 5( 8(&cosB) ) £)dodé

e

=B +Bz+B3-
Then

N\

;. SE

gsme){ag(Ma(t,g) e;cose) ( )e;cose }ﬁ(g)dede;

1Bi| < CIA 1y Mgl 17l 2

For B;, we will use the symmetry and the change of variables 6 — —0 (see proof of lemma
2.7). We write By = Bga + By, where

By, =-2 )sin 9(85f)(§ sinB) (9zMs) (£)8(& cos 0)h(E)dOdE,

Re
sz——z/ /

;. (ST N\:I

0)sin O 8;;]‘)(5 sinB) (9¢8) (£ cosB) cos O Mg (E)h(E)dOdE.
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The symmetry and the estimate of lemma 3.3 implies

Bul<c [ . BO)(sin®0)[2192711-(8) ' M £ c0s0) [8(& c0s0) (€ ld0as

< C|\f||L;||M5g||L2HhHL2-

We note that
1 ~
1K8)2 M50 &ll2 = [[Ms(ve)ll 1 < CliMss]| -
Hl
Using again the symmetry and the previous estimate, we get

e

Bul<c /.50 DO 0(E)1027]1- M58 c05)5(6 cos0) (€ 46
<clfly Il 41,
For B3 we have
% A
/ / 0)f(EsinB)
R /-3

{a‘g ( e;cose)) — 9} (Ma g) (& cose)} h(E)dodE

and we compute
9 (Mg(t,é)g(é COSB)) ~ 3} (Mgg) (Ec0s8) = Dy + Dy + D3+ Dy + Ds
where
(a M (&) — 92M;5(E cos0) ) &(€ cos),
= (M;(&) — Mj(& cos 0)) 924(E cos 6),
= (cos” 8 — 1)M;5( cos 8)934(& cos ),
)

=2(0:Ms(&) — 9z Ms(E cosB)) dgg(& cos ),
D5: 2(cos@ — 1)deMs(&E) dzg(E cosB).

For 1 < i< 5, we nofe J; = / / 6)f)(E sin0)Di(E,0)h(E )dOdE.

We successively estimate :
Al CIfl [ [ BO)sin® $a5(& cos0)la(Ecos0)hg) o
< CI Lo sl
ol + 3] < CII Pl / / B(6)(sin® § + sin® 6)M;(& cos 6)[922(& cos ) h(&)[dd
< Il WMl
gl +105| < Il [ [ BO)sin® $)(Ecos) Gl cos0) s laoas

< CIfller [Msgll 211l 2
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From the previous inequalities we deduce
B3| < CIF [ Msgll i 1].2

and this finishes the proof of the Proposition 3.5. O

For the case s = %, we will need a different estimate of the weighted commutator.

Proposition 3.6. Assume that s = % Then for any 0 < o < 1 we have

G [((VMa)K(f,8),h) 2 — (K(f,(M5)g).h) 12| < ClIflILy IIMagIIH%f 1] g

2

The proof of this Proposition use the same arguments of Proposition 3.5 and lemma 2.8.
Proof of the Theorem 3.1.
- Case : % <s<l1.
We consider f € L% o5 N LlogL a weak solution of the Cauchy problem (1.3) and we
multiply the equation with the test function

o(t,v) = Mg (t,Dy)(1 + v M5 (t,D,) f(t,v).
Therefore we obtain the equality

(32) (atfa (P)Lz = (K(faf)v (rD)L2 .

Using some similar arguments in [15], we can suppose that ¢ € C'([0,Ty]; H>, ,, (R)).
We compute

(M5 f,Msf)2+ (V" Ms0, f,v’Ms f) 2
= (MsK(f,f),Msf)2 + (VMK (f, ), vV’ Ms ).
We will use the following notations
timeg = ((d;Ms)f,Msf)2
time, = (vz(a,Mg Vs V2M5f)
and, concerning the commutators of the Kac operator and the weighted mollifier,
comg = (MsK(f,f),Msf)>» — (K(f,Msf),Msf)2,
comy = (VMsK(f,f),v*Msf) > — (K(f, vV’ Ms f),v*Msf) > -

Therefore the relation (3.2) become

d
: (HMflliz + IIVQMinz) — (K(f,Msf),Msf)2 — (K(f,V*"Ms[), v*"Msf) 2

2dt
= timeg -+ time, + comg -+ comy.

129

From the coercivity inequality of Proposition 2.1, we derive the following differential in-
equation

1d
(33) 53 (1M1 + IPMAIL ) + M

2 < timeg + time + comg + comy + C|| £ 1.1 ||M5f||L%.
Lemma 3.7. Assume that 0 < s < 1 and € > 0. Then there exists a constant C¢ such that :
(M) f M5 ) 2] < €| Msf g +CelMs Iz
| (v (9M5) £,V Ms f) 2| < €| Ms £l + Cel Ms I
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Proof. We compute

timeg = (g log(1+ &> M;sf, Maf)

For € > 0, there exists a constant C¢ such that :

12

(3.4) %mg(uéz) <eg(l1+&H)°+cC

Therefore
timeo| < & ((1+&%)°Msf, M5 f) 2 +Ce (Msf, M5f) .
We estimate the term time; = ( (M5 f ) F (VMg f )) . We compute

8§ (a;Mgf) = 352 (glog(l +(§2)) M5f+28§ (glog(l +§2)) 85 (Mgf)

<C <C

N N
+ 5 log(1+ &%) 0z (Msf) .
Using again the inequality (3.4),

ltimes| < C|(Msf, F(VMsf)) 5| +C‘(3§ (Msf) , F(VMsf)) >

e |(0F (Msf) , 7(PMs1)) |+ Ce| (148270 (Ms]) . Z(PM5))

where

|(Msf, Z(V*Msf)) 2| = HVMSfH < ||M5f||Lz7
(9 (M5), ZMaf) = |(vM7 VZMaf)Lz’ < IMs £z
’(35 (Msf), F(VMsf) ) = |(VMsf ,V*Msf) 2| < M5 fll.3,
(8202 (s7) 7 ZMaf) = M5 £ 3.

This concludes the proof of lemma 3.7.

12

12

12

Plugging the estimates of Propositions 3.4, 3.5 and lemma 3.7 into (3.3), we get

1d
52 (IMs 12 + VM FI2 ) + el Ms £y
2
<& Msf s+ Cell FlI7; +Cl ANl IMs £
H?
From the interpolation estimate

-1
(3.5 IIgIIZ% < Allglizs + AT |1gll7,

we deduce
1d
2dt

(1M 122 + VM5 122 ) + M5 I
;|
< (e CAIS Ny ) IM5F g+ (Ce+ CATT £y ) M5 112,

Choosing € and A small enough, we get

1d
(IM5 712+ M5 132 ) < CIMs £12; < C(IMsf112: + VM5 112 )

(3.6) 2
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From Gronwall’s lemma we have

M5 £1172 + 1°Ms f1I72 < & (IM5(0) foll72 + VM5 (0) fol72)
that is
M5 £1l7> < & [[M5(0) foll 2.

2 2

We write :
(1= 8A8) ™M f Fnr < 111 —88) N o7,

2 2

By Fatou’s lemmas, letting § — 0,
11201 < AN <ol
Fort € [0, Tp] we have proved
(L+[Du2)"f(1,-) € L3(R)

for all o > 0 and m = Nr — 1 > 0. Therefore we have obtained that f(z,-) € H}*(R) and
that concludes the proof of Theorem 3.1 in the case % <s< 1

- Cases = % The proof is similar to the case % < s < 1. We choose o = % in Proposition

3.6 and we plug the estimate of Proposition 3.1 in the differential inequation (3.3). We get
the same estimate (3.6) and from Gronwall’s lemma we conclude the proof of Theorem 3.1.
O
Proof of Corollary 3.2.
We consider the case 4 < s < 1. We first note that, from Theorem 3.1, f(t,-) € H,"(R)
for all # > 0. We introduce the mollifier

ME) =1+ ¢

which corresponds to the differential operator M = 1 — A,.

By a proof similar to that of propositions 3.4 and 3.5, since M satisfies obviously the
estimates of lemma 3.3, we can prove the following estimates of the commutators: For
f,g €L} and h € L*(R), we have

|(MK(F.8),h) 2 — (K(£,Mg). 1) 12| < C £l Mgl 2 1]
[((PMOK(.0).) 2~ (K (PM)). ) o] < C Iy Mgy Iy

where C depends only on § and ||f|‘LN(]0,+oo[;L;+2SﬂLlogL(R))'
Following the proof of Theorem 3.1 and the same notations, we get a differential in-
equation similar to (3.3) (remark that the mollifier M is independent of the time)

1d
2dt
The previous estimates of the commutators imply
1d
3y (MG + 1M ) eI g < €Ay I
2
Using the interpolation estimate (3.5) we deduce the following differential inequation
1d
S (g2 + 1212 ) < (InafI2 + 10261 )
and from Gronwall’s lemma we derive
2x€ ollj2-
M2 < Mol

(1712 + V222 ) + e M1 < como + coms +CIl £l 3125

That concludes the proof of Corollary 3.2 in the case % <s< 1.
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The proof in the case s = % is similar. ([

4. ANALYTICITY PROPERTY FOR KAC’S EQUATION

From the Theorem 3.1, we know that the weak solution of the Cauchy problem of the
Kac’s equation (1.3) has the following regularity: for any o > 0, f € L ([to, To]; H3 (R)).
Therefore f is a solution of the following Cauchy problem :

d
K1),

Fli=o = fo € H3(R).

and we can suppose that the initial datum is fy € H3(R) L} (R).
We have the local analytic regularizing effect of Cauchy problem.

Theorem 4.1. Assume that the cross-section kernel B satisfies (1.4), the initial datum
fo € L,,,NH3(R) and f € L™([0,Ty]; Hy L3 (R)) is a nonnegative weak solution of the
Cauchy problem of the Kac’s equation (1.3) for some Ty > 0.
- Case % <s<1

There exist 0 < T, < Ty and cy > 0 such that

ecoy<Dv>f c L""([O, T*]»L% (R))

Therefore we have f(t,-) € G'(R) forany 0 <t < T..

- Case s = %

Forany 0 < a < 1, there exist 0 < T, < Ty and cy > 0 such that
0D f & 17(0, L3 (R)).
Therefore for any 0 < a < 1 and 0 <t < T, we have f(t,-) € G'/*(R).
Proof of the Theorem 4.1.

We choose the test function
¢(t,-) = (Gs(t,D,)(v)*G5(t,D,)f) (t,-) € L(10, To[; H*(R))

where the mollifier G is given in section 2 by (2.1).
We have

(atfa (p)Lz = (K(faf)a (p)Lz

First, the left-hand side term is
(F Pz = 5 o 1Gaf % ~ (AGa)f G )2 — (WAGi) ). vGis )
The rights-hand side is
(K(f,f = (Gs(K (14+v)Gsf) 2
= (K(/, G&f G5f)L2 +(K(f,vGsf),vGsf)p2

+(GsK(f.f) —K(f,Gsf), Gsf)2
(VGEK(f f) (fv VGSf) ) VGEf)L2

Therefore we can write :

(4.1) 2dt”G5fHL2 (K(f,Gsf), Gs )2 — (K(f,vGsf), vGsf) 2

= (time term) 4 (commutator)
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where
(time term) = ((atGE)('aDV)fv G5(t7DV)f(t7 '))L2
- (v(alGS)('aDV)fa VGS(I7DV)f)L2
and
(commutator) = (GsK(f, f) — K(f,Gsf), Gsf)2
+ (vGsK(f,f) —K(f,vGs[),vGsf)2 -
Furthermore,

IGsfllfy < IGs sz + VG Sl + G2
and by the Proposition 2.1,

—(K(f,G5£),(Gs)) 2 = cfl|Gs flls = ClIf 1 |G £1172
and

— (K(fvGs£):v(Gs))2 = csllvGs i — CIf Nl IvGaflfe-
Then the equality (4.1) became

1d
(4.2) EEHGSJ(HE"’WHGSJ(H%
<C||fllp |\G5f||i2 + (time term) + (commutator).
1

- Case : %<s<1.
We consider the mollifier G§ defined in (2.1) and chosen with o = 1

£c0t(&)
G5(t7§) - 1+66001<5> .
Remark 4.2. This is the optimal choice for a €]0,2[ as it can be seen in the estimates

of section 2 : for example, from lemma 2.11, the term HG5f||H(3Ta7])+ HGngH% can be

controlled by the coercivity only if o < 1.

Using the Propositions 2.4, 2.5 and the lemma 2.13 of section 2, we get :
- Estimate of commutators terms:

4.3) [(GsK(f.f) —K(f,Gsf), Gsf)2| < ClIGsfll2 G5z
and
() |(Go)K(1.f) = K(£.(vGo)f) . vGif)p2] < ClIfllyy +11Gs 1) 161 -

1
- Estimate of the terms involving the derivative with respect to time:

(45) |((atG5)(taDv)f(ta ) ) G5 (taDv)f(tv '))L2| S C ||G5f|‘i]l/2a
and
(4.6) |(v(1Ge) (1. Dy) f(2,), vGa (£, D) f(1,)) 2| < CIGofII7 12
1
Therefore, plugging the estimates (4.3)-(4.6) into (4.2), we obtain
1d

1Gsfl; +erGaflliy < G y +ClIGsflzl|Gar I -

1 1

2dt

From the interpolation inequality (3.5) we have

—1
ClGsf1? | < ChllGef i +CAT T 1Gaf1I72
H

1
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and
C||G5fHL2HG5fH2 < Chal|Gsf1| 211G £l +CATT T ||G5f||Lz-

Choosing A; and 4, such that Cll =cy/4 and Clz||G5fHLz =cyr/4 we get

+3
2dt”G5f”L2 <C1HG6f||L2 +CllGsfll 2 i

for ¢ € [0, Tp), with Cy, C; > 0 are independent of ¢ and & > 0. Then
d
7 1G6f 1z < CllIGsfll 2 + ColIGs I
where y = 51 4+2. We set y(t) = || G5 (¢, -)||L%. Therefore
d
YO =Gy +Cy).
Solving the previous differential inequation, we easily get
1" y(0)
1
C - -1
(1 -2 (er=DCr — 1) y(0)7- l)

y(r) <

)

that is c
1 fol 2

1Gsf (e, )z <

S
=2

,l s
(1 G ( - 1) ||fo||L22>

We now choose 0 < T, < Ty small enough so that for ¢ € [0, 7;]

G o1 1\T
4.7 1——(e2 —1 2> = 2
( ) Cl (@ > ||f0||L% - <2> )

and taking 8 — 0, we have for ¢ €]0, T,],

e <P £t ) 2 < 26 foll 2

N\'—

This concludes the proof of Theorem 4.1 in the case % <s< 1.
-Case: s= %
We consider the mollifier G defined in (2.1) with 0 < & < 1. Taking @’ = % in the estimate

of the commutator in Proposition 2.6 we obtain

5 dt||G6f||L2+Cf||G5f||2 :

2

ClAlly HGafIIZ +C|\G5f|\L2||G6fH2 g +ClIGSfI o
] 1

From an interpolation estimate similar as (3.5), we get the followmg differential inequation

3 G2, < CllGs 1, + GG f

where C},C), > 0 are independent of § > 0. This concludes the proof of the Theorem 4.1.
O
Proof of the propagation of analyticity and end of the proof of Theorem 1.2.
We could use the Theorem 2.6 of [7] (propagation of Gevrey regularity in the case of an
even initial datum fj). We present below a direct proof.
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We consider the case % < s < 1. Let f a nonnegative weak solution of the Cauchy
problem (1.3) which fulfills the assumptions of Theorem 1.2: From Theorem 3.1, we have
f(t,-) € H¥(R) forall t > 0.

Let us consider some arbitrary and fixed 0 < Tp < 7;. From Corollary 3.2, there exists a
constants Cyp which depends only on 3, f|‘LN(]0,+oo[;L§+2SﬂLlogL(R))’ To, Ty and || f(To, ) ||sz
such that

“38) Ve[l Ti+1] [ < Co-

We then consider # € [Ty, T;] and we apply Theorem 4.1 for the initial value fy = f(to, ")
and for z € [0, 1]. There exist 0 < T, < 1 and some constants cp > 0 and C; > 0 such that

Vi Elio,to+ T, 000 (1,5 < 2600 (g, 2.

In addition, we remark from the proof of Theorem 4.1 and the inequality (4.7) that the time
T, depends only on Tj, T} and ||fHL°°([T0,T1+1];H22 NLY(R))> which is controlled by ||f0||L; and
by the constant Cy from (4.8),

Hence T. > 0 can be chosen independent of #y € [Ty, T;]. Therefore f(¢,-) € G' (R) for
all ¢ €]to, 79 + T], and this will remain true for r €]Ty,T;]. Since Ty < T; are arbitrary, the
solution of the Cauchy problem (1.3) satisfies f(¢,-) € G'(R) for any ¢ > 0.

The proof for the case s = % is similar. This concludes the proof of Theorem 1.2. [

5. ANALYTICITY PROPERTY FOR BOLTZMANN EQUATION

In this section, we will prove the analyticity of the radially symmetric solutions of the
Boltzmann equation (Theorem 1.1)

Do), veRL >0 flo=fo
Using the Bobylev’s formula, we have for & € R?
— ‘ i fre—\alE+Y _ F A
F©U) @ = (50 (FE1EN) - F0RE)bao

where e .
+|S|O _ —|$|o
grostblo g sofle
We define 6 by

cos 6 = (

m76>.

EF[=1Ellcos 3], [E7|=&]|sing.
Let f be a radially symmetric function. That is f(Av) = f(v) for any orthogonal 3 x 3
matrix A. Therefore f(v) = £(0,0,|v|). We compute the Fourier transform in R? :

Fr3(f)(E) = /]12{3 eii‘g‘vf(v)dv: /R3 eii“}’:‘”f(v)dv: /Refi‘é‘”F(u)du

‘We then have

where
5.1) Flu) = /sz(v],vz,u)dv]dvz.
Then

(5.2) F&)=F(&))
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is also radially symmetric. Let us consider two radially symmetric functions f and g and
let us denote F' and G the associated functions defined by (5.1). We compute

7.0 @ = [,6(5-0) (F1E DEUE D~ F0)6(ED o

= [ BO) (P& 1GUE™ )~ F0)GE)} o

N|>4

where
B(6) =2msinOb(cosh).

Let f(z,-) be a solution of the Boltzmann equation. We put for ¢ > 0
F(t,u) = /2f(t,v1,vz,u)dv1dvz.
JR

Therefore f(z,-) is solution of the equation

af(1,8) = F(QUf(t,), £(1,))) (§)

and from (5.2) we prove that F(z,-) is a solution of the equation

A (1,1&)) /"B F(t,|Esin§)E (1, |Ecos §[) — £(1,0)F (1|8 ]) } 6.

We use the following lemma (see [12]):

Lemma 5.1. Let f € L\(R?) radially symmetric, f > 0 and define F by (5.1). Then
Fe L,l (R). Assume that f is also uniformly integrable f > 0. Then F is also uniformly
integrable.

From lemma 5.1, F(t,-) € L}, (R), but we do not have F(t,-) € LlogL(R). However
F is uniformly integrable, and it is enough to get the coercivity property of proposition 2.1.
Proof of Theorem 1.1.
Case % < s < 1 (the proof for the case s = % is similar). We apply the Theorem 1.2 : for a
fixed r > 0, there exists a constant ¢ such that

e OB (] )l gy < o
thatis F(t,-) € G'(R). Since
CF(,|E]) = ¢ f(1,8)
we have
e 0 70, |2 gesy < Clle® e, Dl ey < oo

and therefore f(t,-) € G'(R3).
The proof for the case s = % is similar. This concludes the proof of Theorem 1.1. [
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