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Subdiffusive behavior generated by irrational rotations

F. Huveneers*
UcL, FYMA, 2 Chemin du Cyclotron,
B-1348 Louvain-la-Neuve, Belgium.

E-mail : francois.huveneers@uclouvain.be

Abstract

We study asymptotic distributions of the sums y,(z) = ZZ;; Y(z + ka) with respect to the
Lebesgue measure, where « € R — Q and where 1) is the 1-periodic function of bounded variation
such that ¢(x) = 1if x € [0,1/2] and ¢(z) = —1 if z € [1/2,1[. For every o € R — Q, we find
a sequence (n;); C N such that ynj/\/j is asymptotically normally distributed. For n > 1, let
Zn € (Ym)m<n be such that ||zn||p2 = maxm<n ||[Yym||12. If « is of constant type, we show that
zn/||Zn||L2 is also asymptotically normally distributed. We give an heuristic link with the theory

of expanding maps of the interval.

1 Introduction

Some purely deterministic, smooth and finite dimensional dynamical systems may generate diffusion
process. Such a diffusion is due to uncertainty on initial conditions. If a distribution is initially
concentrated in one point, it will remain so under the flow of such a system. But if the initial conditions
are distributed on some larger set of the phase space, it may well be that the distribution evolves
diffusively.

Some cases of deterministic diffusion have been successfully investigated [2]. Let us mention the
theory of expanding maps of the interval [12], and the important result by Bunimovich and Sinai about
the Lorentz gas [4]. In the two previous examples, the underlying dynamical system is hyperbolic ;
and it has been suggested that macroscopic diffusion is generally due to microscopic chaos [9]. But
numerical experiments with systems of zero Lyapunov exponents show that diffusion may happen even
in the absence of hyperbolicity [7].

The rotation of the circle by an irrational angle is a well known example of ergodic non hyperbolic

dynamical system. Burton and Denker [5] (see also [6]) have shown that one may find a function ¢ €
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L2(T,R) such that vy, /||yn||2 is asymptotically normally distributed. By Denjoy-Koksma inequality
(see ) below), this ¥ is not a bounded variation function. Among other results, Liardet and Volny
have shown (Theorems 1 and 2 in [I4]) that, if » > 0, then there exist numbers « € R — Q and a
sequence (dy,), C Ry such that for every ¢ in a dense Gs set of €"(T,R), the distributions of d,y,
form a dense set in the space of all probability measures on R. Their results do not cover the case
where « is of constant type (see (@) below) and ¢ of bounded variation.

Let T = R/Z. If u € L'(T,R), one defines
1
Var(u) = sup{/ w'dr 1 v € CY(T,R), ||v||L= < 1}. (1)
0

One defines also the set BV(T,R) = {u € L(T,R) : Var(u) < oo}.
Let ¢ € BV(T,R) be such that fol wdr = 0. Let « € R — Q. We consider the map

F:TxR—->TxR:(2,9) = (z+a,y+ (). (2)
If n € N, one defines implicitly the function y, € BV(T,R) by the relation
F"(z,y) = (x + novy + yn(x)). (3)

Explicitly, one has y,(z) = ZZ;OI (x4 ka) for n > 1. Although y,, depends on v and «, one will not
generally write it. Let my, be the Lebesgue measure on T. The space (T, my,) is then a probability
space, and (yn)n>0 is a sequence of random variables on this space.

The sequence (Y, )n>0 has been widely studied [I][8][II][I3]. Here are two important informations.
First, the sequence (y,)n>o is bounded in L?(T, R) if and only if there exists u € L?(T,R) such that
Rou —u = 1 (where by definition Rou(z) = u(x + «)) ([I1] p.183). Next, let p/q be an irreducible
fraction such that | — p/q| < 1/¢* (by Dirichlet theorem, there are infinitely many such fractions).
Denjoy-Koksma inequality ([I1] p.73) asserts that

qg—1

19all = 1Y RiatillLe < Var(y). (4)

k=0

Let us now present our results. We will actually only consider the function v, defined by
() =1 if 0<z<1/2, () =—-1 if 1/2<z<1. (5)

It is known that there is no u € L?(T,R) that solves the equation Rou — u = 1, (Lemma [2 Section
2).

First, can we find an increasing sequence (n;)>1 C N such that y,,,/ /7 should be asymptotically
normally distributed (with strictly positive variance) ? Proposition [[] answers this question positively.
This means that, if we looked at the system at the times n; only, we should observe a diffusion process.
Next, how fast has to grow the sequence (n;);>1 ? If v is of constant type (see (d)), we will see that it

may be taken to grow exponentially, but not slower (see Remark after Proposition 2] and Corollary [T).



It seems also natural to consider the sequence (z,)n>0 C BV(T,R), defined as follows :

Zn € (ym)OSmﬁn D znllLe = Ogln?)gin |[Ym |2 (6)

(one take the first element of (ym)o<m<n if there is more than one possibility). In Proposition 2 we
will see that the sequence z,,/||z,||L2 is asymptotically normally distributed.

Let G(c) be the probability measure on R that admits the density f(z) = e=*"/27" /\/2102 (0 > 0).

Proposition 1 Let (yn)n>0 be defined in (3). If = . (see (), and if a« € R — Q, there exists an

increasing sequence (nj);>1 C N such that yn; /\/j 2 G(1) as j — oo.

This result is quite weak, because the sequence (n;);>1 is completely unknown. Nevertheless, we
believe it has some interest. First, the result is valid for any irrational number «. Next, the proof is
not technical but contains the principal ideas we need for proving our second Proposition. Finally, it
allows us to make an heuristic link between our case and the theory of expanding maps of the interval
(see Section [2] after the proof of Proposition [I).

One will then need the theory of continued fractions. Let (a,)n>0 C N be the sequence of partial
quotients of « (see for example [I0] for definition and details). The sequence (pn/gn)n>0 C Q of

convergents of « is then defined as follows : po/qo = ao/1, p1/¢1 = (apa1 + 1)/a1, and, for n > 1,

dn+1 = An+1Qn + dn—1, Pn4+1 = Qn+1Pn +pn—1- (7)

One will usually not write explicitly the dependence of a,, and p, /g, on «. Here is a fundamental

result of the theory of continued fractions : for n > 0, one has

1 1 1
————— < |gna —pn| < < .
dn + dn+1 dn+1 An+4+19n

(8)
Let us introduce a particular class of numbers. One says that a € R — Q is of constant type if

C
EC>0:Vq€ZO,Vp€Z,|qa—p|Zm. 9)

Equivalently, « is of constant type if
Jd>1:Yn>0,a, <d. (10)

This implies that the sequence (gy)n>0 grows only exponentially with n. These numbers form a set of

zero Lebesgue measure.

Proposition 2 Let (z,)n>0 be defined in (6). Let ¢ = b* be defined in (3). Let o be a number of
constant type. One has z,/||zn||L2 e G(1) as n — oo. Moreover, there exist C,e > 0 such that, if

q; <n < gjp1, one has e/7 < ||znllL2 < CV/j.



Remark. Let ¢ = ¢*, and let a be a number of constant type. Let n; be such that 24, = y,,. One

has n; < gj. Let 0 = |lyn,|lL2/v/J. By Proposition B one has € < 0; = |[zq,]|12/vJ < C, and
. D

Yn; INT5 = 24/ 12,12 = G(1).

Corollary 1 Let (yn)n>0 be defined in (3). Let ¢ = 1. be defined in (3). Let o be a number of
constant type. Let (n;);>1 C N and let (0;);>1 C Ry be such that yn,/0j\/j B G(1). Moreover,
suppose that there exist C > e > 0 such that € < o; < C for every j > 1. Then, the sequence (n;);>1

does not grow slower than exponentially with j.

Question. What happens when 1 # 1. ? The choice ¢ = 1, is only needed to prove ||z,||12 > €V/7
when n > ¢;. (Lemma [II] Section ). It follows from the proof of this Lemma that other choices
should be possible.

The organization of the paper is as follows. Proposition [Il is shown in Section 2. In Section 3,
one shows an abstract central limit theorem ; this Section is independent of the others. One proves
Proposition [2 and Corollary [l in Section 4.

The letter C is used to denote a strictly positive constant that may vary from place to place.

2 Proof of Proposition [

Let « € R—Q. Let (pn/qn)n>0 be its convergents, and (an, ), >0 its partial quotients. Let ¢» € BV(T,R)
be such that [ vdz = 0.

Lemma 1 Letn > 0.
1) Of the fractions pn/qn €t pni1/dni1, one at least satisfies | — p/q| < 1/2¢>.
2) If g, is even, then gny1 is odd.
3) If gn and gny2 are even, then |a — ppi1/qni1| < 1/2¢2, 4.
4) From four consecutive convergents, one at least has an odd denominator and satisfies the in-

equality |o — p/q| < 1/2q>.

Proof. For 1), see [10] p.152. Let us show 2) by contradiction. Let us suppose we have found a smallest
j € N such that ¢; and ¢;41 are even. We have j > 1 and therefore ¢;41 = a;4+1¢; +qj—1. Because ¢;_1
is odd and ¢; is even, ¢;41 should also be odd. Let us show 3). By 2), gn+1 is odd, and on the other
hand we have that gn4+2 = @n42¢n+1 + ¢n. The number a,o has to be even, and therefore a, o > 2.
The result follows from (). Finally, 4) is obtained by considering all the possibilities. [

If u € L>(T,R), if k € Z, one writes (k) = fol u(z)e~ 2"k dy. If u € BV(T,R), it follows from ()
that |4(k)| < Var(u)/2n|k| for k # 0. One has

1— eQiTrnka R

Un(k) = WW’?), (n>1,k € Zy). (11)



Let us also introduce the following notation : if x € R, one writes
x|t = inf |z — p|. 12
| |T PEZ. | p| ( )

One checks the two following inequalities : for all z,y € R, one has

4|z < 1 — 2™ < 27z, (13)
|z +ylr < |z|lr + |ylr and |1 —XT@EHY| < |1 — 27| 4 |1 — %Y, (14)

Therefore, for every m € Z,
|1 — 2™ < |m).|1 — ™. (15)

Moreover, if n > 1, |gna — pr| = |gna|T ([1I] p.63).
Lemma 2 Let 1) = 1), given by ([&). There exists no u € L?(T,R) such that Rou — u = 1.

Proof. A solution u should be such that (k) = ¥, (k)/ (€™ — 1) = —2i/mk(e2™ — 1) if k is odd.
By point 2) of Lemmalll for infinitely many odd k, one may write k = g; for some j > 1. But one has
|ka|r < 1/|k| for those k. Therefore 4 (k) should not go to 0 as k — oo. O

Lemma 3 One has y,, — 0 in L*(T,R) as n — co.

Proof. By Denjoy-Koksma inequality @), ||yq.|lL2 < ||ygn|lee < Var(y). Therefore, we only need to
check that, if k € Zy, 9, (k) — 0 as n — co. By (1)),

Var(v) 1

| _ J2imgnka
omlk] [T — eimhal

194, (K)] <

if k # 0. But by (15
|1 — e2imanke | < |k|.|1 — ¥ < 27]k|.|gnalr = 0 as n—oo. O

A direct consequence of this Lemma is that, for every 8 € R, Rgy,, — 0 in L>(T,R) as n — co.

If ©+ € R, one sets T = x — |x]. Following [II] p.64, we give some informations about some
finite sequences (@),. If p/q € Q is irreducible, one has {j.p/q}o<i<q—1 = {j/a}o<j<q_1. We
say that p/q € Q (p/q irreducible) is a rational approzimation of « for the constant 0 < 8 < 1
if the inequality |o — p/q| < B/¢* is satisfied. Let us write {ja}o<j<q—1 = {@j}o<j<q—1, Where
O=ap<a; < - <ag1 <L

If a > p/q, one has ka — k.p/q < kB/q*> < 1/qif 1 <k < q— 1. Therefore, if 0 < j < g — 1, there
exists some [(j) € N such that 0 < o; —I(j)/q < 1/q. But the sequence {a; }o<;j<q—1 is ordered, and

s0 I(j) = j. One may thus write

1 2 -1
0:a0<—<a1<—<a2<~~~<q—<aq,1<1. (16)
q q q



Similarly, if @ < p/q, one has
a0=0<a1<1<a2<2<---<aq_1<q—_1<1. (17)
q q q
In both cases one has
laj —j/al <B/g 1<j<q-1). (18)
The following Lemma gives a slight improvement of Denjoy-Koksma () inequality when v = ¢, (&]).

Lemma 4 Let ¢ = 1, given by [A). Let p/q be a rational approximation of « for the constant § < 1/2,
and suppose that q is odd. Then the function yq takes only the values £1.

Proof. Let ¢ = Zz;é Rip/q¥ = ZZ;B Ry/q¥- One has ¢(x) = ¢ (qz) ; indeed, one has Ry /,¢ = ¢ and
dlio.1/q = (4= 1)/2+ Rg-1)/29)|0,1/qf — (¢ — 1)/2. Let us then write {ja}o<j<q—1 = {@j}o<j<q-1,
where 0 = g < oy <--- < ag—1 < 1. One has y, = Zz;é Ria = ZZ:(R% — Ry /)b + ¢.

By [@8) and if o > p/q, one has, for 0 < k < gq—1,

+2 if z e[l —al—k/q,
(Ray, = Riyg)(z) = -2 if re1/2—ap,1/2—k/q[ (modl),

0 otherwise.

Similarly, if @ < p/q, one has by (IT) that, for 0 < k < ¢ -1,

-2 if xe[l—k/q1— ag],
(Ray = Ry)¥0(z) = ¢ +2 if ze[1/2—k/q,1/2—ap] (modl),

0 otherwise.

One now computes y,. To fix the ideas, let us consider the case o > p/q. If 0 < j < ¢ — 1, one has

"

q
k

—_

Yal et = 2 ®ee =Rl 0 Grnysar + /e enya
[

= ety ~ Nt ks e g ) T X d ki~ X 820

.

where, by ([I8]), 0 < §1(j),62(j) < 1/2¢. O

One checks that, if u: T — R, if n>1,if ¢g =0, if ¢1,...,¢, > 1, then

Cj*l

c1+-+en—1 n
> Rratt =) Rigimic;)a P Riall (19)
k=0 j=0 k=0

Proof of Proposition [1. By point 4) of Lemmalll there exists a subsequence (pr/qx)k>1 C (Pn/qn)n>0
such that |o — pr/dx| < 1/2¢7. Moreover, once G, ..., G, (k > 1) are given, one may take Gp+1 as
large as we please (by still taking a subsequence). So, by Lemma [, Rgyg, takes only the values +1
(B€R). For k>1,let n, =G + -+ g and define f1 = yz, and fr = R, a¥g, (thus fi(z) = +1
and f?(z) =1 for every z € T and every k > 1). By (IJ), one has y,, = 2?21 fi



Let (0k)k>1 C Ry be such that 2521 (%/\/E — 0 as k — oco. One may suppose that, for every

k > 1, and for every v € [—1,1]

1
|/ fnkﬂe”(f”l+”’+f”'k)dx| < 6. (20)
0
Indeed, for some m(k) € N, one may write [0,1] = UT:(f) I;, in such a way that e/t F/my) js

constant on each I; (1 < j < m(k)). But, by Lemma[3] one may suppose that | [ fn,, dz| < 0x/m(k)
(1 <j <m(k)) ; indeed one just needed to take gx+1 large enough.
Let A € R. For k > 2 and for 2 < j < k, one has

2 3
i 2n U 4ot Fy) :eiﬁ(fn1+»»»+fnj,l)(1+ii AL oA

For k > 1 big enough, one has |A\/vk| < 1 and |1 — §| < 1. Therefore, using [2I)) recursively, and
applying (20), one finds that

(21)

1 2 k—1 3
2 (g ot fny) Ak o A Al

e Ve dr — (1 — < E d; +0 .

'/0 U= gm0

So, for each A € R, fol VRV dy < e /2 as k - o0, O

We now give an heuristic link between Proposition [I] and the theory of expanding maps of the
interval [12]. If k > 2 is an integer, one defines the map Ty : T — T,z +— ka (with the notation
T=x—|z]). Forn>1 Ty =Tro- 0Ty = Tkn.

Let 1, be the function given by [@). If k > 2, (¢« 0 T})n>1 is a sequence of random variables on

(T, mr,). One shows that there exists o > 0 such that
1 < D PR D
ﬁZw*oTizﬁZw*om = G(og) as n — oo. (22)
j=1 j=1

Indeed, if k is even, the random variables (¢, o T}),>1 are actually independent and equidistributed
(so o, =1). In general, one may use Theorem 5 of [I2] : one checks that T} is mixing with respect to
the invariant measure my,, and that the equation uo Ty — u = 1, admits no solution u € L2(T,R) (by
Fourier expansion for example), so that o > 0.

Let us now consider the sequence (fi)r>1 constructed in the proof of Proposition [l (we keep the
notations of this part). One has fr = Ry, 0¥z (k > 2). First, one may expect the rotation Ry, o
to play no essential role in the decorrelation properties of the variables fi, (kK > 1). Next, the proof
of Lemma M was entirely based on the fact that yg may be approximated by v, o Ts, . For each
irrational number «, the sequence (gx)r>0 grows at least exponentially with k (a superexponential
growth improves actually the decorrelations).

One comes thus to the conclusion that the sequence y, / Vi = 2?21 fi/ Vk is likely to have a
statistical behavior analogous to (22]). The proof of Proposition [Il was greatly simplified by the fact
that one allowed ¢ to grow arbitrarily fast with k. In the two next Sections, we prove basically that

an exponential growth is enough in some cases.



3 Central Limit Theorem
Let p be a probability measure on T. In this Section, L?(T,R) = LP(T,R,du) (p > 1).
Proposition 3 Let (qx)r>1 C No, and suppose there exists p > 0 such that for every k > 1,

Ght1 > € gy (23)

Let (fjx)jx>1 C BV(T,R) be random wvariables on (T, u) such that fol fikdp =0 (j,k > 1). Let
Sn = fu1+ -+ fan- Suppose that there exists C > 0 such that

1) for every j,k > 1, || fjk|lLe < C and Var(fjr) < Cqx,

2) for some 8 € R, for every ¢ € BV(T,R) such that fol odp =0, for j > 1 and fort > s> 1,

1 8

| / 0fdhl £ CNar() (24)
1 8

| / bLidpdnl < CNax(9)L, (25)

3) if on = ||Sn/V/n||L2, there exists € > 0 such that € < o, < C for each n > 1.
Then, Sy /v/noy, 3 G(1) as n — oo.

Proof. To simplify notations, one will only consider the case where f;; = fii for all j, [,k > 1, and write
fx = fir (k > 1). The hypotheses of the Proposition only involve estimates which are independent of
the index j of fjx (j,k > 1). Therefore, the proof of the general case is a straightforward adaptation
of this one. We begin by a Lemma.

Lemma 5 Under the hypothesis of Proposition [3, there exists C > 0 such that for every m,n > 1,
1325 fille < C(nln(n +m))/2.

k=m

Proof. One has

m—+n

! 1
I3 slt= % [rassanse S ([ nansa oo

m<s,t,u,v<m+n m<s<t<u<v<m-+n

Until the end of this proof, one assumes m < s <t < u < v <m + n. One defines

1
Sstuv = |/ fsftfufvdﬂl and Stu = Zsstuv- (27)
0 S,v

By hypothesis 1), one has always Sgty < C. Let us obtain two others estimates of this quantity. If
f,9 € BV(T,R), one has Var(fg) < ||f||L=Var(g) + ||g||L= Var(f). Therefore, by 1), one has

Var(fsfefu) < C(gs + gt + qu) < 3Cqy.

By (24) and (23]), one first obtains that

1
Soruw = | / (Ffufi)-fudul < C20P < ooy, (28)
0 v



Similarly, by [25)), 24)) and (23)), one then gets

[ (tri [ gean)suiant v [ gesianld [ fusi

< C(ﬂuﬁ + %t’ﬁ) < C(e—QP(u—t)uﬂ + 6—2/)(75—8)13[3). (29)
qu qt

IN

Sstuv

Set k = (B/p)In(n +m). One assumes x > 1. Inequalities (28)) and ([29) imply respectively

IN

Ce P~ if y—u >k, (30)

Sstuv

Setve < C(efp(“ft)qLe*p(t*S)) if u—t>k and t—s>k. (31)

We now estimate Sy, in (26]) for fixed ¢, u. First we consider the case u — t < k. By ([B0) one gets

(setting v — u = k after the second inequality)

Stu = Z Sstuv + Z Sstuv
S, 0:V—u<k S, VIV—USK
< > CH+ D CeW< N C+ Y Ce < Cnr+Cn<Cnr (32)
S, 0:v—u<lk S, VIV—USK k<k,s k>k,s

Next, we consider the case u —t > k. We write the decomposition St, = S¢y(1) 4+ S0 (2) + Stu(3).

Those three terms will be defined one by one. First, in the same way as ([B2]), one gets

1>

Stu(1) Z Sstuv < Z Ce P(=w) < CpeP(ut), (33)

s, v:u—t<v—u s, v:u—t<v—u
Then, if v —u < u —t <t — s, one uses [BI) to get Stuy < Ce P~ and so
Siu(2) 2 3 Satur < Ce?@70 3™ 1 < Onfu — t)e P, (34)
s,viv—u<u—t<t—s k<u—t,s

Finally, let B = {(s,v) : v —u < u—#t,t —s < u — t}. For at most x? elements (s,v) € B, one
has v —u < kK and t — s < k, and so only the estimate Sg:,,, < C. For all the others, one has
Sstur < min{CeP("=1) Ce=r(t=9)} by B0) and BI) (to use [BI) one uses the fact that t —s < u —t).

Therefore,

St (3) = Z Sstur < Ck? 4+ C Z min{e " e P} < Ck% 4+ C < Ck2. (35)
s,veEB J,k>0
By (26l - 27)) and (821- B3] one obtains
m—+n
I Z fillts <C Z nk + CZ (ne—p(“_t) +n(u—t)e P 4 n2).
k=m tauu—t<k t,u

Because k = (8/p) In(n + m), this gives the result. O
Let us now come to the proof of the Proposition. Like in [4], one defines a kind of coarse grained
variables that get more and more decorrelated as n — co. Let 41,72 €]0, 1] be such that 1 > v2 +1/2

(and thus v < 1/2). If n > 1, set ny = |n"] and ng = [n7?]. In the sequel, we suppose that n is



large enough to have ny > 1. One writes S,, = ZP(")( Xk + Yar) where p(n) is the smallest integer
such that p(n).(n1 + n2) > n and where

Xok = fk=1)(ni4na)+1 T+ F=1)(n14n2)+n1 > (36)
Yo = f(k*l)(n1+n2)+’n1+l +oF fk(nlJrng) (37)
(1 <k <p(n)—1; for k = p(n) the definition is the same but one puts 0 instead of f; whenever

j >n). One has p(n)/n'=" — 1 as n — oo.

Let A € R. This number will be treated as a constant in all our estimates. For n > 1, one defines

1 .
L= [ TS, (38)
0
and, for 1 < k < p(n),
1 .
Le(\) = / ¢! Vrom Xnit o Xan) q ) (39)
0

One puts also I,0(A) = 1. By hypothesis 3) and (1), one has

p(n)
A P _
90000 = TtV < 172 3 Yl < OPE2 < 0 n-0o, (10)

Lemma 6 Under the hypothesis of Proposition[d and if 1 <k < p(n), one has

/\2
2no?

L) = (1= oz [ Xl ) + ()

with [rae(N)] < C(nPtie=20m2 4 n=20=1) 1032 ) (where C depends on \).

Proof. Let us only consider the most difficult case k > 2. To simplify formulas, one will assume that

o, =1 for all n > 1. By hypothesis 3), this does not change our estimates. One has

1 2
B . A A 9 |Xnk| Xn1+4+Xp(k-1))
Lix(\) = /0 (147X = 5o X0+ 050 )iV dp- (41)

If g € CY(R,R) NL>®(R,R), and if u € BV(T,R), then Var(gou) < ||¢||L= Var(u). By (23), one has
q1+ -+ gn < Cgy. So, by (Bl and hypothesis 1), one has

Var(ei\/_( n1t o+ Xp (k- 1))) \/—Q(k 2)(n1-4n2)+ns - (42)
Therefore, first, using (36), 24), [@2) and ([23)), one gets
Lo i (Xn1t+ - 4+Xp (k1)) i (X1t +Xpnk—1))
| %Xnke v dpl < \/—Z| ¢! Vi ' fe=1)(n14n2)+5d8|
0

C — n n n .

< = Z W=D mtn)tn (1) 4 ny) + 5)°
n =1 Q(k—l)(nl—i-nz)—i-j
C

< Znpe?m2pf < Cnfem?me, (43)

n
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1+ F+ X (k—1))

i
Then, similarly, using (25)) instead of (24)), and noticing that nor X2, nor e'vn X have in

general a zero integral, one gets
142 _ 2 rl 1
|/ ;_Xikezﬁ(Xn1+'~-+Xn(k‘*1))dM_;_/ X?lkd'u’/ ezﬁ(xnl+"'+xn(k*1))du| < CnB+le—2pn2. (44)
0o 41 n Jo 0

Finally, by Lemma [H and (B8], one has

1 3
|Xnk| .. Xp14+Xp(k— C C C
|/O /2 e \/;( Fe X (k 1))d‘u,| < —n3/2||Xnk||is < —n3/2 ||Xnk||i4 < —n3/2 (nl 1nn)3/2
< Cn 2032y, (45)

Inserting ([@3H4H]) in [@I)), one gets the result. O

To prove Proposition Bl it is enough to show that J,(\) — eN/2

as n — oo. For n large enough,

one has |1 — (\%/2n) fol X2, dz| < 1. Thus, by {@0) and by recursive application of Lemma [6] one has

Aot Aot
10 = (1= oz [ K)o (1= gy [ X2 <

2
2no; o

Cp(n)(nPtle=20m2 4 p=3(=7)13/2 ) 4 Cp~(n=(2+1/2))

Because p(n)/n'~" — 1 as n — oo, the right hand side of this inequality goes to 0 as n — oc.
Therefore, it is enough to show that In[]} n)( — (A\%/2n) fol Xordp) — —A%2/2 as n — co. By

hypothesis 3), one has

p(n) )2 1 )2 p(n) . 1 p(n) .1
1 1-— X2, du) = — X2,d — X2, du)?.
n ];[( 2710'% /0 nk ,LL) ) ~ /0 nkdH + O?’L2 Z(/O nk M)

m 1
1% C
— E (/ 2, dp)? g | Xk |lfe < — ( n)n?n*n < —n! e Inn—0 as n— oo.
n 0 n? n?
k=1
Next, one has
1 p(n) 1p(n) p(n) j-1
/ E Xnk d,u / § X’IQlkdu+ 2 E E / XnJXnde
7=2 k=1

By ([B6) and hypothesis 1), Var( nk) < Cq(k_l)(n1+n2)+m. So, by B6]), 24) and (23], one obtains as
for [@3) that, if 1 <k < j < p(n),

1 ni 1
|/ XnjXnwdp| < Zl/ Xouk f(j=1) (m14na)+ma dp| < Cnlem 2072,
0 =1 70

Therefore

1p(n) 1 p(n)

/ inkd,“*/ (ank)Qdu%O as n — oo.

0 k=1 0 k=1

By B1),
p(n) p(n)

|| Ynk||L2<|| Ynk||Loo—>O as n — 0o.

Therefore p(n) 'X2 d no2 —||S, no? — 0 as n — co. One concludes by hypothesis 3). [J
0 “*nk H n
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4 Proof of Proposition 2 and Corollary [l

Proof of Proposition[d Let o be a number of constant type (see ([@)), and let d be the constant given
by [@0). Let (pn/gn)n>0 be its convergents, and (an)n>0 be its partial quotients. One may decompose
an integer r > 1 according to the Ostrowski system of numeration. One has ¢, < r < g,4+1 for some
n > 0. One writes

7 =bngn + -+ + boqo, (46)

where b, > 0 (0 < k < n) are integers defined recursively : first b, > 1 is the only integer such that
0 <7r—"bngn < @gn ; then, if b1 >0 (0 < k <n—1) is given, by > 0 is the only integer such that
0<7—(bpgn + -+ brqr) < qr- One has by < ag+1, and by [I0), by < d (1 <k <n).

Now let us consider a sequence ($p)p>1 such that ¢, < s, < ¢nt+1. One wants to show that
zs,, /1%s, ||L2 2 G(1) as n — oo. All our estimates will be independent of the choice of the sequence
(8n)n>1. Therefore, this will actually imply that z,/||zn |12 B G(1) as n — oo. Indeed, for n > ¢y,
one finds a sequence (sx)r>1 with ¢r < si < g1 for every k, and such that n = s; for some j > 1 ;
one has j — co as n — oo.

For each n > 1, there exists one and only one 1 < r, <'s, such that y, = z5,. Let (bx(n))1<k<n
be the sequence associated to the canonical decomposition @) of r,, (bx(n) may not be defined for
large k, one set then by(n) = 0). Let us define (fjx)jr>1 C BV(T,R). Let j > 1. If 1 < k < j, one

sets
bi(5)ar —1

fir = R(b()(j)QO"F“"f‘bk—l(j)Qk—l)a Z Riat). (47)
=0

If & > j, one sets fjz = 0. By (I9), one has z;, = y,, = Zlgkgn k-

Therefore, it is enough to show that the sequences (gi)r>1 and (fjx);jx>1 satisfy the hypotheses of
Proposition Bl The estimates on ||z,||r2 will then be also proven. Indeed, we will need to show that
hypothesis 3) is satisfied, and thus that ey/n < ||zs, ||z < Cy/n (where ¢, < s, < gnt1)-

First, (23)) is satisfied. One has g2 > ¢1, and, for n > 2, ¢,—1 > ¢,,/2d by ([I0). Therefore, for n > 2,

dn+1 2 Gn + Gn-1 2 (1 + 1/2d)qn.

Next, hypothesis 1) is satisfied. By 1), (I9), (I0) and Denjoy-Koksma inequality (@), one has for all

Jk>1
qr—1

1 fitllie < be()Il Y Riatllre < d-Var(y).
1=0
And, by {7) and ([IQ), one has, for all j,k > 1

Var(fjx) < Var(¥)bi(j)qr < d.Var(y)gy.

Let us show that hypothesis 2) is satisfied.

12



Lemma 7 If « is of constant type, then Vp € N, 3eg € N : (Ve € N: ¢ > ), ¥n € N, gen > 2.

Proof. Let d be given by ([0). For c large enough and n > 1, one has by @3)), ge,, > 2" > (2d)P™ > ¢P.
O

Like in [3], one defines the sets
Ii={jeNo:1/qs <|1—e*"*}, T, ={j€Ng:1/g, <[1—€*™* <1/go1} (n>2). (48)
One has No = {J,,5, I'n and Ty, NTy, = 0 if m # n.
Lemma 8 There exists C > 0 such that, for every m > 1,

jE€Tn=j>Cqyn and jke |JTn=|k—j|>Cqn (49)
n>m
Proof. If j € Ty, |1 — €*™% < 1/gm—1. By @) and (I3), there exists C > 0 such that 4C/|j| <
4ljalr < 1/gn-1. Let d be given by ([I0). One has ¢,—1 > ¢n/2d, and so |j| > Cgq,. Next, if
Jsk € Upsm Ins one has by (I4) that
2

)
gm—1

|1 - e21'7r(k—j)oz| < |1 762i7rka| + |1 - e2i7rjoz| <
and so one gets the second inequality ([#9]) as the first. O

Lemma 9 There exist C,5 € R such that, for every ¢ € BV(T,R) with fol ¢dx =0, forl > 1 and
fort>s>1,
S8

1 1
| /0 6 fisda] gC.Var(qb)Z—ﬂ, | /0 6 fus frdz] < C.Var(g) (50)

S S

Proof. Both inequalities may be shown in the same way, but the first one is simpler, and we will only
prove the second one. In this proof, we consider as constants, numbers that depend only on « or .

Let I > 1 and ¢t > s > 1. One writes

g=fis and h= fy.

Let ¢ € BV(T,R). One has |¢(k)| < Var(¢)/2x|k| if k € Zo, and $(0) = 0 by hypothesis. Let us first
simplify the problem in two ways.

First, by Lemma [7 there exists ¢ € N such that q., > ¢} for every n € N. Let P : L?(T,R) —
L*(T,R) be the projector defined by Pu(x) = 3, a(k)e* ™. Let Q =1d — P. One has [|Qg|[r> <
C/q: and ||Qh||Lz < C/q: ; indeed, by hypothesis 1), one has for example

jQuf, < V) s Lot L O (51)

472 k 2"
ki\k\zqm qet qzt

But | [, ¢ghdz| < | [} ¢PgPhdz| + [y |¢QgPh|dz + [, |¢gQh|dz. Because [, ¢dz = 0, ||¢||r~ <
Var(¢). By hypothesis 1) and (&1]), one has

1
1
/0 (6gQhIde < [|6]l=|lgll=||QhllL> < C.Var(@)~,

qt
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and, because |[Ph||pz < ||h]|L2 < ||h||Le, one has similarly

1
1
[;|¢QgPhkm:g|wﬂLangnmnPhnyzs<1vam¢y—.

at
Therefore, it will suffice to estimate | fol ¢PgPhdz| instead of | fol ¢pghdz|.

Next, let us prove that, if ¢ > ¢’s for some ¢’ € N, then the first inequality (B0]) implies the second
one (the proof of the first inequality makes obviously no use of this fact). If u,v € BV(T,R), one
has Var(uv) < ||u||L=Var(v) + ||v||L~ Var(u). Therefore, using again the fact that ||¢||L~ < Var(e),
hypothesis 1), and the first inequality (B0, one gets

1 B B 2403
I/wwMMSWMMmeHVM@WWMLécww%%1+%i)
0 qt qs qt qt

By Lemma [7] there exists ¢’ € N such that g.,, > ¢2 for every n € N. Therefore, if ¢ > ¢’s, one may
write t = ¢’s + u with u > 0, and so, using [23)),

(c's +u)P
2pu

B 248 /
qst n qst < 2qers('s 4+ u)? (14 u/cs)? <CsP

< QPP
< c2pu <

<C
qt qt de’s+u (&

One now comes to the proof itself (and one supposes t < ¢s). After some algebra one gets

yé oPgPhds| = | 3 a)h(—k)d(k — )

Jok:5151k1<qet

D Y A+ T

\_/
=3
=
=
—
=
=
=
-

< .
- 2m ‘ ‘ |k — 7] 2m
1<4,k<qct ,k#j 1<k<qct
Va,
= ;E‘b) (481 + ). (52)

Let us estimate S; given by (B2)). The set I',, (n > 1) are defined in {@8]). By {@9) and (23)), there
exists a constant w > 0 such that, if j € Tyyqp, then j > g, (m > 1), and therefore

Si= ) > LIS Y S (53)

1<m,n<ct+w jEl'm,j<qct 1<m,n<ct+w
keln k<qct,k#j

Let us fix m,n € {1,...,ct + w} and estimate S(m,n). Let us first consider the case m < n. By 1),
(1), (@3), ([0) and (48], one has

o F (s |1 — 23| Var(y) _ dj.[1 —e*™9| Var(4)) qm
— el < 1Y < <cim 54
|g(.7)| |fl (J)l — |1 62”TJO‘| 27'(] — 1/qm 27'(] — qs ( )

By (1), (), the fact that |1 — e*7®| < 2 for all x € R, and (@), one has

|1 _ €2i7rbt(l)qtka| VaI‘(’L/J)
[1 — e2imha 2k

Therefore, by (53), (54) and (B5), and then ([@J), one has

dmdn 1 dm4n 1 1
I NI D~ sy el DI D DI

J€lm j<qet k€ln,k<qct  j€I'm,j<qct,j#k
keln,k<qct,k#j

< Cqmq"(g ) l),(g 3 %)g%anqct.

u
Qs Mn g2y, Im g

(k)| = [ fu (k)| <

qn
< C—.
<c? (55)
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The case m > n is analogous : one uses the estimates [§(j)| < Cgy,/j and |fz(k:)| < Cgn/qs, to obtain
S(m,n) < (C/q;)1n? gey. Therefore, one has S; < C(et + w)?(In? gor) /.

The sum Ss is estimated in the same way. One gets So < C(ct + w)(Inget)/gs. To get the result,
one uses then the inequality g.; < (2d)°*, where d is given by (), and one takes 3 = 4. [J

Let us show that hypothesis 3) is satisfied.

Lemma 10 Let o be a number of constant type. Letn > 0 and 0 < m < q,. One has ||ym||Lz < Cy/n.

Proof. By LemmalT] there exists ¢ € N such that g., > ¢2 for every n € N. By (), one has

1 2 Gen—1 2immka |2 2

Var<(v) 1 |1 — e=mmie 1 Var<(ym )
2

de < ——— —— + — —_— 56

/0 Ym@ = 7975 ; k2 |1 — e2imka2 + D) k; 2 (56)

Because y,, = Z;":_Ol Rja% (m > 1), one has Var(y,,) < Var(y))m < Var(¢)g,, and thus the second
term in (B6]) is bounded by a constant. The sets Iy, (m > 1) are defined in {@8). By ({@3) and (23),

there exists a constant w > 0 such that, if j € Ty, 44, then j > ¢, (m > 1), and so

Gen—1 1 |1 o eQiﬁmkaF cntw 1 2 cn+4w 2(]2 cn+w 2(]2

m m
> k2 |1 — e2imha]2 <> > k2|1 — e2inka 2 <> > 2 =C 2. Zuzqz <Cn. O
k=1 m=1 kel,, m=1 kel m=1u>1 " 1m

One has S,, = z;, = Yy, for some m < g, 11, and therefore, by Lemma [I0, ||S,||r: < Cvn+1 < Cy/n.
The estimate ||S,||r2 > €4/n is obtain by the next Lemma.

Lemma 11 Under the hypotheses of Proposition [2, there exits € > 0 such that ||zs,||L2 > ev/n for

every n > 1.

Proof. Let § > 0. By (23], there exists [ > 1 such that, for each n > 0, ¢,/gn+1 < §. Therefore,
for each k > 0, ¢5/qnrr < 6%. Now let us construct a sequence (t,)n,>1 C N. Forn > 1, ¢, = 0
except in the following cases. If n = 4kl for some k > 1, then, by point 4) of Lemma [, there exists
m € {n,...,n+ 3} such that ¢, is odd and that g.,|gna|T < 1/2 ; one sets then t,, = ¢, (and one
takes the smallest m if there is more than one possibility).

Let us fix n > 1. Because, qo + - + ¢ < @n+3, one has t; + --- + t, < gn43. Therefore, if
7 =11+ +tn, one has [|zs, 5[z > [|24,5]lL2 > [|yr||L2. But, by (), @) and (), one has

|| ||2 8 1 |1 _ e?iwrka|2 8 1 |1 _ €2i7rrqua|2
er2:_22_272'k22_2 Z 211 _ o2imqua|2
g k>1,kodd k |1 e D‘| g 1<u<n:q, 0odd Tu |1 e 0‘|
n
> C Z |1 — e2imraue |2 > CZ RS
1<u<n:q, 0odd u=1

Let u € {1,...,n} be such that ¢, # 0 (and thus ¢, = ¢,). One writes 7t,a = t2a + 7, where
T=(t1 4+ tu—1)tua+ ty(tyurr1a + - - + tpa). By [[d), one has |7]r < (t1 + -+ + tu—1)|tuc|T +
tu(|turie|T + - - + [tnhalT). Let us now adopt the convention that 1/t, = 0 when ¢, = 0. One has

t tu— U u =
e < g g e T 29y, (57)
qu Qu  tutr th
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So, taking ¢ small enough (and thus ! big enough), |7|T can be made arbitrarily small.
If pe N, if z € R and if p|z|t < 1/2, then |pz|T = p|x|r. Therefore, if d is given by (I0), one has
by (), and because t,|t,a|T < 1/2 by construction, that

Gu 1
2a|lr = alp > —2 >
[teolT = qulqualT > o 234

Therefore, there exists C > 0 such that |rt,a|3 > C, and so ||y,||?, > Cn/l. O
This ends the proof of Proposition 2l [J

Proof of Corollary[1l. For j large enough, one has n; > 1, and one may thus find 7(j) € N such that
4r(j) < nj < qr(j)+1- Now, by Lemma [I0 and the hypothesis on (¢;);>1, one has |[yn; /0;v/7]|L2 <
Cv/(7(j) +1)/j. Because Yn, [05\T 3 G(1), there has to be a number C > 0 such that 7(j) > Cj for
j large enough. The result follows from the fact that n; > ¢.(;) and that (g, )n>0 grows exponentially
with n. O
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