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Abstract

We study asymptotic distributions of the sums yn(x) =
∑n−1

k=0
ψ(x + kα) with respect to the

Lebesgue measure, where α ∈ R−Q and where ψ is the 1-periodic function of bounded variation

such that ψ(x) = 1 if x ∈ [0, 1/2[ and ψ(x) = −1 if x ∈ [1/2, 1[. For every α ∈ R − Q, we find

a sequence (nj)j ⊂ N such that ynj
/
√
j is asymptotically normally distributed. For n ≥ 1, let

zn ∈ (ym)m≤n be such that ||zn||L2 = maxm≤n ||ym||L2 . If α is of constant type, we show that

zn/||zn||L2 is also asymptotically normally distributed. We give an heuristic link with the theory

of expanding maps of the interval.

1 Introduction

Some purely deterministic, smooth and finite dimensional dynamical systems may generate diffusion

process. Such a diffusion is due to uncertainty on initial conditions. If a distribution is initially

concentrated in one point, it will remain so under the flow of such a system. But if the initial conditions

are distributed on some larger set of the phase space, it may well be that the distribution evolves

diffusively.

Some cases of deterministic diffusion have been successfully investigated [2]. Let us mention the

theory of expanding maps of the interval [12], and the important result by Bunimovich and Sinai about

the Lorentz gas [4]. In the two previous examples, the underlying dynamical system is hyperbolic ;

and it has been suggested that macroscopic diffusion is generally due to microscopic chaos [9]. But

numerical experiments with systems of zero Lyapunov exponents show that diffusion may happen even

in the absence of hyperbolicity [7].

The rotation of the circle by an irrational angle is a well known example of ergodic non hyperbolic

dynamical system. Burton and Denker [5] (see also [6]) have shown that one may find a function ψ ∈
∗Partially supported by the Belgian IAP program P6/02 and by the University of Helsinki.
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L2(T,R) such that yn/||yn||L2 is asymptotically normally distributed. By Denjoy-Koksma inequality

(see (4) below), this ψ is not a bounded variation function. Among other results, Liardet and Volný

have shown (Theorems 1 and 2 in [14]) that, if r ≥ 0, then there exist numbers α ∈ R − Q and a

sequence (dn)n ⊂ R+
0 such that for every ψ in a dense Gδ set of Cr(T,R), the distributions of dnyn

form a dense set in the space of all probability measures on R. Their results do not cover the case

where α is of constant type (see (9) below) and ψ of bounded variation.

Let T = R/Z. If u ∈ L1(T,R), one defines

Var(u) = sup{
∫ 1

0

uv′dx : v ∈ C
1(T,R), ||v||L∞ ≤ 1}. (1)

One defines also the set BV(T,R) = {u ∈ L1(T,R) : Var(u) <∞}.
Let ψ ∈ BV(T,R) be such that

∫ 1

0
ψdx = 0. Let α ∈ R−Q. We consider the map

F : T×R → T×R : (x, y) 7→ (x+ α, y + ψ(x)). (2)

If n ∈ N, one defines implicitly the function yn ∈ BV(T,R) by the relation

Fn(x, y) = (x+ nα, y + yn(x)). (3)

Explicitly, one has yn(x) =
∑n−1

k=0 ψ(x+ kα) for n ≥ 1. Although yn depends on ψ and α, one will not

generally write it. Let mL be the Lebesgue measure on T. The space (T,mL) is then a probability

space, and (yn)n≥0 is a sequence of random variables on this space.

The sequence (yn)n≥0 has been widely studied [1][8][11][13]. Here are two important informations.

First, the sequence (yn)n≥0 is bounded in L2(T,R) if and only if there exists u ∈ L2(T,R) such that

Rαu − u = ψ (where by definition Rαu(x) = u(x + α)) ([11] p.183). Next, let p/q be an irreducible

fraction such that |α − p/q| ≤ 1/q2 (by Dirichlet theorem, there are infinitely many such fractions).

Denjoy-Koksma inequality ([11] p.73) asserts that

||yq||L∞ = ||
q−1∑

k=0

Rkαψ||L∞ ≤ Var(ψ). (4)

Let us now present our results. We will actually only consider the function ψ∗ defined by

ψ∗(x) = 1 if 0 ≤ x < 1/2, ψ∗(x) = −1 if 1/2 ≤ x < 1. (5)

It is known that there is no u ∈ L2(T,R) that solves the equation Rαu − u = ψ∗ (Lemma 2, Section

2).

First, can we find an increasing sequence (nj)≥1 ⊂ N such that ynj
/
√
j should be asymptotically

normally distributed (with strictly positive variance) ? Proposition 1 answers this question positively.

This means that, if we looked at the system at the times nj only, we should observe a diffusion process.

Next, how fast has to grow the sequence (nj)j≥1 ? If α is of constant type (see (9)), we will see that it

may be taken to grow exponentially, but not slower (see Remark after Proposition 2, and Corollary 1).
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It seems also natural to consider the sequence (zn)n≥0 ⊂ BV(T,R), defined as follows :

zn ∈ (ym)0≤m≤n : ||zn||L2 = max
0≤m≤n

||ym||L2 (6)

(one take the first element of (ym)0≤m≤n if there is more than one possibility). In Proposition 2, we

will see that the sequence zn/||zn||L2 is asymptotically normally distributed.

Let G(σ) be the probability measure on R that admits the density f(x) = e−x2/2σ2

/
√
2πσ2 (σ > 0).

Proposition 1 Let (yn)n≥0 be defined in (3). If ψ = ψ∗ (see (5)), and if α ∈ R−Q, there exists an

increasing sequence (nj)j≥1 ⊂ N such that ynj
/
√
j

D→ G(1) as j → ∞.

This result is quite weak, because the sequence (nj)j≥1 is completely unknown. Nevertheless, we

believe it has some interest. First, the result is valid for any irrational number α. Next, the proof is

not technical but contains the principal ideas we need for proving our second Proposition. Finally, it

allows us to make an heuristic link between our case and the theory of expanding maps of the interval

(see Section 2, after the proof of Proposition 1).

One will then need the theory of continued fractions. Let (an)n≥0 ⊂ N be the sequence of partial

quotients of α (see for example [10] for definition and details). The sequence (pn/qn)n≥0 ⊂ Q of

convergents of α is then defined as follows : p0/q0 = a0/1, p1/q1 = (a0a1 + 1)/a1, and, for n ≥ 1,

qn+1 = an+1qn + qn−1, pn+1 = an+1pn + pn−1. (7)

One will usually not write explicitly the dependence of an and pn/qn on α. Here is a fundamental

result of the theory of continued fractions : for n ≥ 0, one has

1

qn + qn+1
≤ |qnα− pn| ≤

1

qn+1
≤ 1

an+1qn
. (8)

Let us introduce a particular class of numbers. One says that α ∈ R−Q is of constant type if

∃C > 0 : ∀q ∈ Z0, ∀p ∈ Z, |qα− p| ≥ C

|q| . (9)

Equivalently, α is of constant type if

∃d ≥ 1 : ∀n ≥ 0, an ≤ d. (10)

This implies that the sequence (qn)n≥0 grows only exponentially with n. These numbers form a set of

zero Lebesgue measure.

Proposition 2 Let (zn)n≥0 be defined in (6). Let ψ = ψ∗ be defined in (5). Let α be a number of

constant type. One has zn/||zn||L2
D→ G(1) as n → ∞. Moreover, there exist C, ǫ > 0 such that, if

qj ≤ n < qj+1, one has ǫ
√
j ≤ ||zn||L2 ≤ C

√
j.
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Remark. Let ψ = ψ∗, and let α be a number of constant type. Let nj be such that zqj = ynj
. One

has nj ≤ qj . Let σj = ||ynj
||L2/

√
j. By Proposition 2, one has ǫ ≤ σj = ||zqj ||L2/

√
j ≤ C, and

ynj
/
√
jσj = zqj/||zqj ||L2

D→ G(1).

Corollary 1 Let (yn)n≥0 be defined in (3). Let ψ = ψ∗ be defined in (5). Let α be a number of

constant type. Let (nj)j≥1 ⊂ N and let (σj)j≥1 ⊂ R+
0 be such that ynj

/σj
√
j

D→ G(1). Moreover,

suppose that there exist C > ǫ > 0 such that ǫ ≤ σj ≤ C for every j ≥ 1. Then, the sequence (nj)j≥1

does not grow slower than exponentially with j.

Question. What happens when ψ 6= ψ∗ ? The choice ψ = ψ∗ is only needed to prove ||zn||L2 ≥ ǫ
√
j

when n ≥ qj . (Lemma 11, Section 4). It follows from the proof of this Lemma that other choices

should be possible.

The organization of the paper is as follows. Proposition 1 is shown in Section 2. In Section 3,

one shows an abstract central limit theorem ; this Section is independent of the others. One proves

Proposition 2 and Corollary 1 in Section 4.

The letter C is used to denote a strictly positive constant that may vary from place to place.

2 Proof of Proposition 1

Let α ∈ R−Q. Let (pn/qn)n≥0 be its convergents, and (an)n≥0 its partial quotients. Let ψ ∈ BV(T,R)

be such that
∫ 1

0
ψdx = 0.

Lemma 1 Let n ≥ 0.

1) Of the fractions pn/qn et pn+1/qn+1, one at least satisfies |α− p/q| < 1/2q2.

2) If qn is even, then qn+1 is odd.

3) If qn and qn+2 are even, then |α− pn+1/qn+1| < 1/2q2n+1.

4) From four consecutive convergents, one at least has an odd denominator and satisfies the in-

equality |α− p/q| < 1/2q2.

Proof. For 1), see [10] p.152. Let us show 2) by contradiction. Let us suppose we have found a smallest

j ∈ N such that qj and qj+1 are even. We have j ≥ 1 and therefore qj+1 = aj+1qj+qj−1. Because qj−1

is odd and qj is even, qj+1 should also be odd. Let us show 3). By 2), qn+1 is odd, and on the other

hand we have that qn+2 = an+2qn+1 + qn. The number an+2 has to be even, and therefore an+2 ≥ 2.

The result follows from (8). Finally, 4) is obtained by considering all the possibilities. �

If u ∈ L2(T,R), if k ∈ Z, one writes û(k) =
∫ 1

0 u(x)e
−2iπkxdx. If u ∈ BV(T,R), it follows from (1)

that |û(k)| ≤ Var(u)/2π|k| for k 6= 0. One has

ŷn(k) =
1− e2iπnkα

1− e2iπkα
ψ̂(k), (n ≥ 1, k ∈ Z0). (11)
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Let us also introduce the following notation : if x ∈ R, one writes

|x|T = inf
p∈Z

|x− p|. (12)

One checks the two following inequalities : for all x, y ∈ R, one has

4|x|T ≤ |1− e2iπx| ≤ 2π|x|T, (13)

|x+ y|T ≤ |x|T + |y|T and |1− e2iπ(x+y)| ≤ |1− e2iπx|+ |1− e2iπy|. (14)

Therefore, for every m ∈ Z,

|1− e2iπmx| ≤ |m|.|1− e2iπx|. (15)

Moreover, if n ≥ 1, |qnα− pn| = |qnα|T ([11] p.63).

Lemma 2 Let ψ = ψ∗ given by (5). There exists no u ∈ L2(T,R) such that Rαu− u = ψ∗.

Proof. A solution u should be such that û(k) = ψ̂∗(k)/(e
2iπkα − 1) = −2i/πk(e2iπkα − 1) if k is odd.

By point 2) of Lemma 1, for infinitely many odd k, one may write k = qj for some j ≥ 1. But one has

|kα|T ≤ 1/|k| for those k. Therefore û(k) should not go to 0 as k → ∞. �

Lemma 3 One has yqn ⇀ 0 in L2(T,R) as n→ ∞.

Proof. By Denjoy-Koksma inequality (4), ||yqn ||L2 ≤ ||yqn ||L∞ ≤ Var(ψ). Therefore, we only need to

check that, if k ∈ Z0, ŷqn(k) → 0 as n→ ∞. By (11),

|ŷqn(k)| ≤
Var(ψ)

2π|k|
1

|1− e2iπkα| |1− e2iπqnkα|

if k 6= 0. But by (15)

|1− e2iπqnkα| ≤ |k|.|1− e2iπqnα| ≤ 2π|k|.|qnα|T → 0 as n→ ∞. �

A direct consequence of this Lemma is that, for every β ∈ R, Rβyqn ⇀ 0 in L2(T,R) as n→ ∞.

If x ∈ R, one sets x = x − ⌊x⌋. Following [11] p.64, we give some informations about some

finite sequences (nα)n. If p/q ∈ Q is irreducible, one has {j.p/q}0≤j≤q−1 = {j/q}0≤j≤q−1. We

say that p/q ∈ Q (p/q irreducible) is a rational approximation of α for the constant 0 < β ≤ 1

if the inequality |α − p/q| < β/q2 is satisfied. Let us write {jα}0≤j≤q−1 = {αj}0≤j≤q−1, where

0 = α0 < α1 < · · · < αq−1 < 1.

If α > p/q, one has kα − k.p/q < kβ/q2 < 1/q if 1 ≤ k ≤ q − 1. Therefore, if 0 ≤ j ≤ q − 1, there

exists some l(j) ∈ N such that 0 ≤ αj − l(j)/q ≤ 1/q. But the sequence {αj}0≤j≤q−1 is ordered, and

so l(j) = j. One may thus write

0 = α0 <
1

q
< α1 <

2

q
< α2 < · · · < q − 1

q
< αq−1 < 1. (16)

5



Similarly, if α < p/q, one has

α0 = 0 < α1 <
1

q
< α2 <

2

q
< · · · < αq−1 <

q − 1

q
< 1. (17)

In both cases one has

|αj − j/q| < β/q (1 ≤ j ≤ q − 1). (18)

The following Lemma gives a slight improvement of Denjoy-Koksma (4) inequality when ψ = ψ∗ (5).

Lemma 4 Let ψ = ψ∗ given by (5). Let p/q be a rational approximation of α for the constant β ≤ 1/2,

and suppose that q is odd. Then the function yq takes only the values ±1.

Proof. Let φ =
∑q−1

k=0 Rkp/qψ =
∑q−1

k=0 Rk/qψ. One has φ(x) = ψ(qx) ; indeed, one has R1/qφ = φ and

φ|[0,1/q[ = (q − 1)/2 + (R(q−1)/2ψ)|[0,1/q[ − (q − 1)/2. Let us then write {jα}0≤j≤q−1 = {αj}0≤j≤q−1,

where 0 = α0 < α1 < · · · < αq−1 < 1. One has yq =
∑q−1

k=0 Rkαψ =
∑q−1

k=1(Rαk
− Rk/q)ψ + φ.

By (16) and if α > p/q, one has, for 0 ≤ k ≤ q − 1,

(Rαk
− Rk/q)ψ(x) =





+2 if x ∈ [1− αk, 1− k/q[,

−2 if x ∈ [1/2− αk, 1/2− k/q[ (mod1),

0 otherwise.

Similarly, if α < p/q, one has by (17) that, for 0 ≤ k ≤ q − 1,

(Rαk
− Rk/q)ψ(x) =





−2 if x ∈ [1− k/q, 1− αk[,

+2 if x ∈ [1/2− k/q, 1/2− αk[ (mod1),

0 otherwise.

One now computes yq. To fix the ideas, let us consider the case α > p/q. If 0 ≤ j ≤ q − 1, one has

yq
∣∣
[j/q,(j+1)/q[

=

q−1∑

k=1

(Rαk
− Rk/q)ψ

∣∣
[j/q,(j+1)/q[

+ φ
∣∣
[j/q,(j+1)/q[

= (2χ[ j+1
q

−δ1(j),
j+1
q

[ − 2χ[ j
q
+ 1

2q−δ2(j),
j

q
+ 1

2q [
) + (χ[ j

q
, j
q
+ 1

2q [
− χ[ j

q
+ 1

2q ,
j+1
q

[),

where, by (18), 0 ≤ δ1(j), δ2(j) < 1/2q. �

One checks that, if u : T → R, if n ≥ 1, if c0 = 0, if c1, . . . , cn ≥ 1, then

c1+···+cn−1∑

k=0

Rkαu =

n∑

j=0

R(c0+···+cj−1)α

cj−1∑

k=0

Rkαu. (19)

Proof of Proposition 1. By point 4) of Lemma 1, there exists a subsequence (p̃k/q̃k)k≥1 ⊂ (pn/qn)n≥0

such that |α − p̃k/q̃k| < 1/2q̃2k. Moreover, once q̃1, . . . , q̃k (k ≥ 1) are given, one may take q̃k+1 as

large as we please (by still taking a subsequence). So, by Lemma 4, Rβyq̃k takes only the values ±1

(β ∈ R). For k ≥ 1, let nk = q̃1 + · · · + q̃k and define f1 = yq̃1 and fk = Rnk−1αyq̃k (thus fk(x) = ±1

and f2
k (x) = 1 for every x ∈ T and every k ≥ 1). By (19), one has ynk

=
∑k

j=1 fj.
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Let (δk)k≥1 ⊂ R+
0 be such that

∑k
j=1 δj/

√
k → 0 as k → ∞. One may suppose that, for every

k ≥ 1, and for every γ ∈ [−1, 1]

|
∫ 1

0

fnk+1
eiγ(fn1+···+fnk

)dx| ≤ δk. (20)

Indeed, for some m(k) ∈ N, one may write [0, 1] =
⋃m(k)

j=1 Ij, in such a way that eiγ(fn1+···+fnk
) is

constant on each Ij (1 ≤ j ≤ m(k)). But, by Lemma 3, one may suppose that |
∫
Ij
fnk+1

dx| ≤ δk/m(k)

(1 ≤ j ≤ m(k)) ; indeed one just needed to take q̃k+1 large enough.

Let λ ∈ R. For k ≥ 2 and for 2 ≤ j ≤ k, one has

e
i λ√

k
(fn1+···+fnj

)
= e

i λ√
k
(fn1+···+fnj−1

)
(1 + i

λ√
k
fnj

− λ2

2k
+ O

|λ|3
k3/2

). (21)

For k ≥ 1 big enough, one has |λ/
√
k| ≤ 1 and |1 − λ2

2k | ≤ 1. Therefore, using (21) recursively, and

applying (20), one finds that

|
∫ 1

0

e
i λ√

k
(fn1+···+fnk

)
dx− (1− λ2

2k
)k| ≤ |λ|√

k

k−1∑

j=1

δj + O
|λ|3√
k
.

So, for each λ ∈ R,
∫ 1

0
e
i λ√

k
ynkdx→ e−λ2/2 as k → ∞. �

We now give an heuristic link between Proposition 1 and the theory of expanding maps of the

interval [12]. If k ≥ 2 is an integer, one defines the map Tk : T → T, x 7→ kx (with the notation

x = x− ⌊x⌋). For n ≥ 1, Tn
k = Tk ◦ · · · ◦ Tk = Tkn .

Let ψ∗ be the function given by (5). If k ≥ 2, (ψ∗ ◦ Tn
k )n≥1 is a sequence of random variables on

(T,mL). One shows that there exists σk > 0 such that

1√
n

n∑

j=1

ψ∗ ◦ Tj
k =

1√
n

n∑

j=1

ψ∗ ◦ Tkj

D→ G(σk) as n→ ∞. (22)

Indeed, if k is even, the random variables (ψ∗ ◦ Tn
k )n≥1 are actually independent and equidistributed

(so σk = 1). In general, one may use Theorem 5 of [12] : one checks that Tk is mixing with respect to

the invariant measure mL, and that the equation u ◦Tk −u = ψ∗ admits no solution u ∈ L2(T,R) (by

Fourier expansion for example), so that σk > 0.

Let us now consider the sequence (fk)k≥1 constructed in the proof of Proposition 1 (we keep the

notations of this part). One has fk = Rnk−1αyq̃k (k ≥ 2). First, one may expect the rotation Rnk−1α

to play no essential role in the decorrelation properties of the variables fk (k ≥ 1). Next, the proof

of Lemma 4 was entirely based on the fact that yq̃k may be approximated by ψ∗ ◦ Tq̃k . For each

irrational number α, the sequence (qk)k≥0 grows at least exponentially with k (a superexponential

growth improves actually the decorrelations).

One comes thus to the conclusion that the sequence ynk
/
√
k =

∑k
j=1 fj/

√
k is likely to have a

statistical behavior analogous to (22). The proof of Proposition 1 was greatly simplified by the fact

that one allowed q̃k to grow arbitrarily fast with k. In the two next Sections, we prove basically that

an exponential growth is enough in some cases.
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3 Central Limit Theorem

Let µ be a probability measure on T. In this Section, Lp(T,R) = Lp(T,R, dµ) (p ≥ 1).

Proposition 3 Let (qk)k≥1 ⊂ N0, and suppose there exists ρ > 0 such that for every k ≥ 1,

qk+1 ≥ e2ρqk. (23)

Let (fjk)j,k≥1 ⊂ BV(T,R) be random variables on (T, µ) such that
∫ 1

0
fjkdµ = 0 (j, k ≥ 1). Let

Sn = fn1 + · · ·+ fnn. Suppose that there exists C > 0 such that

1) for every j, k ≥ 1, ||fjk||L∞ ≤ C and Var(fjk) ≤ Cqk,

2) for some β ∈ R, for every φ ∈ BV(T,R) such that
∫ 1

0 φdµ = 0, for j ≥ 1 and for t ≥ s ≥ 1,

|
∫ 1

0

φ.fjsdµ| ≤ C.Var(φ)
sβ

qs
, (24)

|
∫ 1

0

φ.fjsfjtdµ| ≤ C.Var(φ)
sβ

qs
, (25)

3) if σn = ||Sn/
√
n||L2 , there exists ǫ > 0 such that ǫ ≤ σn ≤ C for each n ≥ 1.

Then, Sn/
√
nσn

D→ G(1) as n→ ∞.

Proof. To simplify notations, one will only consider the case where fjk = flk for all j, l, k ≥ 1, and write

fk = f1k (k ≥ 1). The hypotheses of the Proposition only involve estimates which are independent of

the index j of fjk (j, k ≥ 1). Therefore, the proof of the general case is a straightforward adaptation

of this one. We begin by a Lemma.

Lemma 5 Under the hypothesis of Proposition 3, there exists C > 0 such that for every m,n ≥ 1,

||∑m+n
k=m fk||L4 ≤ C(n ln(n+m))1/2.

Proof. One has

||
m+n∑

k=m

fk||4L4 =
∑

m≤s,t,u,v≤m+n

∫ 1

0

fsftfufvdµ ≤ 4!
∑

m≤s≤t≤u≤v≤m+n

|
∫ 1

0

fsftfufvdµ|. (26)

Until the end of this proof, one assumes m ≤ s ≤ t ≤ u ≤ v ≤ m+ n. One defines

Sstuv = |
∫ 1

0

fsftfufvdµ| and Stu =
∑

s,v

Sstuv. (27)

By hypothesis 1), one has always Sstuv ≤ C. Let us obtain two others estimates of this quantity. If

f, g ∈ BV(T,R), one has Var(fg) ≤ ||f ||L∞Var(g) + ||g||L∞Var(f). Therefore, by 1), one has

Var(fsftfu) ≤ C(qs + qt + qu) ≤ 3Cqu.

By (24) and (23), one first obtains that

Sstuv = |
∫ 1

0

(fsftfu).fvdµ| ≤ C
qu
qv
vβ ≤ Ce−2ρ(v−u)vβ . (28)

8



Similarly, by (25), (24) and (23), one then gets

Sstuv ≤ |
∫ 1

0

(
fsft −

∫ 1

0

fsftdµ
)
.fufvdµ|+ |

∫ 1

0

fs.ftdµ|.|
∫ 1

0

fufvdµ|

≤ C(
qt
qu
uβ +

qs
qt
tβ) ≤ C(e−2ρ(u−t)uβ + e−2ρ(t−s)tβ). (29)

Set κ = (β/ρ) ln(n+m). One assumes κ ≥ 1. Inequalities (28) and (29) imply respectively

Sstuv ≤ Ce−ρ(v−u) if v − u ≥ κ, (30)

Sstuv ≤ C(e−ρ(u−t) + e−ρ(t−s)) if u− t ≥ κ and t− s ≥ κ. (31)

We now estimate Stu in (26) for fixed t, u. First we consider the case u − t < κ. By (30) one gets

(setting v − u = k after the second inequality)

Stu =
∑

s,v:v−u<κ

Sstuv +
∑

s,v:v−u≥κ

Sstuv

≤
∑

s,v:v−u<κ

C+
∑

s,v:v−u≥κ

Ce−ρ(v−u) ≤
∑

k<κ,s

C+
∑

k≥κ,s

Ce−ρk ≤ Cnκ+Cn ≤ Cnκ. (32)

Next, we consider the case u − t ≥ κ. We write the decomposition Stu = Stu(1) + Stu(2) + Stu(3).

Those three terms will be defined one by one. First, in the same way as (32), one gets

Stu(1)
∆
=

∑

s,v:u−t≤v−u

Sstuv ≤
∑

s,v:u−t≤v−u

Ce−ρ(v−u) ≤ Cne−ρ(u−t). (33)

Then, if v − u < u− t ≤ t− s, one uses (31) to get Sstuv ≤ Ce−ρ(u−t), and so

Stu(2)
∆
=

∑

s,v:v−u<u−t≤t−s

Sstuv ≤ Ce−ρ(u−t)
∑

k<u−t,s

1 ≤ Cn(u− t)e−ρ(u−t). (34)

Finally, let B = {(s, v) : v − u < u − t, t − s < u − t}. For at most κ2 elements (s, v) ∈ B, one

has v − u < κ and t − s < κ, and so only the estimate Sstuv ≤ C. For all the others, one has

Sstuv ≤ min{Ce−ρ(v−u),Ce−ρ(t−s)} by (30) and (31) (to use (31) one uses the fact that t− s < u− t).

Therefore,

Stu(3) =
∑

s,v∈B

Sstuv ≤ Cκ2 +C
∑

j,k≥0

min{e−ρj , e−ρk} ≤ Cκ2 +C ≤ Cκ2. (35)

By (26 - 27) and (32 - 35) one obtains

||
m+n∑

k=m

fk||4L4 ≤ C
∑

t,u:u−t<κ

nκ+C
∑

t,u

(
ne−ρ(u−t) + n(u− t)e−ρ(u−t) + κ2

)
.

Because κ = (β/ρ) ln(n+m), this gives the result. �

Let us now come to the proof of the Proposition. Like in [4], one defines a kind of coarse grained

variables that get more and more decorrelated as n→ ∞. Let γ1, γ2 ∈]0, 1[ be such that γ1 > γ2 +1/2

(and thus γ2 < 1/2). If n ≥ 1, set n1 = ⌊nγ1⌋ and n2 = ⌊nγ2⌋. In the sequel, we suppose that n is

9



large enough to have n2 ≥ 1. One writes Sn =
∑p(n)

k=1 (Xnk + Ynk) where p(n) is the smallest integer

such that p(n).(n1 + n2) ≥ n and where

Xnk = f(k−1)(n1+n2)+1 + · · ·+ f(k−1)(n1+n2)+n1
, (36)

Ynk = f(k−1)(n1+n2)+n1+1 + · · ·+ fk(n1+n2) (37)

(1 ≤ k ≤ p(n) − 1 ; for k = p(n) the definition is the same but one puts 0 instead of fj whenever

j > n). One has p(n)/n1−γ1 → 1 as n→ ∞.

Let λ ∈ R. This number will be treated as a constant in all our estimates. For n ≥ 1, one defines

Jn(λ) =

∫ 1

0

e
i λ√

nσn
Sndµ, (38)

and, for 1 ≤ k ≤ p(n),

Ink(λ) =

∫ 1

0

e
i λ√

nσn
(Xn1+···+Xnk)dµ. (39)

One puts also In0(λ) = 1. By hypothesis 3) and (37), one has

|Jn(λ) − Inp(n)(λ)| ≤ || λ√
nσn

p(n)∑

k=1

Ynk||L∞ ≤ C
p(n)n2√

n
≤ Cn−(γ1−(γ2+1/2)). (40)

Lemma 6 Under the hypothesis of Proposition 3 and if 1 ≤ k ≤ p(n), one has

Ink(λ) = (1 − λ2

2nσ2
n

∫ 1

0

X2
nkdµ)In(k−1)(λ) + rnk(λ)

with |rnk(λ)| ≤ C(nβ+1e−2ρn2 + n− 3
2 (1−γ1) ln3/2 n) (where C depends on λ).

Proof. Let us only consider the most difficult case k ≥ 2. To simplify formulas, one will assume that

σn = 1 for all n ≥ 1. By hypothesis 3), this does not change our estimates. One has

Ink(λ) =

∫ 1

0

(1 + i
λ√
n
Xnk −

λ2

2n
X2

nk + O
|Xnk|3
n3/2

)e
i λ√

n
(Xn1+···+Xn(k−1))dµ. (41)

If g ∈ C
1(R,R) ∩ L∞(R,R), and if u ∈ BV(T,R), then Var(g ◦ u) ≤ ||g′||L∞Var(u). By (23), one has

q1 + · · ·+ qn ≤ Cqn. So, by (36) and hypothesis 1), one has

Var(e
i λ√

n
(Xn1+···+Xn(k−1))) ≤ C√

n
q(k−2)(n1+n2)+n1

. (42)

Therefore, first, using (36), (24), (42) and (23), one gets

|
∫ 1

0

λ√
n
Xnke

i λ√
n
(Xn1+···+Xn(k−1))dµ| ≤ λ√

n

n1∑

j=1

|
∫ 1

0

e
i λ√

n
(Xn1+···+Xn(k−1)).f(k−1)(n1+n2)+jdµ|

≤ C

n

n1∑

j=1

q(k−2)(n1+n2)+n1

q(k−1)(n1+n2)+j
((k − 1)(n1 + n2) + j)β

≤ C

n
n1e

−2ρn2nβ ≤ Cnβe−2ρn2 . (43)
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Then, similarly, using (25) instead of (24), and noticing that nor X2
nk nor e

i λ√
n
(Xn1+···+Xn(k−1)) have in

general a zero integral, one gets

|
∫ 1

0

λ2

2n
X2

nke
i λ√

n
(Xn1+···+Xn(k−1))dµ−λ2

2n

∫ 1

0

X2
nkdµ.

∫ 1

0

e
i λ√

n
(Xn1+···+Xn(k−1))dµ| ≤ Cnβ+1e−2ρn2 . (44)

Finally, by Lemma 5 and (36), one has

|
∫ 1

0

|Xnk|3
n3/2

e
i λ√

n
(Xn1+···+Xn(k−1))dµ| ≤ C

n3/2
||Xnk||3L3 ≤ C

n3/2
||Xnk||3L4 ≤ C

n3/2
(n1 lnn)

3/2

≤ Cn− 3
2 (1−γ1) ln3/2 n. (45)

Inserting (43-45) in (41), one gets the result. �

To prove Proposition 3, it is enough to show that Jn(λ) → e−λ2/2 as n → ∞. For n large enough,

one has |1− (λ2/2n)
∫ 1

0
X2

nkdx| ≤ 1. Thus, by (40) and by recursive application of Lemma 6, one has

|Jn(λ)− (1− λ2

2nσ2
n

∫ 1

0

X2
np(n)dµ) . . . (1−

λ2

2nσ2
n

∫ 1

0

X2
n1dµ)| ≤

Cp(n)(nβ+1e−2ρn2 + n− 3
2 (1−γ1) ln3/2 n) + Cn−(γ1−(γ2+1/2)).

Because p(n)/n1−γ1 → 1 as n→ ∞, the right hand side of this inequality goes to 0 as n→ ∞.

Therefore, it is enough to show that ln
∏p(n)

k=1 (1 − (λ2/2n)
∫ 1

0 Xnkdµ) → −λ2/2 as n → ∞. By

hypothesis 3), one has

ln

p(n)∏

k=1

(1 − λ2

2nσ2
n

∫ 1

0

X2
nkdµ) = − λ2

2nσ2
n

p(n)∑

k=1

∫ 1

0

X2
nkdµ+ O

1

n2

p(n)∑

k=1

(

∫ 1

0

X2
nkdµ)

2.

First, Lemma 5 is still valid if ||.||L2 is used in place of ||.||L4 (because ||.||L2 ≤ ||.||L4), and so, by (36),

1

n2

p(n)∑

k=1

(

∫ 1

0

X2
nkdµ)

2 =
1

n2

p(n)∑

k=1

||Xnk||4L2 ≤ C

n2
p(n)n2

1 ln
2 n ≤ C

n2
n1−γ1n2γ1 ln2 n→ 0 as n→ ∞.

Next, one has
∫ 1

0

(

p(n)∑

k=1

Xnk)
2dµ =

∫ 1

0

p(n)∑

k=1

X2
nkdµ+ 2

p(n)∑

j=2

j−1∑

k=1

∫ 1

0

XnjXnkdµ.

By (36) and hypothesis 1), Var(Xnk) ≤ Cq(k−1)(n1+n2)+n1
. So, by (36), (24) and (23), one obtains as

for (43) that, if 1 ≤ k < j ≤ p(n),

|
∫ 1

0

XnjXnkdµ| ≤
n1∑

l=1

|
∫ 1

0

Xnkf(j−1)(n1+n2)+n1
dµ| ≤ Cnβe−2ρn2 .

Therefore ∫ 1

0

p(n)∑

k=1

X2
nkdµ−

∫ 1

0

(

p(n)∑

k=1

Xnk)
2dµ→ 0 as n→ ∞.

By (37),

|| 1√
n

p(n)∑

k=1

Ynk||L2 ≤ || 1√
n

p(n)∑

k=1

Ynk||L∞ → 0 as n→ ∞.

Therefore
∑p(n)

k=1

∫ 1

0
X2

nkdµ/nσ
2
n − ||Sn||2L2/nσ2

n → 0 as n→ ∞. One concludes by hypothesis 3). �
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4 Proof of Proposition 2 and Corollary 1

Proof of Proposition 2. Let α be a number of constant type (see (9)), and let d be the constant given

by (10). Let (pn/qn)n≥0 be its convergents, and (an)n≥0 be its partial quotients. One may decompose

an integer r ≥ 1 according to the Ostrowski system of numeration. One has qn ≤ r < qn+1 for some

n ≥ 0. One writes

r = bnqn + · · ·+ b0q0, (46)

where bk ≥ 0 (0 ≤ k ≤ n) are integers defined recursively : first bn ≥ 1 is the only integer such that

0 ≤ r − bnqn < qn ; then, if bk+1 ≥ 0 (0 ≤ k ≤ n − 1) is given, bk ≥ 0 is the only integer such that

0 ≤ r − (bnqn + · · ·+ bkqk) < qk. One has bk ≤ ak+1, and by (10), bk ≤ d (1 ≤ k ≤ n).

Now let us consider a sequence (sn)n≥1 such that qn ≤ sn < qn+1. One wants to show that

zsn/||zsn ||L2
D→ G(1) as n → ∞. All our estimates will be independent of the choice of the sequence

(sn)n≥1. Therefore, this will actually imply that zn/||zn||L2
D→ G(1) as n → ∞. Indeed, for n ≥ q1,

one finds a sequence (sk)k≥1 with qk ≤ sk < qk+1 for every k, and such that n = sj for some j ≥ 1 ;

one has j → ∞ as n→ ∞.

For each n ≥ 1, there exists one and only one 1 ≤ rn ≤ sn such that yrn = zsn . Let (bk(n))1≤k≤n

be the sequence associated to the canonical decomposition (46) of rn (bk(n) may not be defined for

large k, one set then bk(n) = 0). Let us define (fjk)j,k≥1 ⊂ BV(T,R). Let j ≥ 1. If 1 ≤ k ≤ j, one

sets

fjk = R(b0(j)q0+···+bk−1(j)qk−1)α

bk(j)qk−1∑

l=0

Rlαψ. (47)

If k > j, one sets fjk = 0. By (19), one has zsn = yrn =
∑

1≤k≤n fnk.

Therefore, it is enough to show that the sequences (qk)k≥1 and (fjk)jk≥1 satisfy the hypotheses of

Proposition 3. The estimates on ||zn||L2 will then be also proven. Indeed, we will need to show that

hypothesis 3) is satisfied, and thus that ǫ
√
n ≤ ||zsn ||L2 ≤ C

√
n (where qn ≤ sn < qn+1).

First, (23) is satisfied. One has q2 > q1, and, for n ≥ 2, qn−1 ≥ qn/2d by (10). Therefore, for n ≥ 2,

qn+1 ≥ qn + qn−1 ≥ (1 + 1/2d)qn.

Next, hypothesis 1) is satisfied. By (47), (19), (10) and Denjoy-Koksma inequality (4), one has for all

j, k ≥ 1

||fjk||L∞ ≤ bk(j)||
qk−1∑

l=0

Rlαψ||L∞ ≤ d.Var(ψ).

And, by (47) and (10), one has, for all j, k ≥ 1

Var(fjk) ≤ Var(ψ)bk(j)qk ≤ d.Var(ψ)qk.

Let us show that hypothesis 2) is satisfied.
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Lemma 7 If α is of constant type, then ∀p ∈ N, ∃c0 ∈ N : (∀c ∈ N : c ≥ c0), ∀n ∈ N, qcn ≥ qpn.

Proof. Let d be given by (10). For c large enough and n ≥ 1, one has by (23), qcn ≥ e2ρcn ≥ (2d)pn ≥ qpn.

�

Like in [3], one defines the sets

Γ1 = {j ∈ N0 : 1/q1 ≤ |1−e2iπjα|}, Γn = {j ∈ N0 : 1/qn ≤ |1−e2iπjα| < 1/qn−1} (n ≥ 2). (48)

One has N0 =
⋃

n≥1 Γn and Γm ∩ Γn = ∅ if m 6= n.

Lemma 8 There exists C > 0 such that, for every m ≥ 1,

j ∈ Γm ⇒ j ≥ Cqm and j, k ∈
⋃

n≥m

Γn ⇒ |k − j| ≥ Cqm. (49)

Proof. If j ∈ Γm, |1 − e2iπjα| < 1/qm−1. By (9) and (13), there exists C > 0 such that 4C/|j| ≤
4|jα|T ≤ 1/qn−1. Let d be given by (10). One has qm−1 ≥ qm/2d, and so |j| ≥ Cqm. Next, if

j, k ∈ ⋃
n≥m Γn, one has by (14) that

|1− e2iπ(k−j)α| ≤ |1− e2iπkα|+ |1− e2iπjα| ≤ 2

qm−1
,

and so one gets the second inequality (49) as the first. �

Lemma 9 There exist C, β ∈ R such that, for every φ ∈ BV(T,R) with
∫ 1

0 φdx = 0, for l ≥ 1 and

for t ≥ s ≥ 1,

|
∫ 1

0

φflsdx| ≤ C.Var(φ)
sβ

qs
, |

∫ 1

0

φflsfltdx| ≤ C.Var(φ)
sβ

qs
. (50)

Proof. Both inequalities may be shown in the same way, but the first one is simpler, and we will only

prove the second one. In this proof, we consider as constants, numbers that depend only on α or ψ.

Let l ≥ 1 and t ≥ s ≥ 1. One writes

g = fls and h = flt.

Let φ ∈ BV(T,R). One has |φ̂(k)| ≤ Var(φ)/2π|k| if k ∈ Z0, and φ̂(0) = 0 by hypothesis. Let us first

simplify the problem in two ways.

First, by Lemma 7, there exists c ∈ N such that qcn ≥ q4n for every n ∈ N. Let P : L2(T,R) →
L2(T,R) be the projector defined by Pu(x) =

∑
k≤qct

û(k)e2iπkx. Let Q = Id−P. One has ||Qg||L2 ≤
C/qt and ||Qh||L2 ≤ C/qt ; indeed, by hypothesis 1), one has for example

||Qh||2L2 ≤ Var2(h)

4π2

∑

k:|k|≥qct

1

k2
≤ C

q2t
qct

≤ C

q2t
. (51)

But |
∫ 1

0
φghdx| ≤ |

∫ 1

0
φPgPhdx| +

∫ 1

0
|φQgPh|dx +

∫ 1

0
|φgQh|dx. Because

∫ 1

0
φdx = 0, ||φ||L∞ ≤

Var(φ). By hypothesis 1) and (51), one has

∫ 1

0

|φgQh|dx ≤ ||φ||L∞ ||g||L∞ ||Qh||L2 ≤ C.Var(φ)
1

qt
,
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and, because ||Ph||L2 ≤ ||h||L2 ≤ ||h||L∞ , one has similarly
∫ 1

0

|φQgPh|dx ≤ ||φ||L∞ ||Qg||L2 ||Ph||L2 ≤ C.Var(φ)
1

qt
.

Therefore, it will suffice to estimate |
∫ 1

0 φPgPhdx| instead of |
∫ 1

0 φghdx|.
Next, let us prove that, if t ≥ c′s for some c′ ∈ N, then the first inequality (50) implies the second

one (the proof of the first inequality makes obviously no use of this fact). If u, v ∈ BV(T,R), one

has Var(uv) ≤ ||u||L∞Var(v) + ||v||L∞Var(u). Therefore, using again the fact that ||φ||L∞ ≤ Var(φ),

hypothesis 1), and the first inequality (50), one gets

|
∫ 1

0

(φg).hdx| ≤ C(||g||L∞Var(φ) + Var(φ)Var(h))
tβ

qt
≤ C

Var(φ)

qs
(
qst

β

qt
+
q2st

β

qt
).

By Lemma 7, there exists c′ ∈ N such that qc′n ≥ q2n for every n ∈ N. Therefore, if t ≥ c′s, one may

write t = c′s+ u with u ≥ 0, and so, using (23),

qst
β

qt
+
q2s t

β

qt
≤ 2qc′s(c

′s+ u)β

qc′s+u
≤ C

(c′s+ u)β

e2ρu
≤ Cc′βsβ

(1 + u/cs)β

e2ρu
≤ Csβ.

One now comes to the proof itself (and one supposes t < c′s). After some algebra one gets

|
∫ 1

0

φPgPhdx| = |
∑

j,k:|j|,|k|≤qct

ĝ(j)ĥ(−k)φ̂(k − j)|

≤ 4Var(φ)

2π

∑

1≤j,k≤qct,k 6=j

|ĝ(j)|.|ĥ(k)|. 1

|k − j| +
Var(φ)

2π

∑

1≤k≤qct

|ĝ(k)|.|ĥ(k)|
k

∆
=

Var(φ)

2π
(4S1 + S2). (52)

Let us estimate S1 given by (52). The set Γn (n ≥ 1) are defined in (48). By (49) and (23), there

exists a constant w ≥ 0 such that, if j ∈ Γm+w, then j > qm (m ≥ 1), and therefore

S1 =
∑

1≤m,n≤ct+w

∑

j∈Γm,j≤qct
k∈Γn,k≤qct,k 6=j

|ĝ(j)|.|ĥ(k)|. 1

|k − j|
∆
=

∑

1≤m,n≤ct+w

S(m,n). (53)

Let us fix m,n ∈ {1, . . . , ct+ w} and estimate S(m,n). Let us first consider the case m ≤ n. By (47),

(11), (15), (10) and (48), one has

|ĝ(j)| = |f̂ls(j)| ≤
|1− e2iπbs(l)qsjα|

|1− e2iπjα|
Var(ψ)

2πj
≤ dj.|1− e2iπqsα|

1/qm

Var(ψ)

2πj
≤ C

qm
qs
. (54)

By (47), (11), the fact that |1− e2iπx| ≤ 2 for all x ∈ R, and (48), one has

|ĥ(k)| = |f̂lt(k)| ≤
|1− e2iπbt(l)qtkα|

|1− e2iπkα|
Var(ψ)

2πk
≤ C

qn
k
. (55)

Therefore, by (53), (54) and (55), and then (49), one has

S(m,n) ≤ C
qmqn
qs

∑

j∈Γm,j≤qct
k∈Γn,k≤qct,k 6=j

1

k|k − j| ≤ C
qmqn
qs

∑

k∈Γn,k≤qct

1

k

∑

j∈Γm,j≤qct,j 6=k

1

|k − j|

≤ C
qmqn
qs

( C

qn

∑

1≤u≤qct

1

u

)
.
( C

qm

∑

1≤u≤qct

1

u

)
≤ C

qs
ln2 qct.
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The case m ≥ n is analogous : one uses the estimates |ĝ(j)| ≤ Cqm/j and |ĥ(k)| ≤ Cqn/qt, to obtain

S(m,n) ≤ (C/qt) ln
2 qct. Therefore, one has S1 ≤ C(ct+ w)2(ln2 qct)/qs.

The sum S2 is estimated in the same way. One gets S2 ≤ C(ct + w)(ln qct)/qs. To get the result,

one uses then the inequality qct ≤ (2d)ct, where d is given by (10), and one takes β = 4. �

Let us show that hypothesis 3) is satisfied.

Lemma 10 Let α be a number of constant type. Let n ≥ 0 and 0 ≤ m ≤ qn. One has ||ym||L2 ≤ C
√
n.

Proof. By Lemma 7, there exists c ∈ N such that qcn ≥ q2n for every n ∈ N. By (11), one has

∫ 1

0

y2mdx ≤ Var2(ψ)

2π2

qcn−1∑

k=1

1

k2
|1− e2iπmkα|2
|1− e2iπkα|2 +

1

2π2

∑

k≥qcn

Var2(ym)

k2
. (56)

Because ym =
∑m−1

j=0 Rjαψ (m ≥ 1), one has Var(ym) ≤ Var(ψ)m ≤ Var(ψ)qn, and thus the second

term in (56) is bounded by a constant. The sets Γm (m ≥ 1) are defined in (48). By (49) and (23),

there exists a constant w ≥ 0 such that, if j ∈ Γm+w, then j > qm (m ≥ 1), and so

qcn−1∑

k=1

1

k2
|1− e2iπmkα|2
|1− e2iπkα|2 ≤

cn+w∑

m=1

∑

k∈Γm

1

k2
2

|1− e2iπkα|2 ≤
cn+w∑

m=1

∑

k∈Γm

2q2m
k2

≤ C

cn+w∑

m=1

∑

u≥1

2q2m
u2q2m

≤ Cn. �

One has Sn = zsn = ym for some m ≤ qn+1, and therefore, by Lemma 10, ||Sn||L2 ≤ C
√
n+ 1 ≤ C

√
n.

The estimate ||Sn||L2 ≥ ǫ
√
n is obtain by the next Lemma.

Lemma 11 Under the hypotheses of Proposition 2, there exits ǫ > 0 such that ||zsn ||L2 ≥ ǫ
√
n for

every n ≥ 1.

Proof. Let δ > 0. By (23), there exists l ≥ 1 such that, for each n ≥ 0, qn/qn+l ≤ δ. Therefore,

for each k ≥ 0, qn/qn+kl ≤ δk. Now let us construct a sequence (tn)n≥1 ⊂ N. For n ≥ 1, tn = 0

except in the following cases. If n = 4kl for some k ≥ 1, then, by point 4) of Lemma 1, there exists

m ∈ {n, . . . , n + 3} such that qm is odd and that qm|qmα|T < 1/2 ; one sets then tm = qm (and one

takes the smallest m if there is more than one possibility).

Let us fix n ≥ 1. Because, q0 + · · · + qn ≤ qn+3, one has t1 + · · · + tn ≤ qn+3. Therefore, if

r = t1 + · · ·+ tn, one has ||zsn+3||L2 ≥ ||zqn+3 ||L2 ≥ ||yr||L2 . But, by (11), (5) and (8), one has

||yr||2L2 =
8

π2

∑

k≥1,kodd

1

k2
|1− e2iπrkα|2
|1− e2iπkα|2 ≥ 8

π2

∑

1≤u≤n:quodd

1

q2u

|1− e2iπrquα|2
|1− e2iπquα|2

≥ C
∑

1≤u≤n:quodd

|1− e2iπrquα|2 ≥ C

n∑

u=1

|rtuα|2T.

Let u ∈ {1, . . . , n} be such that tu 6= 0 (and thus tu = qu). One writes rtuα = t2uα + τ , where

τ = (t1 + · · · + tu−1)tuα + tu(tu+1α + · · · + tnα). By (14), one has |τ |T ≤ (t1 + · · · + tu−1)|tuα|T +

tu(|tu+1α|T + · · ·+ |tnα|T). Let us now adopt the convention that 1/tn = 0 when tn = 0. One has

|τ |T ≤ t1
qu

+ · · ·+ tu−1

qu
+

qu
tu+1

+ · · ·+ qu
tn

≤ 2
∞∑

k=1

δk. (57)
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So, taking δ small enough (and thus l big enough), |τ |T can be made arbitrarily small.

If p ∈ N, if x ∈ R and if p|x|T ≤ 1/2, then |px|T = p|x|T. Therefore, if d is given by (10), one has

by (8), and because tu|tuα|T < 1/2 by construction, that

|t2uα|T = qu|quα|T ≥ qu
qu + qu+1

≥ 1

3d
.

Therefore, there exists C > 0 such that |rtuα|2T ≥ C, and so ||yr||2L2 ≥ Cn/l. �

This ends the proof of Proposition 2. �

Proof of Corollary 1. For j large enough, one has nj ≥ 1, and one may thus find τ(j) ∈ N such that

qτ(j) ≤ nj < qτ(j)+1. Now, by Lemma 10 and the hypothesis on (σj)j≥1, one has ||ynj
/σj

√
j||L2 ≤

C
√
(τ(j) + 1)/j. Because ynj

/σj
√
j

D→ G(1), there has to be a number C > 0 such that τ(j) ≥ Cj for

j large enough. The result follows from the fact that nj ≥ qτ(j) and that (qn)n≥0 grows exponentially

with n. �
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