Sub-riemannian geometry from intrinsic viewpoint

Abstract : Gromov proposed to extract the (di erential) geometric content of a sub-riemannian space exclusively from its Carnot-Carath eodory distance. One of the most striking features of a regular sub-riemannian space is that it has at any point a metric tangent space with the algebraic structure of a Carnot group, hence a homogeneous Lie group. Siebert characterizes homogeneous Lie groups as locally compact groups admitting a contracting and continuous one-parameter group of automorphisms. Siebert result has not a metric character. In these notes I show that sub-riemannian geometry may be described by about 12 axioms, without using any a priori given di erential structure, but using dilation structures instead. Dilation structures bring forth the other intrinsic ingredient, namely the dilations, thus blending Gromov metric point of view with Siebert algebraic one.
Type de document :
Communication dans un congrès
École de recherche CIMPA : Géométrie sous-riemannienne, Jan 2012, BEYROUTH, Lebanon
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger
Contributeur : Ali Fardoun <>
Soumis le : mardi 19 juin 2012 - 11:01:50
Dernière modification le : mardi 19 juin 2012 - 17:16:02
Document(s) archivé(s) le : jeudi 15 décembre 2016 - 15:50:06


Accord explicite pour ce dépôt


  • HAL Id : hal-00700925, version 2



Marius Buliga. Sub-riemannian geometry from intrinsic viewpoint. École de recherche CIMPA : Géométrie sous-riemannienne, Jan 2012, BEYROUTH, Lebanon. 〈hal-00700925v2〉



Consultations de la notice


Téléchargements de fichiers