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We present the first experimental realization of a widely frequency tunable, non-degenerate three-
wave mixing device for quantum signals at GHz frequency. It is based on a new superconducting
building-block consisting of a ring of four Josephson junctions shunted by a cross of four linear
inductances. The phase configuration of the ring remains unique over a wide range of magnetic
fluxes threading the loop. It is thus possible to vary the inductance of the ring with flux while
retaining a strong, dissipation-free, and noiseless non-linearity. The device has been operated in
amplifier mode and its noise performance has been evaluated by using the noise spectrum emitted
by a voltage biased tunnel junction at finite frequency as a test signal. The unprecedented accuracy
with which the crossover between zero-point-fluctuations and shot noise has been measured provides
an upper-bound for the noise and dissipation intrinsic to the device.

PACS numbers:

Three-wave mixing devices, i.e. non-linear circuits con-
verting power among three microwave signals, are key
elements of analog information processing in the mi-
crowave domain[l]. However, they are based on dissi-
pative components such as semiconductor diodes, or SIS
tunnel junctions biased near the superconducting gap|2].
The loss of signal limits their operation and also intro-
duces noise above the minimum required by quantum
mechanics[3, 4]. A non-degenerate mixing device with
noise close to that minimum level was demonstrated re-
cently [5, 6]. However, the hysteresis preventing flux tun-
ability for this 4-junction circuit severely limited possi-
ble applications to analog quantum signal processing. In
this Letter, we show that by adding four inductances to
the 4-junction loop, we can fully suppress the hysteresis
and reach a 500MHz frequency tunability while operat-
ing close to the quantum limit. Our improvement of the
device tunability by an order of magnitude is obtained
without jeopardizing other advantages of non-degenerate
3-wave mixing.

An ideal non-degenerate three-wave mixing device in
the microwave domain absorbs three signals at frequen-
cies such that wx + wy = wz with complex amplitudes
A Al and A2, respectively, and reemits signals at the
same frequencies with amplitudes A3, A9 and A%
such that |ASe[* + [Ag]” + |Aget® = |Aip|” + |Ai|* +
|AiZ”|2, that is without internal dissipation. The device
can operate in two power amplification modes: i) the pho-
ton gain mode, for which |Ai|* > A% [%, |Ai|? is the
pump power providing the extra photon numbers in the
re-emitted signals at frequencies wx and wy, and ii) the

pure up-conversion mode for which |A§}L|2 > AR AR s
the pump power providing the energy difference between

photons at wz and photons at wx. The Josephson Para-
metric Converter (JPC)|[6], consisting of a ring of four
Josephson junctions, can perform both functions. How-
ever, its operation has little tunability since the flux ®.,+
applied through the ring has to be adjusted in the close
vicinity of the value ®(/2, where &y = h/2e is the flux
quantum. In the present work, we consider a more gen-
eral 3-wave mixing device in which 4 linear inductances
are cross-linking the ring-modulator like the spokes of a
wheel (see Fig.1a). The hamiltonian of the ring is

H = —1E;sin(gest)pxpy ez
+2 (EL/2 4 Ejcos@est) (px2 + ¢v?) (1)
+5 (EL/4+ Ejcoseat) 02 + O(0x,v,2")

where the three spatial mode amplitudes ¢ x = ¢©1—3,
Yy = w2 — s and pz = @1 + p3 — P2 — P4 are gauge-
invariant, orthogonal linear combinations of the super-
conducting phases of the four nodes of the Josephson
junction ring (Fig. 1b).

We will see below how these standing wave modes can
be excited by the propagating mode amplitudes A%, A%
and A7 and emit the amplitudes A3t A9t and A%,
In the hamiltonian (1), E; = ¢¢?/L is the energy asso-
ciated with each of the inductances L, and E; = ¢3/LY
is the Josephson energy of each tunnel junction. We
also define the reduced flux quantum ¢y = %/2e and
the dimensionless flux wert = Peqrt/4dpo threading each
of the nominally identical 4 loops of the device. The
first term of the hamiltonian is a pure 3-wave mixing
term, while the two others are quadratic terms deter-
mining the effective inductance of modes X, Y and Z :
L)_(}YZ = @5232H/8<p§(7y7z. The value @ezr =7/2 max-
imizes the strength of the mixing term. Provided that



Figure 1: a. Device schematic: four linear inductances L
cross-link a ring of four Josephson junctions. Each sub-loop
is biased by a magnetic flux pesto. For L < LY /4, the cur-
rent through the inductances is zero and the external flux
phase biases the junctions to @ez:. b. The device is embed-
ded at the intersection of four transmission lines and couples
to spatial modes X, Y and Z represented as arrows. c. Opti-
cal microscope image of the ring modulator. The meanders in
the center of the ring implement the four linear inductances
from a. The stripes on the meanders are due to the fabri-
cation process based on shadow evaporation. d. Simplified
schematic of the setup used to characterize 3-wave mixing
operation. The idler resonator (X) is excited through a 180°
hybrid coupler while the signal resonator (Y) is single-ended.
The noise emitted by the voltage biased tunnel junction in its
normal state is amplified through the signal port.

Ep/2 > Ej, modes X and Y can be tuned by vary-
ing e;¢+ while retaining their stability: L}ly > 0 on
the whole range of variation. However, there is a range
of fluxes for which Lgl < 0 where the device departs
from (pz) = 0 so that the expansion (1) is inappropri-
ate. If the inductances are lowered even more such that
Er/4 > Ej, then all three modes of the device are stable
for every value of ¢, but at the expense of significant
dilution of the non-linear term. In contrast, as E, is low-
ered below 2E;, dilution of non-linearity is minimized,
but at the expense of the stability of the three modes.
This is why the JPC, for which £ = 0, can operate
only within a small range of values of ¢.,; forbidding
any tunability of the device.

We have tested this new, tunable, mixing element de-
sign, by inserting the ring into a resonant structure con-
sisting of two A/2 transmission line resonators coupled to
the X and Y modes (Fig. 1d) as in Ref. [7]. The Z mode
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Figure 2: a. Dots: Measured resonance frequency wy of the
signal cavity as a function of flux applied to the ring mod-
ulator without pump. Solid line: fit of wy using Eq. (2)
with w) /27 = 8.82 GHz, L = 49 pH, E; = ¢o x 1.9 pA
and including the known stray inductance around the loop
4Ls = 200 pH (see ref.[9]). b. Reflection gain measured on
the signal port as a function of frequency for various values
of the flux indicated by the color lines in a. Pump parame-
ters are optimized for each curve. The numbers on top rep-
resent the 1 dB compression point (maximum input power)
expressed in input photon rate per dynamical bandwidth for
six different working frequencies coded by color.

is non-resonant and excited through resonator X using a
hybrid coupler (Fig. 1d). By varying the externally ap-
plied flux, it is possible to adjust the X and Y resonator
frequencies given by

W2L§(<§,/2

Y ;
T2 L% /2 + Lxy (¢est)

(2)

0
wX,y = wX

where wg(,y is the resonance frequency of the bare \/2

resonator without a ring, L;‘(/i, = 2Zy/(mwky) its
lumped-element equivalent inductance[1] and Z; its char-
acteristic impedance. Aslong as Ey, /44 Ej cos @ert > 0,
the ring inductance Lx y is given by

E —1
Lxy($ext) = 90 <2L + Ej cos (pext) .3

The device presented in Fig. 1c is realized in a sin-
gle e-beam lithography step. The critical current of the
Al/Al,03/Al Josephson junctions was designed to be in
the pA range. The wide geometric linear inductances
cross-linking the ring are approximately given by pgl
where [ = 100 pm is the length of each of the four
meanders. According to theory, they should present
negligible kinetic inductance[8]. The value of the ratio
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Figure 3: Reflection gain of the phase-preserving Josephson
amplifier observed on the signal Y (a) and the idler X (b)
modes. The color bar indicates the pump power referred to
the output of the generator. The pump frequency is wz /27 =
14.071 GHz and the flux is set t0 @eqt/2m &= 0.3125.

Er/E; = 3+2 should favor the stability of the X and Y
modes.

The device was operated in the photon gain mode.
The phase and amplitude of the waves A% and A",
relative to those of A% and A% are measured with a
vector network analyzer, for a whole set of pump tones
A, Turning off the pump tone first, we obtained the
resonance frequency of both resonators as a function of
flux (see Fig. 2a) as well as their half-maximum band-
widths Bx = 39 MHz and By = 29 MHz. Unlike in
the JPC, no hysteresis was found in the dependence of
the resonance frequency on applied flux, confirming the
stability of our device. However, two regimes must be
distinguished in the data: that of the wide arches obey-
ing (2) with a ring inductance given by (3) and that of
the narrow arches for which E,/4 + Ej cos @e.: < 0 and
where the ring inductance depends precisely on the non-
zero value of (¢z) emerging from the broken symmetry
along the Z mode. It is interesting to note that the two
possible opposite values for (¢z) in this regime give ex-
actly the same resonance frequency. Besides, the fit of
Fig. 2a does not take into account the perturbative effect
of the parasitic inductances in series with the junctions.
Using the full hamiltonian and these stray inductances, a
complete agreement with the data can be obtained over
the full flux variation range [9].

The power gain G of the device is defined as the ra-
tio of the reflected power with pump on and off. The
dependence of the gain on the pump power is shown on
Fig. 3. Note in particular that a dynamical bandwidth
B = 3.2 MHz is obtained for a gain of 20 dB. We checked
that the parametric amplifier relation vG x B(G) =

2 (B;(1 + B;l)i1 holds to less than a MHz of deviation
for any pump power yielding a gain greater than 5 dB,
for both signal and idler waves, as theory predicts [5].
As illustrated on Fig. 2b, the amplifier center fre-
quency can be flux-tuned over 400 MHz which represents

a range two orders of magnitude greater than the band-
width at 20dB. Indeed, for each center frequency, we can
find a reproducible set of applied flux, pump power and
pump frequency yielding a gain higher than 20 dB and a
dynamical bandwidth of B = 3 MHz (Fig 2b). No am-
plification was found in the domain of the narrow arches.
While this observation cannot be explained directly by
the expansion (1), it is consistent with the full hamilto-
nian that predicts the non-linear term to be significantly
spoiled by spurious terms when (¢z) # 0. The key point
of our experiment is that we can still benefit, outside the
range of the narrow arches, from a confortable tunable 3-
wave non-linearity. The tunability of this non-degenerate
amplifier can therefore compete with the state of the art
degenerate Josephson amplifiers[10-15] with the added
benefits of pump-signal separation.

We now turn to dynamical range measurements which
further characterize the non-linear operation of our de-
vice. For these measurements, we first calibrated the
attenuation of the line named "Signal In" (Fig. 1d) with
an accuracy of 3 dB[16]. We then measured the so-called
1 dB compression point of the amplifier mode of our de-
vice, which is the input power for which the gain is re-
duced by 1 dB. As presented on Fig. 2b, this maximal
power ranges between —133 dBm and —118 dBm, cor-
responding to 3 and 95 photons per inverse dynamical
bandwidth. The reduction in maximal allowed power oc-
curs at lower frequencies where we have also observed
that the pump power needed for a given gain is ~ 30 dB
lower than at higher frequencies. We believe that it could
be explained by the pump frequency becoming, at lower
signal frequencies, resonant with a mode of the crossed
resonators. The device would hence depart from the stiff
pump condition needed for parametric amplification with
maximal dynamic range.

In a last series of experiments, the noise of our de-
vice was assessed by using the noise emitted by a voltage
biased NIN tunnel junction as input signal. This noise,
which is well-understood and therefore of predictable am-
plitude, plays the role of an in situ calibrated signal.
At small electronic temperatures (kgT, < fwg), the
noise from a tunnel junction presents two regimes as a
function of voltage. For eV < hwg, zero-point fluctua-
tions across the junction dominate with a power spectral
density S,(wg) = h‘"TS, while for eV > hwg, electrons
in the junction produce non-equilibrium shot noise and
Sp(ws) = . The electronic temperature T, in the elec-
trodes of the junction sets the sharpness of the crossover
between these two regimes [17, 18] as S, = S, + 5, with

eV + hw

1
toy_ 1
ST(w) = 4(eV + fw) coth pT, (4)

2

Our experiment was performed using an aluminum
junction kept in its normal state by permanent magnets
close-by. We measured in situ a normal resistance of
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Figure 4: a. Power spectral density as a function of frequency
measured at the output of "Signal Out" for three settings:
pump off and V =0, pump on and V =0 or V = 100 V.
The colored area represents the averaging range used in the
right panel. b. Average power spectral density over a 2 MHz
bandwidth around the center frequency of the amplifier as
a function of bias voltage V. The solid line shows what is
expected using Eq. (5) and fitting an overall gain Gsys =
94.6 dB and an extra noise Ngqq of 2.8 quanta coming both
from the unavoidable quantum noise of the idler port (0.5
quanta) and the unwanted losses between the tunnel junction
and the amplifier (2.3 quanta). The gain Ggys allows us to
express this power spectral density in units of photon number
or quantum.

43.9 Q (measurement lines not shown on Fig. 1b). The
output spectral density was recorded with a spectrum
analyzer and averaged over a 2 MHz bandwidth around
the center frequency of the amplifier (see Fig. 4a). Its
dependence with bias voltage was obtained (Fig. 4b) for
an amplifier gain of 23 dB with the same settings as in
Fig. 3. The measured power spectral density is remark-
ably well described by an expression of the form:

Spm(WS) = GsyS(Sp + Nada hws). (5)

In the shot noise regime, it is possible to calibrate the
system gain Gys = dS,™/d(eV/2) = 94.6 dB from the
NIN tunnel element to the spectrum analyzer including a
possible attenuation from the element to the input port
of the amplifier. Without any additional calibration, we
extracted the apparent system added noise Nyqq = 2.8
at the plateau (Fig. 4b). This number of quanta can be
thought of as the standard half quantum attributable to
the unavoidable quantum noise of the load at the idler
port, and 2.3 quanta left which can be seen as an upper
bound on the extra noise generated inside the device. On
the other hand, an electronic temperature T, equal to the
refrigerator mixing chamber temperature of 35 mK de-
scribes perfectly the crossover. It is worth emphasizing
that the noise power of the total measurement setup is
presented in Fig. 4 without any background subtraction
and is therefore the full absolute system noise. In fact,
there is a finite attenuation between the junction and
the amplifier leading to an underestimation of the gain
counted from the input of amplifier and hence to the ac-

tual noise added by the device. Besides the unwanted
insertion loss inherent to our type of low temperature
measurement setup, the complex impedance of the junc-
tion itself is imperfectly matched[19]. Given the size of
the junction (~ 10 pm?) and previous experiments on
similar junctions, we estimated its capacitance to be in
the 0.7pF — 1 pF range. Using the resistance of the junc-
tion and the characteristic impedance of the amplifier,
we calculated that the loss of signal due to the RC fil-
tering of the junction noise leads to an apparent added
noise between 1.3 and 2.1 photons. Our measurement
thus improves the N,4q found by Bergeal et al. in that
the measurement frequency and bandwidth are substan-
tially higher[5]. It is straightforward to compare the noise
measurement with and without our device. Turning off
the pump tone, the same noise measurement using only a
state-of-the-art HEMT amplifier at 4 K[20] yielded an ap-
parent added noise 20 times larger than with the pump
on. This translates into an acquisition time 400 times
longer, keeping the same bandwidth.

In conclusion, we have shown that it is possible to re-
alize with Josephson tunnel junctions a widely tunable,
dissipation-less, non-degenerate 3-wave mixing element
which processes microwave signals, adding a level of noise
not significantly greater than the level of unavoidable
quantum noise. Such an element could be useful in a
certain number of analog quantum signal processing ap-
plications, like the feedback control of the state of a quan-
tum bit[21].
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