Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm

Jean-Charles Faugère 1 Pierrick Gaudry 2 Louise Huot 1, * Guénaël Renault 1
* Corresponding author
1 PolSys - Polynomial Systems
LIP6 - Laboratoire d'Informatique de Paris 6, Inria Paris-Rocquencourt
2 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : In 2004, an algorithm is introduced to solve the DLP for elliptic curves defined over a non prime finite field $\F_{q^n}$. One of the main steps of this algorithm requires decomposing points of the curve $E(\F_{q^n})$ with respect to a factor base, this problem is denoted PDP. In this paper, we will apply this algorithm to the case of Edwards curves, the well-known family of elliptic curves that allow faster arithmetic as shown by Bernstein and Lange. More precisely, we show how to take advantage of some symmetries of twisted Edwards and twisted Jacobi intersections curves to gain an exponential factor \(2^{\omega (n-1)}\) to solve the corresponding PDP where $\omega$ is the exponent in the complexity of multiplying two dense matrices. Practical experiments supporting the theoretical result are also given. For instance, the complexity of solving the ECDLP for twisted Edwards curves defined over $\F_{q^5}$, with \(q\approx2^{64}\), is supposed to be $\sim$ $2^{160}$ operations in $E(\F_{q^5})$ using generic algorithms compared to \(2^{130}\) operations (multiplication of two $32$-bits words) with our method. For these parameters the PDP is intractable with the original algorithm. The main tool to achieve these results relies on the use of the symmetries and the quasi-homogeneous structure induced by these symmetries during the polynomial system solving step. Also, we use a recent work on a new algorithm for the change of ordering of Gröbner basis which provides a better heuristic complexity of the total solving process.
Liste complète des métadonnées

Cited literature [49 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00700555
Contributor : Louise Huot <>
Submitted on : Tuesday, June 18, 2013 - 2:02:45 PM
Last modification on : Tuesday, December 18, 2018 - 4:18:25 PM
Document(s) archivé(s) le : Thursday, September 19, 2013 - 4:10:52 AM

File

FGHR.pdf
Files produced by the author(s)

Identifiers

Citation

Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, Guénaël Renault. Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm. Journal of Cryptology, Springer Verlag, 2013, pp.1-40. ⟨10.1007/s00145-013-9158-5⟩. ⟨hal-00700555v3⟩

Share

Metrics

Record views

796

Files downloads

560