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Abstract. The silicon biogeochemical cycle has been stud-
ied in the Mediterranean Sea during late summer/early au-
tumn 1999 and summer 2008. The distribution of nutrients,
particulate carbon and silicon, fucoxanthin (Fuco), and total
chlorophyll-a (TChl-a) were investigated along an eastward
gradient of oligotrophy during two cruises (PROSOPE and
BOUM) encompassing the entire Mediterranean Sea during
the stratified period. At both seasons, surface waters were
depleted in nutrients and the nutriclines gradually deepened
towards the East, the phosphacline being the deepest in the
easternmost Levantine basin. Following the nutriclines, par-
allel deep maxima of biogenic silica (DSM), fucoxanthin
(DFM) and TChl-a (DCM) were evidenced during both sea-
sons with maximal concentrations of 0.45 µmol L−1 for BSi,
0.26 µg L−1 for Fuco, and 1.70 µg L−1 for TChl-a, all mea-
sured during summer. Contrary to the DCM which was a
persistent feature in the Mediterranean Sea, the DSM and
DFMs were observed in discrete areas of the Alboran Sea,
the Algero-Provencal basin, the Ionian sea and the Levantine
basin, indicating that diatoms were able to grow at depth and
dominate the DCM under specific conditions. Diatom as-
semblages were dominated byChaetoceros spp.,Leptocylin-
drus spp.,Pseudonitzschia spp. and the association between
large centric diatoms (Hemiaulus hauckii andRhizosolenia
styliformis) and the cyanobacteriumRichelia intracellularis
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was observed at nearly all sites. The diatom’s ability to grow
at depth is commonly observed in other oligotrophic regions
and could play a major role in ecosystem productivity and
carbon export to depth. Contrary to the common view that
Si and siliceous phytoplankton are not major components
of the Mediterranean biogeochemistry, we suggest here that
diatoms, by persisting at depth during the stratified period,
could contribute to a large part of the marine primary pro-
duction as observed in other oligotrophic areas.

1 Introduction

Diatoms play an important role in the ocean biological pump
and are responsible for an estimated 30% of the global
oceanic primary production (Nelson et al., 1995; Tréguer et
al., 1995). This large average value hides wide differences
between eutrophic areas, where diatoms contribution to pri-
mary production reaches up to 75% and oligotrophic areas
where it scales down to 10–30 % (Nelson et al., 1995; Uitz
et al., 2010). The lowest particulate Si biomass accumula-
tion ever measured has been observed in open ocean olig-
otrophic gyres, such as in the Sargasso Sea (Nelson et al.,
1995; Nelson and Brzezinski, 1997; Krause et al., 2009a).
Despite low abundance and chronic Si limitation, diatoms
still play a significant role by contributing close to 25% of
annual primary production in both the Sargasso Sea and the
Central North Pacific (Brzezinski and Nelson, 1995; Nelson
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and Brzezinski, 1997; Krause et al., 2009a; Brzezinski et al.,
1998) and representing up to 30% of the annual carbon ex-
port in the Sargasso Sea (Krause et al., 2009b; Nelson and
Brzezinski, 1997). Hence, the functioning of these systems
shows that despite widespread N and P limitation, Si avail-
ability is also important to consider and that diatoms may
play a crucial role in the biological C pump even in highly
oligotrophic regions.

The Mediterranean Sea (MS) is one of the most olig-
otrophic oceanic systems of the World Ocean (Ryan, 1966;
Dugdale, 1976) and is characterised by a longitudinal gra-
dient of oligotrophy increasing eastwards (Azov, 1991) and
a near complete P depletion in the stratified layer dur-
ing summer and fall, comparable to that observed in open
ocean oligotrophic gyres. During the last century, the east-
ern Mediterranean basin has also become increasingly olig-
otrophic since the construction of the Assouan dam on the
river Nile, whereas the western basin remains well supplied
by the Rĥone and Po river inputs and entering surface At-
lantic waters (B́ethoux et al., 1998). This gradient of olig-
otrophy parallels a gradient of biomass, with an extremely
low chlorophyll content in the eastern basin. In a review
of the seasonal development of the surface phytoplankton
bloom using a ten year archive of SeaWiFS data, D’Ortenzio
and Ribera d’Alcala (2009) evidenced distinct regions in the
MS with different bloom phasings throughout the year. The
main patterns observed over this decadal study were a clear
biomass maximum in the western basin in spring with some
early starts in November and December, while the eastern
basin showed higher Chl-a values during winter and expe-
rienced the lowest values during late spring/summer, from
May to September. Most of the eastern basin, and parts of the
western basin are characterised as “non-bloom” areas which
would together cover about 60% of the MS (D’Ortenzio and
Ribera d’Alcala, 2009). However, this study concerns sur-
face Chl-a distribution as observed by satellites and ignores
the potential deep phytoplankton accumulation, which we
will show in this study, could modulate this clear cut pattern.

Severe oligotrophic conditions appear with the onset of a
strong thermal summer stratification in the MS and lead to
the development of a Deep Chlorophyll-a Maximum (DCM)
closely associated to the nutricline, which has been repeat-
edly observed across the entire basin and compared to simi-
lar structures of the oligotrophic Atlantic and Pacific Ocean
(Ediger and Yilmaz, 1996). During summer, primary pro-
duction rates are usually low, the autotrophic community is
dominated by pico- and nanophytoplankton, and the micro-
bial food web becomes predominant under internal nutrient
recycling conditions (Thingstad and Rassoulzadegan, 1995).
Several studies have documented the limitation of phyto-
plankton production by nitrogen and phosphorus (Agusti et
al., 1998; B́ethoux et al., 1992; Krom et al., 1991; Moutin
et al., 2002). The MS deep waters are known to have a
strong P deficit, with N:P ratios close to 28, while it is close
to 16 in all other oceanic basins (Krom et al., 2004; Pujo-

Pay et al., 2011). A thorough review by Thingstad and
Rassoulzadegan (1995) concluded that the Mediterranean
planktonic ecosystems experience a general physiological P-
limitation but questions still remain on the exact mechanism
responsible for the decreased availability of P vs. N. Several
hypotheses have been suggested, such as increased P adsorp-
tion onto dust particles, increased N2 fixation by both benthic
and pelagic organisms or dystrophic atmospheric and river-
ine inputs (Krom et al., 2004, 2010) but none has yet been
widely accepted as the sole responsible factor for the anoma-
lous N:P ratios in the MS. High N2-fixation rates have been
previously measured in the Ligurian Sea (Garcia et al., 2006)
but other measurements carried out in the MS reported neg-
ligible fluxes (Krom et al., 2010; Ibello et al., 2010). Dia-
zotrophic organisms such as the filamentous cyanobacterium
Trichodesmium and the symbiotic associations between the
cyanobacteriumRichelia intracellularis and diverse diatom
species have never been reported in abundance in the MS
and should play an insignificant role in nitrogen fixation ac-
cording to Krom et al. (2010). However, a recent review of
plankton in the MS evidences the presence of large diatom
accumulations at depth during summer (Siokou-Frangou et
al., 2010). Our results shed new light on this debate and seem
to confirm the latter hypothesis.

While the focus has been placed on the N and P cycles,
the Si cycle remains poorly investigated in the MS, and the
potential contribution of diatoms to primary production and
export in the open basins of the MS is similarly poorly con-
strained while data are mainly available for coastal and near
shore areas. This paper presents a comparative study of the
dissolved Si and siliceous phytoplankton distribution pat-
terns over a vast oligotrophic gradient covering the entire
MS during summer and fall. The results presented in this
paper originate from two cruises that were carried out almost
a decade apart over very similar longitudinal gradients and
sampling strategies. Vertical distributions of nutrients, bio-
genic silica, main and accessory pigments (Chl-a and fucox-
anthin) as well as particulate organic carbon are presented
for the PROSOPE cruise (Productivity of Oceanic Pelagic
Systems) and the BOUM cruise (Biogeochemistry from the
Oligotrophic to the Ultra-oligotrophic Mediterranean) con-
ducted in fall 1999 and summer 2008 respectively. The ob-
jectives of this article are to document the dissolved and par-
ticulate Si cycle and assess diatoms contribution to phyto-
plankton community as well as their link to N2 fixation, over
both the western and eastern Mediterranean basins during
the seasonal stratification period. Interestingly, a deep silica
maximum was recurrently observed closely associated to the
well identified DCM and we will explore the potential for-
mation mechanisms and ecological role of this “deep glass
forest” in the Mediterranean Sea.

Biogeosciences, 8, 459–475, 2011 www.biogeosciences.net/8/459/2011/
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Fig. 1. Cruise tracks and sampling sites during the PROSOPE cruise
in late summer/fall 1999 (red dots) and during the BOUM cruises
in summer 2008 (blue dots).

2 Methods

2.1 Study areas and sampling strategies

Seawater samples were collected during two cruises con-
ducted in the western and eastern basins separated by the
Sicily strait (Fig. 1). The CNRS/INSU PROSOPE (Pro-
ductivity of Oceanic Pelagic Systems) cruise was part of
the JGOFS (Joint Global Ocean Flux Study) program and
was carried out in 1999 during late summer-early autumn
(4 September to 4 October) on board R. V.Thalassa.
The CNRS/INSU BOUM cruise (Biogeochemistry from the
Oligotrophic to the Ultra oligotrophic Mediterranean Sea)
was part of the SESAME (Southern Europeans Seas: Assess-
ing and Modelling Ecosystem Changes) integrated project
supported by the European Commission, and was conducted
in 2008 during summer (20 June to 22 July) on board
R. V. L’Atalante. During the PROSOPE cruise, hydrolog-
ical, biological and chemical parameters were studied at 9
short-term stations and 2 long-term (5 days) process study
sites (DYF and MIO located in the Ligurian and Ionian Sea
respectively). During the BOUM cruise, hydrological, bi-
ological and chemical parameters were studied at 27 short-
term stations and 3 long-term (4 days) process study sites
(A, B, C, respectively located in the Algero-Provencal, the
Tyrrhenian, and the Levantine basins) located in the center
of anticyclonic gyres, where lateral advection was expected
to be minimum.

2.2 Dissolved and particulate matter analysis

Seawater samples were collected at selected depths be-
tween the surface and 200 m depth with 12 L Niskin bot-
tles mounted on a seabird CTDO rosette sampler (model
SBE 911). Nitrate (NO3) and phosphate (PO4) were de-
termined by standard automated colorimetric methods on
a Bran & Luebbe Technicon autoanalyzer (Tréguer and Le
Corre, 1975) without filtration (nutrients analyses detailed in
Pujo-pay et al., 2011). The detection limits were respectively
30 nM, and 20 nM for NO3, and PO4. For orthosilicic acid
(H4SiO4), 20 mL of seawater collected from each Niskin bot-

tle were filtered onto 0.2 µm polycarbonate filters and anal-
ysed for H4SiO4 according to the colorimetric method of
Mullin and Riley (1962) adapted by Strickland and Parsons
(1972), with a detection limit of 50 nM and a precision of
± 35 nM.

For particulate biogenic silica (BSi) analyses, 1 to 2.3 L of
seawater were filtered onto 47 mm 0.6 µm pore size polycar-
bonate filters. Filters were folded and stored in plastic Petri
dishes, oven dried (60◦C) for 24 h and stored at room tem-
perature until processing at the laboratory. Filters were then
analysed for BSi following the hot NaOH digestion tech-
nique described by Nelson et al. (1989). The detection limit
was 0.011 µmol L−1.

For pigment analyses 2 L of seawater were filtered onto
pre-combusted Whatman GF/F 25 mm filters and stored in
liquid nitrogen until processing. Extraction was achieved
in 3 mL 100% methanol, followed by a sonication and an-
other filtration on a new GF/F filter to clarify the extracts.
Pigments were then analysed by HPLC (High Performance
Liquid Chromatography) following the method of Vidussi et
al. (1996) (PROSOPE cruise) and Ras et al. (2008) (BOUM
cruise). In this paper we only present the distributions of to-
tal Chlorophyll-a (TChl-a) and fucoxanthin (Fuco), the for-
mer including Chlorophyll-a and divinyl-Chlorophyll-a, the
latter being often used as a diagnostic pigment for diatoms
(Vidussi et al., 2000). The limit of detection for TChl-a and
Fuco were 2.4 ng L−1 for the PROSOPE cruise (Claustre et
al., 2004) and better than 0.2 ng L−1 for the BOUM cruise
(see (Hooker et al., 2009) for the performances of the Ras et
al. (2008) method).

Particulate Organic Carbon (POC) samples were collected
by gentle filtration of 1.2 L for the PROSOPE cruise and 3 L
for the BOUM cruise of seawater on precombusted (450◦C
for 24 h) Whatman GF/F filters (25 mm in diameter). Af-
ter filtration, filters were immediately placed in 25 mL Pyrex
bottles (Duran Schott) fitted with screwcap equipped with
Teflon ring and dried in an oven at 50◦C and stored in a
dessicator until analyses at the laboratory. POC was deter-
mined according to the wet oxydation procedure described
by Raimbault et al. (1999) for the PROSOPE samples, and
on an elemental CHN analyser Perkin Elmer 2400 for the
BOUM samples.

2.3 Determination of euphotic zone depth (Zeu)

The depth of the euphotic zone was determined with a bio-
optical model for light propagation designed by Morel and
Maritorena (2001) whereZeu is calculated from Chl-a verti-
cal profiles andKd (downward irradiance).

2.4 Phytoplankton cell counts

From each Niskin bottle, 0.5 L seawater were immediately
fixed by adding Lugol solution and stored at 4◦C in the dark
until analysis. In the laboratory, subsamples of 50–100 mL
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Fig. 2. Nutrient distributions (µM) along the transect 1 during
PROSOPE the cruise (summer/fall 1999).

were allowed to settle (48 h) in composite chambers. The
cells were identified and counted by using an inverted micro-
scope following the Uterm̈ohl method (Uterm̈ohl, 1931).

3 Results

3.1 Nutrient distributions

3.1.1 Large-scale nutrient distribution during the
PROSOPE cruise (late summer-early autumn)

For the sake of clarity, we have presented the data acquired
during PROSOPE as two different transects: a longitudinal
transect 1 from station 1 to station 6 (Fig. 2) and a merid-
ian transect 2 from station DYF to station MIO (Fig. 3),
partially overlapping at stations 6 and MIO. Surface waters
were depleted in H4SiO4 with concentrations below 1 µm ex-
cept at the northern DYF station of transect 2 where the sur-
face concentration reached 1.31 µm (Figs. 2a and 3a). On
transect 1, the Alboran Sea, characterised by the low sur-
face salinity signature of entering Modified Atlantic Waters
(MAW) (Perkins et al., 1990), exhibited low H4SiO4 con-
centrations (<0.5 µM) in the upper 50 m at station 1, and at
shallower depths at stations 2 (30 m) and 3 (10 m). Surface
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Fig. 3. Nutrient distributions (µM) along the transect 2 during
PROSOPE the cruise (summer/fall 1999).

H4SiO4 concentrations then increased along the longitudinal
gradient reaching between 0.48–0.88 µm at stations 5, 6, and
MIO. On transect 1, station 3 and to a lesser extent stations
2 and 4 were characterised by a H4SiO4 minimum between
80 and 110 m. As a general pattern, the 1 µM H4SiO4 iso-
pleth marked the beginning of the silicicline and deepened
towards the East, from∼65 m (station 1) and∼40 m (station
9) to ∼110 m (MIO), although undulations characteristic of
the strong mesoscale dynamics of the Algerian Current were
clearly visible on transect 1 (Fig. 2). The highest H4SiO4
concentrations (3.6 to 5.8 µM) were observed in stations 8,
9, and DYF at 150 m (Fig. 3a).

NO3 and PO4 distributions (Fig. 2b–c and Fig. 3b–c, re-
spectively) followed the same general pattern of surface wa-
ter depletion, and a more severe oligotrophy at the eastern
stations (6 and MIO). Similarly to H4SiO4, NO3 and PO4
varied at depth at station 3 probably also due to mesoscale
activity of the Algerian current. Both the nitracline (starting
around 0.5 µM NO3) and the phosphacline (starting around
0.05 µM PO4) deepened progressively towards the East but
the phosphacline deepening was much steeper. The largest
difference was observed at MIO station where the phospha-
cline was 100 m deeper than the nitracline. Contrary to what
was observed for H4SiO4, the highest concentrations of NO3
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Fig. 4. Orthosilicic acid distribution (µM) during the BOUM cruise
(late summer 2008).

and PO4 were observed at the entrance of the Gibraltar Strait
at station 1 (7.16 µm NO3 and 0.47 µm PO4 at 150 m).

3.1.2 Large-scale orthosilicic acid distribution during
the BOUM cruise (summer)

In this section, we only describe the H4SiO4 concentrations
(Fig. 4) as NO3 and PO4 distributions are described exten-
sively in Pujo-pay et al. (2011). The BOUM cruise allowed
us to extend the observations to the Levantine Basin and thus
obtain a complete picture of the zonal gradient of oligotrophy
in summer.

The highest H4SiO4 concentrations were measured at sta-
tions 25 and 26 at 175 m, respectively reaching 5.86 and
5.83 µm (Fig. 4). The general pattern of H4SiO4 distribu-
tion was again characterised by a general depletion of surface
waters and a deepening of the silicicline marked by the 1 µm
isopleth, from∼25–40 m in the Ligurian basin (stations 26
and 27) to∼150 m at the entrance of the Ionian basin (sta-
tion 12), to finally>200 m on the easternmost side of the
Levantine basin (stations 11 and C). This general pattern is
disrupted in the transition zone between the Ionian and Lev-
antine basins. We observed indeed a substantial enrichment
of surface waters, from stations B to 5, with highest H4SiO4
at station 2.

NO3 and PO4 distributions paralleled that of H4SiO4 (Fig-
ures in Pujo-Pay et al., 2011). NO3 concentrations ranged
between the detection limit and 9.23 µm (station 25, 200 m)
whereas PO4 concentrations ranged between the detection
limit and 0.37 µm (station 26, 200 m). Surface waters were
depleted for both NO3 and PO4. The nitracline was close
to the thermocline whereas the phosphacline was generally
located deeper.
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Fig. 5. Distribution of (A) Biogenic Silica (BSi) (µmol L−1), (B)
Fucoxanthin (Fuco) (µg L−1), and(C) Total chlorophyll-a (TChl-
a) (µg L−1) and depth (m) of the euphotic zone (yellow dots) along
transect 1 during the PROSOPE cruise (summer/fall 1999).

3.2 Particulate matter distribution

3.2.1 Large-scale distribution of biogenic silica and
associated parameters during the PROSOPE
cruise (late summer-early autumn)

In general, the Mediterranean waters had extremely low
BSi contents in the surface waters, quite uniformly
<0.05 µmol L−1, except in the Alboran Sea where concen-
trations reached up to 0.38 µmol L−1 in a deep silica maxi-
mum (DSM) located between 60 and 95 m from station 1 to 3
(Figs. 5a and 6a). Another slight DSM was apparent at DYF
station (>0.05 µmol L−1 at 75 m) while a more pronounced
feature was observed at MIO station (up to 0.11 µmol L−1 at
110 m).

Fucoxanthin concentrations ranged from below the detec-
tion limit to 0.22 µg L−1 (Fig. 5b and 6b). Its distribution
was very similar to that of BSi, with low values at the sur-
face, and deep maxima at stations 1, 2, 3, MIO, and DYF co-
inciding with the observed DSM. The highest Fuco concen-
tration was measured at station 2 with 0.22 µg L−1 at 45 m,
slightly above the depth of BSi maximum. Another small
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deep maximum of Fuco (0.06 µg L−1) was observed at sta-
tion 5 at 65 m, but did not match any BSi increase. This
discrepancy could be related to the presence of other non-
siliceous algae containing fucoxanthin such as prymnesio-
phytes or chrysophytes.

TChl-a concentrations ranged from below the detection
limit to a maximum value of 0.96 µg L−1 (Figs. 5c and 6c).
TChl-a concentrations were generally higher on transect 1
(Fig. 5c) than on transect 2 (Fig. 6c) and maximum concen-
trations (from 0.4 to 0.9 µg L−1) were found between 40 and
60 m at stations 1, 2, 3 and 5. TChl-a exhibited the same
pattern of distribution as BSi and Fuco, i.e. a deep TChl-
a maximum (DCM) present on both transects and deepen-
ing eastwards (from 40 to 60 m at the Gibraltar Strait and in
the Ligurian Sea to∼90 m in the Ionian basin). Unlike the
patchy distribution of BSi and Fuco, the DCM appeared as a
more regular feature all along the two transects.

Considering the euphotic zone, the DCM and DSM were
generally observed 15–30 m aboveZeu (Figs. 5c and 6c).
However DSMs at DYF (75 m) and MIO (110 m) were lo-
cated at the edge of the euphotic zone. In general, the
eastward deepening of the deep particulate matter maxima
seemed to follow the deepening of the euphotic zone.
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Fig. 7. (A) Distribution of particulate organic carbon (POC)
(µmol L−1), with BSi concentrations (µmol L−1) isopleths as over-
lays in white and(B) BSi:POC ratios (mol:mol) along transect 1
during the PROSOPE cruise (summer/fall 1999).

The distribution of particulate organic carbon is presented
together with BSi:POC ratios in Figs. 7 and 8. POC distribu-
tion revealed a very similar pattern compared to TChl-a with
maximum concentrations found in the Alboran Sea at 50 m
(7 µmol L−1), spreading in the Algero-Provencal0 basin at
depth, and a new increase in the Ionian basin between sta-
tions 5 and MIO, reaching 3 µmol L−1. POC was very low
below 100 m (<1 µmol L−1) except at site 1, where moderate
concentrations were measured at 150 m (Fig. 7a). BSi:POC
ratios were quite elevated, by comparison to the Brzezinski
(1985) ratios, in the Alboran Sea (0.25 at station 2 at 90 m)
and over the Sicily Strait (0.19 at station 5 at 120 m; Fig. 7b).
A third increase was observed at the MIO station, where
BSi:POC ratio reached 0.11 at 130 m. On the second tran-
sect, POC distribution was quite monotonous (Fig. 8a), with
a small subsurface maximum spreading from the DYF station
to the MIO station without much decrease at depth. Surpris-
ingly, a subsurface maximum was observed at station 7 be-
tween 10 and 50 m (4.6 to 5.5 µmol L−1) which did not match
any increase in Chl-a, Fuco or BSi, and could reflect the pres-
ence of heterotrophs. BSi:POC ratios were low (<0.01) over
the entire 0–50 m layer, but increased at depth and in particu-
lar at two locations, at station 9 at 150 m (0.10) and at station
MIO (0.11) as mentioned above (Fig. 8b).
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Fig. 8. (A) Distribution of particulate organic carbon (POC)
(µmol L−1), with BSi concentrations (µmol L−1) isopleths as over-
lays in white and(B) BSi:POC ratios (mol:mol) along transect 2
during the PROSOPE cruise (summer/fall 1999).

3.2.2 Large-scale distribution of biogenic silica and
associated parameters during the BOUM cruise
(summer)

Surface (0–50 m) BSi concentrations were low
(<0.05 µmol L−1) throughout the transect except at the
coastal station 27 in the Gulf of Lions (0.36 µmol L−1

at 5 m) (Fig. 9a). A core of slightly higher concentra-
tions (range: 0.05–0.15 µmol L−1) was observed between
50–175 m on the continental margin and in the northern
Ligurian Sea (stations 23 to 27). However, the most striking
feature was the observation of three successive DSM along
the transect in a patchy distribution with hot spots of BSi
accumulation at depth in discrete areas. The first DSM (up
to 0.44 µmol L−1) was located between the south of Sardinia
(station 21) and the Sicilian Strait (station 16) between 50
and 125 m. A second large DSM (up to 0.45 µmol L−1)

was encountered in the Ionian basin (between stations 1
and 9) from 50 to 175 m, while the third DSM (up to
0.24 µmol L−1) occurred at the eastern end of the transect
south of Cyprus in the Levantine basin (station C) at 100 m.

Fuco distribution was in good agreement with BSi since
the locations of three successive DFMs closely matched
those of the DSM (Fig. 9b). A small increase of Fuco was
observed in the northern Ligurian Sea with concentrations
reaching up to 0.06 µg L−1 at the surface (stations 26 and
27). From station 25, the Fuco peaks tended to deepen and
were always found below 50 m at all other stations of the
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Fig. 9. (A) Distribution of biogenic silica (BSi) (µmol L−1), (B)
Fucoxanthin (Fuco) (µg L−1), and(C) Total chlorophyll-a (TChl-
a) (µg L−1) and depth (m) of the euphotic zone (yellow dots) during
the BOUM cruise (summer 2008).

transect. The DFM values corresponding to the DSM loca-
tions were respectively from West to East of 0.20 µg L−1 (sta-
tion 18), 0.26 µg L−1 (station 3) and 0.08 µg L−1 (station C).
TChl-a followed a very similar pattern but looked like a more
continuous feature, as mentioned above for the PROSOPE
cruise, with a DCM present at every station (Fig. 9c), except
at coastal station 27 where TChl-a showed the highest sur-
face value (0.37 µg L−1). Despite the continuous presence
of the DCM deepening eastwards, several hot spots with in-
creased concentrations of TChl-a were clearly visible, which
locations matched those of the DSM and DFMs. The most
important DCM was located in the Ligurian Sea with the
highest TChl-a concentration measured (1.70 µg L−1 at sta-
tion 25, 50 m). Other more pronounced DCMs were detected
associated to the main DSM/DFM with 0.87 µg L−1 at station
18, 0.68 µg L−1 at station 3and 0.40 µg L−1 at station C.

Finally, the deep structures observed during BOUM ap-
peared more pronounced, showing higher biomass val-
ues, than those observed during PROSOPE. Station 3
of the BOUM cruise, geographically very close to MIO
station of PROSOPE, is a good example of this trend:
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maximum BSi concentration was 0.45 µmol L−1 at station 3
vs. 0.12 µmol L−1 at station MIO; maximum Fuco concen-
tration was 0.26 µg L−1 at station 3 vs. 0.02 µg L−1 at station
MIO and TChl-a highest value was 0.68 µg L−1 at station 3
vs. 0.18 µg L−1 at station MIO. Hence, the siliceous phyto-
plankton biomass was generally higher in summer 2008 than
in late summer/early autumn 1999.

The depth of the euphotic zone during summer 2008
was approximately the same than late summer/early autumn
1999, and ranged between 50–120 m (Fig. 9c) as during
PROSOPE cruise. If the deep maxima still followed the
deepening ofZeu, we can note that they were positionned
just few meters above theZeu and thus lower in the euphotic
zone compared to the PROSOPE cruise.

Particulate organic carbon follows the same trends than
BSi and Chl-a with 4 maxima (∼6 µmol L−1) located in
the northern Algero-Provencal basin near the surface, and at
depth over the Sicilian strait, in the Ionian Sea and at station
C in the Levantine basin (Fig. 10a). Low BSi:POC ratios
(< 0.01) were observed from the surface to as deep as 125 m
in the Ionian and Levantine basins, but increased between
100 and 150 m to more elevated values (0.05 to 0.09) at the
three main DSM locations but with a slight offset with depth
(Fig. 10b).
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3.3 Integrated BSi stocks

Integrated (0–150 m) silicon stocks during both cruises are
presented in Fig. 11. During PROSOPE (Fig. 11a), the west-
ern basin exhibited the highest BSi stocks which ranged
from 2.6 to 25.0 mmol m−2, with the highest stocks at the
three westernmost stations (1 to 3). Stocks were several
folds lower in the eastern basin and ranged from 2.2 to
5.8 mmol m−2. During the BOUM cruise (Fig. 11b), inte-
grated BSi stocks were on average higher despite a simi-
lar range of values from 1.1 to 28.2 mmol m−2. Despite
some large spatial variability due to the presence of several
hot spots of BSi accumulation in both basins, the average
BSi stock in the western basin (station 27 to 17) was higher
(11.6 mmol m−2) than the average value for the eastern basin
(5.8 mmol m−2).

4 Discussion

4.1 Oligotrophic gradient in the Mediterranean Sea

The gradient of oligotrophy is well documented in the
Mediterranean Sea (McGill, 1961; Sournia, 1973; Krom et
al., 1991; Moutin and Raimbault, 2002) and is a conse-
quence of the anti-estuarine thermohaline circulation and the
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nutrient input’s asymmetry between the western and the east-
ern basins. The degree of oligotrophy along this gradient is
then determined by the balance between biological processes
such as production, remineralisation, and export, and can be
locally affected by mesoscale or submesoscale structures like
hydrological fronts and eddies (Crise et al., 1999). Accord-
ingly, we observed that surface waters of the Mediterranean
Sea were depleted in nutrients during both summer and fall
and that all nutriclines deepened towards the East (Figs. 2 to
4). The phosphacline was generally deeper than the nitra-
cline and silicicline in particular in the eastern basin, which
could induced a general P limitation in the Ionian and Lev-
antine basins (Pujo-Pay et al., 2011). The P deficit in both
surface and deep waters of the Mediterranean Sea is well es-
tablished but the responsible mechanisms are still a matter
of debate (Krom, 1995). Considering the reference N:P ratio
of 16 (Redfield et al., 1963), the general P limitation of the
Mediterranean Sea is further emphasized by the integrated
surface N:P ratios which are generally well>20 (Figs. 12a
and 13a) except in a few areas such as the Alboran Sea dur-
ing fall and at only three stations during summer (stations 6,
14 and C). The P deficit is more intense in the eastern basin
during both seasons, with extremely high N:P ratios during
summer (40–80 and sometimes>100) when P is close to the
detection limit, and slightly lower ratios during fall in the Io-
nian sea (40–65), when N becomes more depleted. Our data
are consistent with high ratios usually found in the Mediter-
ranean Sea (around 20–30 in the deep waters and up to 100
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in the surface waters) (McGill, 1969; Jacques and Tréguer,
1986; Moutin and Raimbault, 2002).

If nitrogen and phosphate are usually considered as lim-
iting in the Mediterranean Sea, silicon has been considered
for a long time abundant in the euphotic zone (Jacques and
Tréguer, 1986; Krom et al., 1993, Tanaka et al., 2011) and
often ignored as a potential limiting factor in biogeochem-
ical models (Crispi et al., 2002). Yet, we observed during
summer and fall a potential Si deficit compared to N in the
entire Algero-Provencal basin and as far towards the East as
the Tunisian continental shelf located across the Sicily Strait,
with integrated Si:N ratios<1 in the first 150 m (Figs. 12b
and 13b). If we consider the empirical Si:N uptake ratio≈1
for siliceous phytoplankton (Brzezinski, 1985) Si availabil-
ity could be limiting for diatom growth. The Si deficiency
is relieved in the Ionian and Levantine basins where Si:N ra-
tios remain well over 1 during both seasons, but with local
minima close to 1 between stations 3 and 8 during BOUM,
where a large DSM was observed. Considering the Si:N:P
ratios simultaneously, N and P constitute the prominent po-
tential limiting factors in the Mediterranean Sea, but Si ap-
pears as potentially limiting to diatom growth in the west-
ern basin and over the Tunisian continental shelf. Consistent
with our findings, Ribera d’Alcala et al. (2003) suggested
that diatoms might play an important role in the eastern basin
based on basin-scale nutrient estimates. The elevated Si:N
ratio in intermediate and deep waters led the authors to the
conclusions that diatoms were probably playing an important
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role in the surface layer and that the high Si:N ratio at depth
evidenced an active vertical transfer of siliceous material.
The little attention given to orthosilicic acid distribution in
the MS is likely coupled to the idea that the DCM observed
during stratified oligotrophic conditions is overall dominated
by pico- and nanophytoplankton. Our data show that during
both summer and fall, this is not always the case and that
diatoms may locally be important contributors to the DCM.
We explore tentative explanations for the co-occurrence of
the DSM with the DCM in the following paragraphs.

4.2 Occurrence of a Deep Silica Maximum (DSM) in the
Mediterranean Sea

The data obtained during the BOUM cruise confirmed the re-
currence of DSM in the different Mediterranean basins dur-
ing the stratified oligotrophic period, an observation that was
initially made during PROSOPE. DSM were found in the
Alboran, Ionian and Ligurian basins during late summer-fall
1999 and were also observed in the Levantine basin and in
the Sicilian Strait in summer 2008. Similar characteristics
of the DSM during both seasons were a patchy distribution
(while the DCM was a more continuous feature across the
MS) and a progressive deepening of this structure towards
the East, following that of the nutriclines andZeu. Differ-
ences consisted in Chl-a maximum values that were almost
twice as high in fall compared to summer despite similar con-
centration ranges of both BSi and Fuco, which indicates a
lower relative contribution of diatoms to the phytoplankton
community later in the season.

The occurrence of DSM has been previously observed
in Mediterranean waters (Price et al., 1999a), but it has
never been reported to be a recurrent feature of the strat-
ified open Mediterranean Sea. The first reference in the
MS goes back two decades ago in a coastal system off the
coasts of Egypt close to the Nile River mouth, where Abdel-
Moati (1990) evidenced the presence of a DSM, closely cou-
pled to the DCM at 100 m depth, with elevated BSi con-
centrations (1.35± 0.49 µmol L−1). In the Algerian current,
Gould and Wiesenburg (1990) observed a narrow band of
Chl-a at 54 m dominated at 98% by the centric diatomTha-
lassiosira partheneia. Smaller DSM (BSi<0.1 µmol L−1)

were later observed in the Cretan Sea in spring and fall by
Price et al. (1999b). Finally, Leblanc et al. (2004) reported
a moderate DSM (BSi<0.2 µmol L−1) during winter in the
Almeria-Oran Front inside an anti-cyclonic gyre but which
was mainly attributed to lateral advection of a frontal bloom
and cross-frontal exchanges of biomass along the isopycnal
slopes.

Nonetheless, the DSM is a feature that has been ob-
served in several other oceanic systems worldwide in re-
cent years, in the oligotrophic environment of the Sargasso
Sea (Brzezinski and Kosman; 1996, Krause et al., 2009a)
and gyres of the Equatorial and Central North Pacific (Blain
et al., 1997; Brzezinski et al., 1998; Scharek et al., 1999,

Dore et al., 2008). This feature has also been recurrently
observed in the Southern Ocean but with often much higher
biogenic silica concentrations (Quéguiner, 2001; Leblanc et
al., 2002; Qúeguiner and Brzezinski, 2002; Beucher et al.,
2004; Mosseri et al., 2008).

4.3 Deep Chlorophyll-a Maximum (DCM) and
potential formation mechanisms

The DCM is a well known structure in the ocean, ubiqui-
tous in stratified oligotrophic areas and notably in the en-
tire Mediterranean Sea (Berman et al., 1984; Estrada, 1985;
Estrada et al., 1993; Ediger and Yilmaz, 1996; Abdel-Moati,
1990; Tselepides et al., 2000; Herut et al., 2000). The DCM
formation depends on the equilibrium between phytoplank-
ton accumulation mechanisms (physical gradient, physiolog-
ical adaptation to light and nutrient limitation, local growth
at nutricline depth) and dispersion processes such as sink-
ing, advection, or grazing. If the DCM is sustained for
several weeks or months it implies that gain terms (local
growth or accumulation from passive sinking at the pycno-
cline) are balanced with loss terms (grazing and sinking out
of the euphotic layer) as described in detail by Parslow et
al. (2001) for the Southern Ocean. During the BOUM study,
the vertical distribution of small copepods and nauplii closely
matched the DCM along the entire transect (Nowaczyk et al.,
2011), which is indicative of grazing inside the DCM, which
in turn indicates that local growth was occurring to compen-
sate for this loss term and maintain the feature throughout
summer. However DCM formation mechanisms in the MS
are somewhat different than in the tropics where this fea-
ture is generally permanent throughout the year (Mann and
Lazier, 1996), while it is mainly seasonal in the MS and
likely the result of a transitory state between post hivernal
mixing and summer stratification (Estrada et al., 1985, 1993).

4.4 Correlations between DCM, DSM and DFM in the
Mediterranean Sea

The DSM was not systematically correlated to the DCM but
the presence of a DSM was observed at a large majority of
stations (83%) during summer and at about half of the sta-
tions (45%) during fall. However, the more intense DSM
were observed over more restricted areas along the cruise
tracks.

During late summer/fall 1999 deep maxima were not
strictly correlated, especially in the Alboran and Ligurian
Seas. Cell counts revealed that the DSM in the Albo-
ran Sea at station 2 (30 m) was dominated byGuinar-
dia delicatula (5300 cells L−1), Dactyliosolen fragilissimus
(2780 cells L−1), Leptocylindrus minimus (3530 cells L−1)

and Leptocylindrus danicus (2 840 cells L−1). At station
MIO, the diatom population was dominated byL. danicus
(590 cells L−1) and Pseudo-nitzschia spp. (300 cells L−1),
whereas Thalassionema frauenfeldii and Thalassionema
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nitzschioides showed the highest abundance at station DYF.
However, silicoflagellates (Dictyocha speculum and Dicty-
ocha octonaria) were more abundant than diatoms at all other
depths from 25 to 110 m at DYF, and probably contributed to
a large part to the DSM, which was also the case at stations
8 and 9, despite very low abundances. Diatoms constituting
those deep maxima did not seem to be actively photosyn-
thesizing as suggested by the negligible primary production
rates measured at these depths (data not shown).

During summer 2008, the DSM, DFM and DCM were al-
ways correlated and located at the same depths, deepening
towards the East. Cell counts revealed an important num-
ber of diatoms at every DSM but with a decreasing eastward
trend. Total diatom abundance reached 51 700 cellsvL−1 at
station 20 (75 m), 36 000 and 28 300 cells L−1 respectively at
station 3 and 5 (100 m), and finally 15 500 cells L1 at sta-
tion C (100 m). This surprisingly high numbers of diatoms
(between 10 000 and 40 000 cells L−1) have already been re-
ported before in oligotrophic areas (Riley, 1957; Hulburt,
1990) and during the summer blooms at station ALOHA
in the Central North Pacific (Dore et al., 2008) and were
mainly associated to the dominance by the genusChaeto-
ceros. The DSM located in the western basin showed a
much higher species diversity than the other two DSMs, with
a large contribution of pennates such asPseudo-nitzschia
spp. (up to 14 000 cells L−1 at 75 m at station 20) but also
many other genera such asBacteriastrum, Leptocylindrus
orRhizosolenia. This dominant diatom assemblage is quite
similar to the one described in previous syntheses presented
by Estrada et al. (1993) and Béthoux et al. (2002a) for the
MS. On the other hand, the DSM observed in the eastern
basin were much less diverse, and exhibited very few pennate
diatoms whileChaetoceros spp. again dominated among
the centric species. Silicification, and hence active growth
occurred in all the DSM as evidenced by the measured in-
creased uptake of the fluorescent probe PDMPO, which is a
proxy for Si production, and a clear indentation in the silicic
acid vertical profiles at the same depths (K. Leblanc, personal
communication, 2011).

Another moderate DSM was observed at depth on the
Tunisian continental slope, which was not associated to a
DCM, but to a slight increase of Fuco. Cell counts indicated
an increase in diatom abundance at 100 and 125 m at station
13 in particular, but samples were not taken for microphyto-
plankton abundance at the DSM depth thus preventing any
comparison with the DCM community. However, available
data suggest that this DSM likely corresponded to senescent
diatoms with low pigment content, probably sinking out of
the euphotic layer rather than to an episode of sediment re-
suspension above the Tunisian continental slope.

An intriguing difference between the two cruises were the
similar amounts of BSi in the DSM (maximum concentra-
tions around 0.2–0.35 µmol L−1 for both cruises), while di-
atom cell counts was an order of magnitude higher during
BOUM (up to 51 700 cells L−1) than during PROSOPE (up

to 5300 cells L−1). This difference is most likely due to the
presence of different diatom species during summer and fall,
with smaller species (belonging to the generaChaetoceros
andBacteriastrum) dominating during BOUM, while larger
species (belonging to the generaGuinardia, Leptocylindrus,
Pseudo-nitzschia, andThalassionema) were observed during
PROSOPE. Alternatively, diatoms could be less silicified in
summer than later in the season. If diatoms in summer were
in a better physiological state and exhibited higher division
rates this could lead to lower Si content per cell, because
senescent diatoms tend to be more heavily silicified (Martin-
Jéźequel et al., 2000).

As the season progresses to the highest oligotrophic de-
gree in late summer/fall, diatoms forming the DSM seem to
maintain themselves deeper following the descent of nutri-
clines, still at the DCM depth but probably at reduced growth
rate and under a more or less senescent state as suggested by
the pigment decrease observed at site MIO and DYF, and
the higher BSi:POC ratios encountered at the DSM during
fall. Despite being prominent in our study, the occurrence
of coupled DSM and DFM is not a global feature of the
Mediterranean Sea during summer but a very localised phe-
nomenon. This suggests that DSM formation is controlled
by complex biotic/abiotic interactions where diatoms could
take a temporary advantage of very low light conditions and
nutricline oscilations and thus dominate other phytoplankton
groups such as nano- and picophytoplankton. To explain the
nutrient supply mechanisms into the euphotic zone, several
authors demonstrated that formation of cyclonic and mode-
water eddies and interactions between such mesoscale fea-
tures could induce sporadic injections directly assimilated by
phytoplankton in the euphotic zone, (Falkowski et al., 1991;
McGillicuddy and Robinson, 1997; McNeil et al., 1999).
These mesoscale events led to great siliceous biomass en-
hancement at depth as it has been observed in numerous ar-
eas, for instance in the Pacific (Benitez-Nelson et al., 2007)
or in the Atlantic (McNeil et al., 1999; Steinberg et al., 2001;
Conte et al., 2003; McGillicuddy et al., 2007) with the great-
est BSi concentrations at BATS related to mesoscale events
(Krause et al., 2009a). This has also been reported for the MS
by Theodorou et al. (1997) who observed higher BSi contents
(∼0.36 µmol L−1) associated to the passage of two cyclonic
eddies in the Cretan Sea. Enhanced biological production
and chlorophyll accumulation were observed in cyclonic ed-
dies generated by the Algerian current (Moran et al., 2001),
while the impact of anticyclonic eddies on biological activity
was demonstrated in the same area during the ELISA pro-
gram (Taupier-Letage et al., 2003). If chlorophyll biomass
was generally lower at the center of anticyclonic eddies, the
relationship between Chl-a, nutrients and eddy structure was
found to be highly variable with the season, the age of the
eddy, and its location and internal dynamics (Taupier-Letage
et al., 2003). In the eastern basin, warm core eddies, and
notably the Cyprus anticyclonic eddy (which would corre-
spond to station C in this study), were found to harbour local
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enhancement of Chl-a, attributed to very deep winter mix-
ing within the eddy (Zohary et al., 1998). This is confirmed
by the Argo drifting float immerged during BOUM which
stayed in the eddy during the following winter and revealed a
winter mixing depth down to 400 m (Moutin et al., 2011). It
is likely that the local intense deep diatom blooms are linked
to mesoscale features and to eddy formation, although we
lack sufficient data to properly explore the different mecha-
nisms at play within cyclonic or anticyclonic eddies and to
relate them to the DCM/DSM formation during our study.
If the DSM are closely linked to hydrological features, their
heterogeneous nature probably led to systematic under sam-
pling as also suggested by Ribera d’Alcala et al. (2003) and
Siokou-Frangou et al. (2010) and might explain why they
have rarely been reported in the MS.

4.5 Ecological and biogeochemical implications of the
presence of DSM in stratified oligotrophic systems

During PROSOPE and BOUM cruises, the diatom commu-
nity was dominated byChaetoceros spp., Leptocylindrus
spp. andPseudonitzschia spp., which are commonly ob-
served in the Mediterranean DCM (Estrada, 1985; Kimor
et al., 1987) but also in other oligotrophic mid-ocean gyres
(Blain et al., 1997; Brzezinski et al., 1998; McGillicuddy
et al., 2007). However, the potentially symbiotic associ-
ation between the centric diatomsHemiaulus hauckii and
Rhizosolenia styliformis and the N2 fixing cyanobacterium
Richelia intracellularis were also observed during both
cruises but in low abundance. During the BOUM cruise,
phytoplankton net hauls revealed that they were present at
all stations sampled across the entire basin. This association
was commonly observed in the world oligotrophic ocean and
the MS (Guillard and Kilham, 1978; Ignatiades, 1969) and
has already been observed as an important component of the
diatom community in the DCM of the North Pacific olig-
otrophic gyres (Dore et al., 2008 and references there in).
The presence of a heterocyst in the cyanobacteriumR. Intra-
cellularis allows N2 fixation and probably constitutes an eco-
logical advantage for the associated diatom by providing a ni-
trogen source under N-depleted conditions (Villareal, 1991;
Villareal et al., 1999). In the tropical Atlantic, Carpenter et
al. (1999) encountered an extensive bloom ofH. hauckii and
evaluated that in addition toTrichodesmium sp., they could
supply up to 25% of the total N demand through the wa-
ter column. In the North Pacific Subtropical Gyre (NPSG) at
station ALOHA, Dore et al. (2008) estimated that the highest
integrated N2 fixation rates occurred during summer while
eitherTrichodesmium sp. or diatom blooms (mainly consti-
tuted byRhizosolenia sp. orHemiaulus sp. withR. intracel-
lularis) were observed.

Intense nitrogen fixation byPosidonia spp. mats and
planktonic organisms such asTrichodesmium spp. and the
diatom-cyanobacteria association have been invoked as one
of the reasons that could explain the higher N:P ratios in

Mediterranean deep waters (Sachs and Repeta, 1999; Ribera
d’Alcala et al., 2003) but this assertion remains to be substan-
tiated (B́ethoux et al., 2002b) and has been discarded recently
by Krom et al. (2010). N2 fixation was measured during the
BOUM cruise and revealed only negligible fluxes in the east-
ern basin, but moderate fluxes in the western basin, with the
highest rates measured in the Rhone river plume (Bonnet et
al., 2011). The presence of bothHemiaulus hauckii andRhi-
zosolenia styliformis hostingRichelia intracellularis in the
entire basin during both summer and fall as well as the pres-
ence of sporadicTrichodesmium sp. filaments could indicate
that these species may play a larger role in N2 fixation at
other periods of the year or that, for some reason, the sam-
pling strategy for N2 fixation measurements do not allow to
perform correct measurements. However, if we consider a
functioning of these deep diatom summer blooms similar to
that observed in the NPSG (Dore et al., 2008), the explana-
tion to low N2 fixation rates, notably in the eastern basin,
may very well lie in an extreme P-limitation. Diatoms po-
tential contribution to N2 fixation in the western basin where
fluxes are non negligible remains to be verified.

Concerning primary production in oligotrophic systems
and as mentioned earlier in this paper, the diatom contribu-
tion should not be underestimated. Goldman (1988) first sug-
gested that diatoms might be important for new production
and export of particulate carbon in oligotrophic ocean gyres.
They hypothesized that episodic injections of new nutrients
near the base of the euphotic zone would lead to rapid diatom
growth and a coupled enhanced export flux. However a more
recent study evidenced that there was no need of episodic
injections to maintain a balanced system in the permanently
oligotrophic and stratified ocean (Riser and Johnson, 2008).
In the oligotrophic Sargasso Sea, diatom contribution to pri-
mary production was as high as 26–48% and they contributed
to 30% of the carbon export through the year (Brzezinski and
Nelson, 1995; Nelson and Brzezinski, 1997). Other investi-
gations carried out in the Central-North Pacific revealed that
the siliceous phytoplankton can account for up to 25% of the
primary productivity (Brzezinski et al., 1998). Diatom con-
tribution to primary production is disproportionate compared
to their relatively low contribution to TChl-a biomass, which
was for instance<5% at BATS (Goericke, 1998; Steinberg
et al., 2001). A similar situation was observed in the HNLC
area of the Equatorial Pacific (Blain et al., 1997), where di-
atoms contribution to primary production was estimated to
represent up to 34% despite a low contribution to C biomass
(<6%). Given these previous observations, we suggest that
diatoms in the MS during the oligotrophic period may play a
similar important role in the ecosystem productivity and con-
tribute to a large part of new production and carbon export,
despite their relatively low contribution to biomass during
stratified conditions. This latter assumption can also be re-
vised in the light of our present data on the recurrence of non
negligible DSM in both the western and eastern basins, as
far as in the ultra-oligotrophic Levantine basin. Furthermore,
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the concentrations of BSi found in these DSM were much
higher than those found in the Sargasso Sea, the Equatorial
or Central North Pacific in the studies cited above, which
could also result in an even higher contribution of diatoms
to C export. However, the mere fact that the DSM/DCM is
a persistent feature in the MS implies that export rates re-
main low as long as this structure is present, or are otherwise
compensated by higher productivity within the DCM. In this
case, the contribution to export would be restrained to the
onset of winter mixing and disruption of the stratified layer,
which would then lead to an increased particulate matter flux
at depth. However, if intense grazing upon the DCM is con-
firmed, potential higher C export from faecal pellets could
already occur during late summer. Long-term immersion of
sediment traps, as well as the deployment of biogeochemi-
cal and bio-optical Argo-like floats in open waters of the MS
would help to test this hypothesis.

5 Conclusions

The Mediterranean pelagic ecosystem during summer and
fall constitutes a large oligotrophic system characterized by
a longitudinal gradient of stratification and nutrient depletion
increasing towards the East. In this system, N and P appear
to be the prominent limiting factors although Si could limit
the growth of diatoms at some stations. The phytoplankton
biomass is constrained within a deep chlorophyll maximum
where organisms take benefit from the nutrient diffusive
fluxes through the nutricline and sufficient light at the base
of the euphotic layer. Considering the definition of phyto-
plankton bloom by Wilson (2003) as sustained Chl-a values
>0.15 µg L−1, it would be adequate to characterise the MS as
hosting a deep summer bloom that is not visible by satellite
imagery and that would lead to modulate the characterization
of the Eastern basin as a “non bloom” region as suggested by
D’Ortenzio and Ribera d’Alcala (2009). Although usually
thought to be dominated by pico- and nanophytoplankton,
we show that this DCM can host an abundant diatom com-
munity as evidenced by the locally associated deep silica and
fucoxanthin maxima as well as diatom counts. The dom-
inant generaChaetoceros, Pseudo-nitzschia, Thalassiosira,
Hemiaulus, andRhizosolenia as well as the N2-fixing sym-
biontsRichelia intracellularis can take advantage of increas-
ing nutrient fluxes probably modulated by mesoscale eddies
controlling the successive deepening/shoaling of nutriclines.
Under some circumstances, diatom growth in those olig-
otrophic systems and their ability to locally dominate the
DCM community over nano- and picoplankton could pro-
foundly affect the ecosystem, notably by increasing new pro-
duction and carbon export as observed in other oligotrophic
systems worldwide.

Thanks to the PROSOPE and BOUM cruises, large-scale
data on the silicon cycle covering the whole Mediterranean
Sea during the stratified period were obtained for the first

time. There is now evidence that diatoms can actively de-
velop at depth in one of the most oligotrophic systems of the
World Ocean forming a “deep glass forest” in the MS during
summer and fall. We suggest that these DSM are recurrent
seasonal features, similar to those observed in the NPSG, al-
though non permanent year round and that the contribution of
diatoms harbouring cyanobacteria to N2 fixation needs to be
further evaluated as these DSM have most likely been under-
sampled. Future studies are needed to investigate the con-
tribution of these structures to the global MS productivity
and to carbon export at depth as well as the role of physical
submeso- to mesoscale processes on the formation and per-
sistence of the DCM/DSM throughout the summer/fall ther-
mal stratification.
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Quéguiner, B.: Biogenic silica production in the Australian sector
of the Subantarctic zone of the Southern Ocean in late summer
1998, J. Geophys. Res., 106, C12, doi:10.1029/2000JC000249,
2001.
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Tréguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J.,
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