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We report an experimental and numerical study of the spontaneous emergence of spectral incoherent solitons

through supercontinuum generation in a two zero-dispersion wavelengths photonic crystal fiber. By using a simple

experimental setup, we show that the highly nonlinear regime of supercontinuum generation is characterized by

the emergence of a spectral incoherent soliton in the low-frequency edge of the supercontinuum spectrum. We

show that a transition occurs from the discrete spectral incoherent soliton to its continuous counterpart as the

power of the laser is increased. Contrary to conventional solitons, spectral incoherent solitons do not exhibit a

confinement in the space-time domain, but solely in the frequency domain. These incoherent structures owe their

existence to the noninstantaneous nature of the nonlinear Raman effect and, more specifically, to the causality

property underlying the Raman response function.

DOI: 10.1103/PhysRevE.84.066605 PACS number(s): 05.45.Yv, 42.65.−k, 42.81.Dp

I. INTRODUCTION

During the last decade, the high nonlinearity of photonic

crystal fibers (PCF) and the ability to readily engineer their

dispersion characteristics have enabled the study of various

new nonlinear effects [1,2]. In particular, the process of

supercontinuum (SC) generation in a PCF has been extensively

studied and distinct regimes have been identified depending

on whether the PCF is pumped in the normal or anomalous

dispersion regimes, or with short (subpicosecond) or long

[picosecond, nanosecond, and quasi-continuous wave (cw)]

pump pulses (see Ref. [3] for more details). The spectral

broadening inherent to SC generation is usually interpreted

through the analysis of the following main contributions:

the four-wave mixing effect, the soliton fission, the Raman

self-frequency shift, and the generation of dispersive waves

[3–6].

In the case where the PCF is pumped with long pulses

in the anomalous dispersion regime, the general physical

picture is that modulation instability (MI) leads to the

generation of a train of solitonlike pulses, which are known

to emit (Cherenkov) radiation in the form of spectrally shifted

dispersive waves. Moreover, as a result of the Raman effect,

the generated optical solitons exhibit a self-frequency shift

towards longer wavelengths. The same picture holds when the

PCF exhibits two zero-dispersion wavelengths (ZDWs): The

Raman frequency shift of the solitons is eventually arrested in

the vicinity of the second ZDW, so that the SC spectrum is

essentially bounded by the corresponding dispersive waves

[5,6]. Accordingly, in all these regimes the existence of

coherent soliton structures plays a fundamental role in the

process of SC generation.

This usual physical picture of SC generation changes

profoundly when the pump power of the long pulses injected

in the PCF is increased in a substantial way. In this case, the

spectral broadening process is essentially dominated by the
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combined effects of the Kerr nonlinearity and higher-order

dispersion, i.e., by four-wave mixing processes [7]. More

precisely, in this regime the rapid and random temporal

fluctuations of the optical field prevent the formation of robust

coherent soliton structures. Note that this is a rather general

property of nonlinear wave systems: As the incoherence of the

wave increases, the system becomes “too hot” to generate

a coherent soliton structure (see, e.g., [8,9]). In this SC

regime, the optical field thus exhibits an incoherent turbulent

dynamics, in which coherent soliton structures no longer play

any significant role. In the following we shall call this regime

the “incoherent regime of SC generation” [10].

We have recently formulated a nonequilibrium kinetic

description of this incoherent regime of SC generation on

the basis of the weak-turbulence theory [10–12]. We showed

that, in the conservative limit, i.e., neglecting the dissipative

Raman effect, the four-wave mixing underlying the spectral

broadening of the incoherent optical field can be described

as a nonequilibrium thermodynamic process. In particular,

when the PCF is characterized by two closely spaced ZDWs,

SC generation can be interpreted as a consequence of the

thermalization of the optical field [10–12], i.e., the spectral

broadening results from the natural tendency of the optical

field to reach the thermal equilibrium state that realizes the

maximum of entropy [13–16]. More precisely, we showed

that the generated SC spectrum can be characterized by

an unexpected double-peak structure, which is nothing but

the fundamental Rayleigh-Jeans thermodynamic equilibrium

spectrum of light [11,12].

This process of SC thermalization takes place in the

conservative limit of the propagation of the optical field,

so that its description does not account for the dissipative

Raman effect. Actually, the analysis revealed that, besides the

thermalized SC spectrum, the Raman effect is responsible for

the generation of an incoherent structure in the low-frequency

edge of the spectrum [11]. The numerical simulations showed

that this incoherent structure exhibits qualitative properties

very similar to those of spectral incoherent solitons (SIS).

The SIS is a solitary wave structure that has been recently
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identified in Ref. [17]. It is of a fundamentally different

nature than conventional optical solitons, which are inherently

coherent localized structures. SISs are characterized by two

important properties: (i) The optical field associated with

a SIS is incoherent; (ii) contrary to conventional solitons,

SISs do not exhibit a confinement of the optical field in

the spatiotemporal domain, but exclusively in the spectral

domain (also see [18]). More precisely, the partially coherent

optical field associated with SIS is characterized by temporal

fluctuations that are statistically stationary in time, so that the

soliton behavior only manifests in the spectral domain, but not

in the temporal domain. We underline that SIS can be sustained

in both the normal and anomalous dispersion regimes. It is also

important to recall that SISs find their origin in the property

of causality that characterizes the Raman response function of

the nonlinear material [17].

In a recent theoretical work we showed that SISs identified

in Ref. [17] can also exhibit a discrete behavior [19]. In

substance, discrete SISs are characterized by three incoher-

ent spectral bands, whose frequencies refer to the central

frequency (ν j) and the corresponding Stokes (νS = ν j–νR)

and anti-Stokes (νA = ν j+νR) frequencies, where νR is the

Raman resonant frequency (νR ≈ 13.2 THz in silica fibers).

As a result of the Raman effect, a new Stokes component

is generated in the front of the soliton, which becomes in

turn the central band, and finally the anti-Stokes band in the

trailing edge of the soliton. In other terms, a new Raman band

grows up by absorbing the previously generated spectral band,

thus leading to a “discrete propagation” of the SIS toward

the low-frequency components: The discrete SIS propagates

without distortion in frequency space with a constant velocity,

without emitting any apparent radiation [19]. In order to avoid

confusion, in the following we shall term continuous SISs the

spectral solitons identified in [17], so as to distinguish them

from the discrete SISs recently predicted theoretically in [19].

The theory revealed that these kind of incoherent solitons can

be described in detail by a rather simple kinetic equation (KE),

which describes the evolution of the averaged spectrum of the

incoherent optical field [17,19]. Note that the structure of this

equation is analogous to a kinetic equation derived in plasma

physics to describe weak Langmuir turbulence and stimulated

Compton scattering [20,21].

Our aim in this article is to report the experimental observa-

tion of the emergence of both discrete and continuous SISs in

the highly nonlinear regime of SC generation. An experimental

procedure based on a cutback of the PCF with different

values of the pump power has allowed us to perform detailed

measurements of the evolution of the spectrum of the field

during its propagation. The experimental results are in good

agreement with the numerical simulations and thus provide a

signature of the emergence of discrete and continuous SISs. In

particular, in order to get physical insight into the generation

of SISs, we performed simulations with different models

characterized by different levels of approximations: (i) the

generalized nonlinear Schrödinger equation (GNLSE), (ii) a

reduced delayed nonlinear Schrödinger equation (RNLSE),

and (iii) the weak-turbulence KE, which is the simplest model

describing SISs [17]. The analysis reveals a remarkable agree-

ment between the experimental results and the simulations

of the KE, which thus gives experimental evidence of the

emergence of SISs from the SC spectrum. Although discrete

SISs are asymptotically generated, we show that in the first

stage of propagation a transition occurs from discrete SISs

to continuous SISs as the power injected into the PCF is

increased, a remarkable feature that is described in detail by

the KE.

Besides the context of SC generation, this work is also

important from a broader perspective. The study of incoherent

nonlinear optics is indeed attracting a growing interest in

various different fields of investigation, including, e.g., wave

propagation in homogeneous [22–29] or periodic media

[30], nonlinear imaging [31], cavity systems [32–40], or

nonlinear interferometry [41]. In particular, besides SC gener-

ation [10–12], the long-term evolution of partially coherent

optical waves has been studied in various circumstances

[23–29,42–47] and in various optical media characterized

by different nonlinearities [24,28,46,47]. In particular, the

long-term behavior of the field may be characterized by a

process of thermalization. As mentioned above, thermalization

of light manifests itself by means of an irreversible evolution

of the optical field toward the thermodynamic equilibrium

state, i.e., the Rayleigh-Jeans spectrum [13–16]. This process

of relaxation to equilibrium may be interpreted intuitively

as a consequence of the natural tendency of a closed sys-

tem to increase its entropy, i.e., the “‘amount of disorder”

in the optical field. SISs are important from this perspec-

tive: In contrast with the natural process of thermalization,

the optical field can self-organize into SISs, which thus

constitute genuine nonstationary and nonequilibrium stable

states of the incoherent optical field.

II. EXPERIMENTAL CONFIGURATION AND

NUMERICAL MODEL

The configuration of the experiment is the same as that

reported in [11]. Below we thus briefly sketch the experimental

setup and the experimental procedure, and we refer the reader

to Ref. [11] for more technical details. The main difference

with respect to the experiment reported in [11] is related to

the dispersion properties of the PCF. Contrary to [11] in which

the analysis was focused on the properties of the SC spectrum,

we are interested here in the dynamics of SISs generated in

the low-frequency range of the SC spectrum. We have thus

designed a PCF with a dispersion curve similar to that used in

[11], except that the two ZDWs have been shifted towards lower

wavelengths. In this way the emergence of SISs takes place

closer to the laser pump frequency, which thus enables the char-

acterization of SISs with a standard optical spectrum analyzer.

The pump laser frequency ν0 = 282 THz (λ0 = 1064 nm)

lies in the anomalous dispersion regime of the PCF, i.e., it

is located between the two ZDWs. It is important to note

that the two ZDWs are closely spaced in relation to each

other, a feature that accelerates the development of the highly

nonlinear and incoherent regime of SC generation [10–12].

Such closely spaced ZDWs can be obtained by using a mi-

crostructured cladding with a low pitch value. They are known

to substantially increase the gain of the modulation instability

(MI) thanks to the low value of the second-order dispersion

coefficient and the high nonlinearity. The fiber that we used

is a 21-m-long PCF manufactured by IRCICA. The scanning
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FIG. 1. (Color online) (a) Scanning electron microscope image of the PCF cross section. Calculated characteristics of the fundamental

mode: (b) Dispersion curve (left axis) showing two zero-dispersion wavelengths located at 910 and 1152 nm and nonlinear coefficient

(right axis), (c) confinement loss. The laser wavelength (λp = 1064 nm) lies between the two dispersion wavelengths in the anomalous

dispersion regime.

electron microscope image of the fiber cross section is illus-

trated in Fig. 1(a). The PCF has a core diameter of ∼2.3 μm,

pitch � = 1.45 μm, and relative air hole diameter d/� ≈

0.43, which ensures the endlessly single-mode guidance.

Linear and nonlinear properties related to the fundamental

mode such as the dispersion profile, nonlinear coefficient, and

confinement losses, were calculated using a commercial fully

vectorial mode solver [see Figs. 1(b) and 1(c)]. The two ZDWs

have been estimated to be 910 nm (νZDW1–ν0 ≈ 48 THz) and

1152 nm (νZDW2–ν0 ≈ –22 THz). At the pump wavelength,

our PCF exhibits a low anomalous dispersion value of

–3.5 ps2/km and its nonlinear parameter was calculated to

be γ = 30 W−1 km−1. Fiber losses were also measured to

be ∼0.04 dB/m around the pump wavelength, except at

FIG. 2. (Color online) (a) Experimental results using a loga-

rithmic intensity scale (dB) to illustrate the spectral evolution as a

function of propagation distance in our 21-m-long PCF, for an input

peak power about 1.32 kW. (b) Corresponding numerical simulations

of the GNLSE (1) with the fiber characteristics of Fig. 1(b) and

an input continuous wave. (c) Same as in (b) except that the initial

condition is a Gaussian pulse of 60 ps, i.e., approximately ten times

shorter than the experimental pulses. (d) Same as in (c), except that

fiber losses are neglected [α̂ = 0 in the GNLSE (1)]. In (b) a discrete

SIS moves away from the central part of the SC spectrum, which

slowly relaxes toward thermal equilibrium [10–12].

1380 nm due to the OH absorption peak [48] with losses

up to 0.24 dB/m, while beyond 1600 nm confinement losses

are dominant with values up to 1 dB/m. We made use

of a low-cost commercial high-power subnanosecond pump

delivering 660-ps pulses at 1064 nm with a peak power up

to 14 kW. This high-power quasi-cw pump allows us to

investigate the highly nonlinear and incoherent regime of SC

generation with pump powers exceeding 1 kW.

We performed numerical simulations of the following

generalized GNLSE, which is known to provide an accurate

description of the propagation of a broadband optical field in

a PCF [3]:

∂A

∂z
= i

∑

m�2

imβm

m!

∂mA

∂tm
+ iγ

[

1 + iτs

∂

∂t

]

×

[

A(z,t)

∫ +∞

−∞

R(t ′)|A(z,t − t ′)|2dt ′
]

− α̂A, (1)

where γ is the nonlinear coefficient at the pump frequency and

R(t) = (1−fR)δ(t) + fRhR(t) is the usual nonlinear response

function of silica fibers, which accounts for the instantaneous

Kerr effect and the noninstantaneous Raman response function

hR(t). The GNLSE (1) describes self-steepening effects

through the optical shock term (the term proportional to

iτ s∂/∂t), which accounts for the dispersion of the nonlinearity,

i.e., the frequency dependence of the nonlinear coefficient. As

usual in SC simulations, it is important to include higher-order

dispersion effects in the model of Eq. (1) so as to provide a

detailed description of the dispersion curve of the PCF. Finally,

the last term in the GNLSE takes into account the losses of the

PCF. The symbol α̂A means that its Fourier transform is α(ω)

A(z,ω), α(ω) being the losses of the optical field vs frequency.

For a complete discussion of the different terms of Eq. (1),

we refer the reader to Ref. [3]. Note that, in order to compare

the (single shot) numerical results with the spectra recorded

experimentally, the numerical spectra have been smoothed by

using the method described in Ref. [11]. We have verified that

the evolution of the spectrum does not depend significantly on

the noise superimposed on the input pulse.

III. EXPERIMENTAL RESULTS AND COMPARISON

TO SIMULATIONS

In order to provide experimental evidence of the emergence

of SISs through SC generation, it is important to record the
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FIG. 3. (Color online) (a) Calculated MI gain (m−1) bands as a function of pump wavelength for the dispersion curve of Fig. 1(b) and for

an input peak power of 1.32 kW. (The gray dashed line indicates our laser frequency). (b) MI gain calculated for our pump frequency from

(a) showing two sets of bands, the first one at ±22 THz, while the second one is located around ±65 THz. (c) Experimental spectrum recorded

after 20 cm of propagation in our PCF for an input peak power of 1.32 kW.

spectrum of the field at different propagation lengths, while

keeping fixed all other experimental parameters (e.g., injected

power). For this purpose, we performed an experiment by

cutting back the PCF length in increments of a few tens of

centimeters. For each length we recorded the spectrum for

three different values of the laser peak power, namely 1.32,

2.22, and 4.52 kW. We report in Fig. 2(a) the evolution of

the spectrum along the 21 m of the PCF for a peak power of

1.32 kW. We remark that each recorded spectrum does not

correspond to a single shot spectrum, but to the average of a

multitude of spectra (due to the long integration time of the

spectrometer with respect to the pump repetition rate), which

thus leads to a “partial smoothing” of the SC spectra (we refer

the reader to [11] for details). We observe in Fig. 2(a) a rapid

initial spectral broadening in the first meter of propagation

in the PCF, which is due to the development of two sets

of MI gain bands [also see Fig. 2(b)]. The fact that closely

spaced ZDWs lead to the formation of a double set of MI

gain bands has been recently studied theoretically in Ref. [49].

Figure 3(a) shows the scalar MI gain bands as a function of

the pump frequency calculated from the dispersion properties

of Fig. 1(b) using a 1.32 kW input power. We clearly note

a qualitative agreement between the two sets of predicted

MI gain bands at our pump frequency (∼282 THz) and the

experimental spectrum recorded after 20 cm of propagation

[see Figs. 3(b) and 3(c)]. The first one generates frequencies

around the pump frequency (at 22 THz), while the second

one takes place around 65 THz beyond the pump frequency

in the normal dispersion regime. We note in Fig. 2(a) that

the evolution of the spectrum exhibits a global asymmetric

shape with respect to the carrier frequency of the laser, ν0. As

discussed in our previous work [11], such asymmetry is in part

due to the Raman effect, which leads to a permanent transfer

of power toward the low-frequency components of the field. In

particular, we showed that the Raman effect is responsible for

the generation of an incoherent structure in the low-frequency

edge of the SC spectrum which is reminiscent of SISs [10,11].

We may note in Fig. 2 that the MI band located at –65 THz

plays a role analogous to a “seed” for the generation of the SIS.

This important observation will be the subject of a detailed

discussion in Sec. IV.

To further analyze the evolution of the experimental

spectrum, we report in Figs. 2(b)–2(d) a series of numerical

simulations obtained by integrating numerically the GNLSE

(1). These numerical simulations take into account the linear

and nonlinear properties of the PCF discussed above through

Fig. 1. In Fig. 2(b), the initial condition is a continuous wave,

whose power corresponds to the peak power of the pulses used

in the experiment (1.32 kW). A small amplitude noise has been

superimposed to the continuous wave so as to initiate the MI

process. The numerical simulation reveals the development

of a highly incoherent regime of interaction, where rapid

temporal fluctuations of the field prevent the formation of

robust coherent soliton structures. As in our previous works

[10,12], we analyzed with care the evolution of the field A(z,t)

in many different cases and no persistent coherent soliton

structures were identified. We remark in Fig. 2(b) that the

spectrum of the field essentially splits into two components,

i.e., a broad central part and a low-frequency branch that moves

away from the central part of the spectrum. This low-frequency

branch tends to evolve to a discrete SIS, which propagates in

the spectral domain toward the low-frequency components.

The discrete motion of the discrete SIS in frequency space is

clearly visible. In particular, the frequency distance between

adjacent discrete bands corresponds to the Raman resonant

frequency (νR ≈ 13.2 THz), a feature that we have also verified

in the experimental spectrum [Fig. 2(a)]. However, one may

notice in Fig. 2(b) that the propagation of the discrete SIS is

not truly invariant, since its spectral bands become thinner and

stretched during the propagation. This feature is exclusively

due to the losses of the PCF. Indeed, numerical simulations

identical to that reported in Fig. 2(b) have been realized in the

lossless limit [α̂ = 0 in Eq. (1)]. They reveal the formation of

a genuine discrete SIS that moves away from the SC spectrum

and that propagates without distortion in frequency space over

a broad spectral range that exceeds 10 νR , a remarkable feature

illustrated in Fig. 1 of Ref. [19].
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The comparison of Figs. 2(a) and 2(b) clearly reveals a

substantial difference between the experimental results and

the numerical simulation of the GNLSE (1). In the simulation

the discrete SIS moves away from the central part of the SC

spectrum, while in the experiment such a separation is not

apparent. This aspect was studied in detail in our previous

work [11]: The absence of a clear separation between the SIS

and the SC spectrum is due to the envelope profile of the pulses

delivered by our laser source. Indeed, we report in Fig. 2(c)

a numerical simulation realized in the same conditions as in

Fig. 2(b), except that the initial condition is not a continuous

wave, but a 60-ps Gaussian pulse with the same peak power

as in the experiment, 1.32 kW. Note that this value of the

pulse width is one order of magnitude smaller than that used

in the experiment (660 ps). Because of the huge numerical

time required by these simulations, we have not been able to

perform simulations with the experimental values of the pulse

widths. Nevertheless, the comparison of Figs. 2(b) and 2(c)

clearly shows the impact of the limited pulse duration of the

envelope profile. In particular, one may notice in Fig. 2(c)

that the envelope profile induces a stretching of the spectral

bands of the discrete SIS. This may be easily explained by

the fact that the spectral shift induced by the Raman effect

depends on the local value of the power on the pulse envelope:

The Raman spectral shift on the peak of the pulse occurs

before the corresponding spectral shift in the tails of the

pulse, which merely explains the stretching of the spectral

bands of the discrete SIS [Fig. 2(c)]. We corroborated this

interpretation by performing a numerical spectrogram during

the whole propagation of the field, whose analysis provided

results similar to those obtained in Ref. [11] (see Fig. 6 in [11]).

We finally note that, although the separation between the

discrete SIS and the central part of the SC spectrum is not

apparent in the experiment, we can identify in Figs. 2(a) and

2(c) the development of a small trough of the spectrum at

–65 THz from the laser frequency (i.e., 1380 nm). One may

ascribe such a spectral depletion to the fiber losses associated

with the OH absorption peak [48]. However, we report in

Fig. 2(d) the same numerical simulation realized in Fig. 2(c),

except that we removed the fiber losses [α̂ = 0 in Eq. (1)]. It

remarkably reveals that the evolution of the spectrum exhibits

the same spectral trough at –65 THz from the laser frequency.

This frequency precisely corresponds to the low-frequency

edge of the central part of the SC spectrum [Fig. 2(b)], below

which the emergence of the discrete SIS is clearly visible. The

spectral trough identified experimentally at –65 THz can thus

be attributed to the tendency of the spectral soliton to move

away from the SC spectrum. In Sec. IV we corroborate this

interpretation through the analysis of simple models of wave

propagation.

IV. DISCRETE AND CONTINUOUS SIS

Before entering into the details of the experimental results,

we would like to briefly comment on the general conditions

required to generate a SIS. In substance, an initial incoherent

optical field characterized by a (quasi-) stationary statistics

and a spectral width not negligible with respect to the Raman

spectral bandwidth should be transformed into a SIS during

the evolution, irrespective of the sign of the dispersion regime

that can be either normal or anomalous. It is also important to

verify that the incoherent optical wave evolves in the weakly

nonlinear regime [13–16], i.e., its time correlation tc has to be

short enough to make linear dispersive effects dominant with

respect to nonlinear effects, LD = t2
c

/

β2 ≪ LNL, where LD

and LNL are the dispersive and nonlinear characteristic lengths,

respectively (see, e.g., [48]). The assumption of a weakly

nonlinear regime plays an essential role in the derivation of

the KE (4), a feature that will be discussed in Sec. IV B. In

particular, the KE reveals that SISs can be sustained in both

the normal and anomalous dispersion regimes.

We analyze in this section the influence of the power of the

laser source on the dynamics of the emergence of SIS from the

SC spectrum. We show that in the first stage of propagation, a

transition occurs from the discrete SIS toward the continuous

SIS as the power injected in the PCF is increased. We report in

Figs. 4(a)–4(c) the experimental spectrum recorded after 75 cm

of propagation through the PCF for three different values of

the input peak power. We first note that 75 cm of propagation

are sufficient for a complete development of the MI bands.

As anticipated in the previous section, the lowest-frequency

MI band refers to the low-frequency edge of the SC spectrum

and thus plays the role of a seed for the generation of SISs. It

is important to note that, as in the standard MI process [48],

the spectral bandwidth of the MI gain increases as the pump

power is increased (in particular, it can lead to an overlapping

of the two sets of MI gain bands), a feature which is also

clearly visible in Fig. 4. Accordingly, the spectral seed of the

SIS becomes larger as the injected power increases. As we

shall see below, this spectral broadening is responsible for the

transition from the discrete to the continuous SIS.

FIG. 4. (Color online) (Black solid line) Experimental spectra recorded after 75 cm of propagation for three distinct values of input peak

power: (a) 1.32 kW, (b) 2.22 kW, and (c) 4.52 kW. The red dashed lines with circles are the secant-hyperbolic fits of the low-frequency edge of

the SC spectra, which play the role of seeds for the generation of SISs. The spectral widths and powers of the corresponding adjusted functions

are, respectively, (a) 3 THz, 150 W, (b) 6 THz, 250 W, and (c) 9 THz, 350 W. Note that the spectral modulations on the central part of the

spectra stem from the recording system used in our experiment, and refer to experimental artifacts [see also Figs. 5(a), 6(a), and 7(a)].
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A. Reduced delayed NLSE model

To analyze this transition in detail, we fitted the low-

frequency MI band recorded experimentally by a secant-

hyperbolic function for each of the three input powers. The

corresponding fits are shown in red in Fig. 4 and their

characteristics (spectral width and peak power) are given in

the figure caption. We considered these sech-fitting functions

as the initial condition of the optical wave and we performed

numerical simulations with a reduced model equation with

delayed nonlinear response, i.e., the Raman response. This re-

duced model only retains the essential ingredients responsible

for the existence of SIS, namely the lowest-order dispersion

effect and stimulated Raman scattering [17,19]:

∂A

∂z
= −i

β2

2

∂2A

∂t2

+ iγ

[

A(z,t)

∫ +∞

−∞

fRhR(t ′)|A(z,t − t ′)|2dt ′
]

. (2)

We emphasize that in this equation we only retained the

delayed nonlinear response, i.e., we neglected the instanta-

neous Kerr contribution. Equation (2) will be termed RNLSE

so as to distinguish it from the GNLSE (1). The RNLSE

(2) was shown to describe the essential properties of both

discrete and continuous SISs. We refer the reader to Ref.

[19] for a complete discussion of SISs in the framework of

the RNLSE (2). To be consistent, an average value of β2

(160 ps2/km) was considered in the RNLSE (2). It represents

a good approximation of the dispersion value of the PCF in the

frequency range swept by the SIS in the experiment. We made

use of the following analytical form of the Raman response

function hR(t):

hR(t) = H (t)[(1 − 0.21)τ1

(

τ−2
1 + τ−2

2

)

exp(−t/τ2)

× sin(t/τ1) + 0.21(2τb − t)τ−2
b exp(−t/τb)], (3)

which is known to be well approximated by a damped

harmonic oscillator response with τ 1 = 12.2 fs, τ 2 = 32 fs, and

τ b = 96 fs [50]. The Heaviside H (t) function in Eq. (3) reflects

the property of causality of the Raman response function.

Note that for the three different initial conditions considered in

Figs. 4(a)–4(c), we have verified that the optical field evolves

in the weakly nonlinear regime, i.e., LD is typically smaller

than LNL. This confirms the fact that the low-frequency MI

sideband can act as a seed for the generation of SISs.

The RNLSE (2) has been integrated numerically to model

the propagation of the wave between 0.75 and 21 m in the

PCF for the three values of the input powers considered in

Fig. 4. The initial condition refers to the previously fitted

secant-hyperbolic spectrum (see Fig. 4) with uncorrelated

random spectral phases. The assumption that the spectral

components are δ-correlated guarantees that the initial wave

A0(t) = A(z = 0.75 m, t) exhibits statistically stationary tem-

poral fluctuations. This property of stationary statistics is a

distinguished feature of SISs [17,19], and it has been also

verified in the numerical simulations of the GNLSE discussed

above through Fig. 2. The initial secant-hyperbolic spectrum is

superimposed on a background of small noise, which mimics

the quantum noise level (one photon per mode) [3]. Note that

in the absence of such noise background, the SIS is known to

undergo a slow adiabatic reshaping so as to adapt its shape to

the local value of the background noise [17,19].

The numerical simulations of the RNLSE (2) have been

directly compared with the experimental spectrum for the

three input powers considered in Fig. 4, and the corresponding

results are reported in Figs. 5–7. We observe a remarkable

qualitative agreement between the experimental evolution of

the SIS’s spectrum and the corresponding simulations of the

RNLSE (2). Such a good agreement confirms the fact that

the low-frequency branch of the spectrum is essentially ruled

by the second-order dispersion and the Raman effect, which

constitute the two necessary ingredients for the existence of

SISs. We stress in particular that a transition occurs from

the discrete SIS to the continuous SIS as the input power

is increased, i.e., from Fig. 5 to Fig. 7. Unfortunately, in Fig. 7

the limited spectral window of our analyzer (600–1750 nm)

allowed us to compare the experimental and numerical

evolutions of the SIS over a limited spectral range. However,

the agreement is remarkable, especially recalling the fact that

the instantaneous Kerr effect has been neglected in the RNLSE.

In particular, at small powers (Fig. 5), the evolution of the three

spectral bands of the discrete SIS is almost in quantitative

agreement with those recorded experimentally. Also, at high

power (Fig. 7), we may note that the SIS’s propagation in

frequency space is almost rectilinear for z > 6 m, as it should

be for a genuine SIS.

B. Kinetic equation

The numerical simulations of the RNLSE (2) discussed

above refer to a single realization of the initial random

noise that models the partial coherence of the optical wave.

Accordingly, the nonaveraged spectrum of the field is itself a

stochastic function which, by nature, cannot describe a soliton

behavior. To uncover the deterministic soliton behavior, one

has to resort to a statistical description of the incoherent field,

which is based on an average over the realizations (〈.〉) of

the random wave. The corresponding kinetic equation KE

describing the evolution of the averaged spectrum of the field

was derived in Ref. [51] in the general case, and we refer the

reader to this work for technical details.

The difficulty in the derivation of a KE relies on the

fundamental problem of achieving a closure of the hierarchy

of moments’ equations. Indeed, because of the nonlinear char-

acter of the original GNLSE, the evolution of the second-order

moment of the field [i.e., B(z, t , τ ) = <A(z, t + τ/2)A∗ (z,t–

τ/2)>] depends on the corresponding fourth-order moment.

In the same way, the equation for the fourth-order moment

depends on the sixth-order moment, and so on. In this way,

one obtains an infinite hierarchy of moment equations, in

which the nth-order moment depends on the (n + 2)th order

moment of the field. This makes the equations impossible to

solve unless some way can be found to truncate the hierarchy.

A simple way to achieve a closure of the hierarchy is to

assume that the optical field evolves in the weakly nonlinear

regime of propagation, LD ≪ LNL. In this regime the statistics

of the optical field is approximately Gaussian, so that the

property of factorizability of random Gaussian fields naturally

leads to a closure of the hierarchy of moments’ equations

[13–16]. The weak-turbulence theory is essentially based on
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FIG. 5. (Color online) (a) Experimental results illustrating the spectral evolution (in dB scale) as a function of propagation distance in our

21-m-long PCF, for an input peak power about 1.32 kW [similar to Fig. 2(a)]. (b) Numerical simulations of the reduced RNLSE (2) starting with

the secant-hyperbolic fit of Fig. 4(a). (c) Corresponding evolution of the averaged spectrum of the optical field, n(z,ω), obtained by integrating

numerically the KE (4) with the same initial condition as in Fig. 5(b).

this approximation, which is usually called “random phase

approximation” [13–16,51,52].

The weak turbulence KE can be derived from the RNLSE

(2) and, in the general case, it exhibits a complicated form

[51]. However, we verified in the numerical simulations that

the optical field exhibits fluctuations that are statistically

stationary, which means that the correlation function only

depends on the time lag τ , B(z,τ ). Under the assumption

of stationary statistics, the KE for the averaged spectrum,

n(z,ω) =
∫

B(z,τ ) exp[–iωτ ]dτ , takes the following simple

form [17]:

∂n(z,ω)

∂z
=

γ

π
n(z,ω)

∫ +∞

−∞

g(ω − ω′)n(z,ω′)dω′, (4)

where g(ω) = Im[h̃R(ω)] is the imaginary part of the Fourier

transform of the response function hR(t), i.e., the Raman gain

spectrum. Note that this kinetic equation does not account for

dispersion effects [Eq. (4) does not depend on β2], although

the role of dispersion in its derivation is essential in order

to verify the weakly nonlinear criterion, LD/LNL≪1. Then

according to the KE (4), SISs are sustained in both the

normal and the anomalous dispersion regime, a remarkable

property that we have verified by direct numerical simulations

of the RNLSE (2) in Ref. [19]. A more general form of the

KE (4) has been the subject of a lot of studies in plasma

physics, in particular to model weak Langmuir turbulence [20].

An analytical soliton solution to the KE (4) has been also

derived in the context of stimulated Compton scattering [21].

This solution has been recently generalized in the context

of optics in Ref. [51]. From a general point of view, a

comparison between noninstantaneous and nonlocal nonlinear

effects reveals that, in substance, the existence of SISs rely

on the causality property of the Raman response function, a

feature that was discussed in detail in Ref. [19].

The KE (4) has been recently shown to describe in detail

all the properties of both discrete and continuous SISs [19].

In the following we show that it also describes the emergence

of SIS observed in the SC experiment. Indeed, we performed

numerical simulations of the KE (4) taking as initial conditions

the secant-hyperbolic fit discussed above through Fig. 3. As for

the RNLSE simulations, the secant-hyperbolic is superposed

on a constant background whose amplitude is determined by

the corresponding value of the averaged quantum noise. Note

that we did not include any noise in the simulations of Eq. (4),

since the KE describes the deterministic evolution of the

averaged spectrum of the field. We report in Figs. 5(c), 6(c), and

7(c) the corresponding evolutions of the spectra for the three

different values of the power. We underline that a quantitative

agreement is obtained between the simulations of the KE

and the RNLSE, without using any adjustable parameter.

In particular, the simulations confirm that a transition occurs

from the discrete to the continuous SIS as the input power is

increased. This transition may be intuitively interpreted as a

consequence of the broadening of the initial MI spectral seed.

For a spectral width of 3 THz (Fig. 5), the optical field exhibits

a discrete Raman shift simply because the low-frequency tail

of the spectrum exhibits a much higher gain as compared to the

FIG. 6. (Color online) (a) Experimental results illustrating the spectral evolution (in dB scale) as a function of propagation distance in our

21-m-long PCF, for an input peak power about 2.22 kW. (b) Numerical simulations of the reduced RNLSE (2) starting with the secant-hyperbolic

fit of Fig. 4(b). (c) Corresponding evolution of the averaged spectrum of the optical field, n(z,ω), obtained by integrating numerically the KE

(4) with the same initial condition as in Fig. 6(b).
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FIG. 7. (Color online) (a) Experimental results illustrating the spectral evolution (in dB scale) as a function of propagation distance in our

21-m-long PCF, for an input peak power about 4.52 kW. (b) Numerical simulations of the reduced RNLSE (2) starting with the secant-hyperbolic

fit of Fig. 4(c). (c) Corresponding evolution of the averaged spectrum of the optical field, n(z,ω), obtained by integrating numerically the KE

(4) with the same initial condition as in Fig. 7(b).

mean gain of the whole front of the spectrum. Conversely, the

Raman shift becomes continuous for the broad spectral width

(9 THz) considered in Fig. 7.

It is important to underline that the continuous SIS behavior

discussed in Fig. 7 only characterizes the first stage of the

propagation of the optical field, i.e., z<15 m. Recalling that

a power of 350 W is contained in the initial MI seed, this

propagation length typically corresponds to 150 nonlinear

lengths LNL. Although this propagation length is considerable,

it corresponds only to the first stage of the SIS evolution.

Indeed, the previous study reported in [19] revealed that

continuous SISs can be extremely robust for very long

propagation distances, while at some specific propagation

length they may suddenly decay to a stable discrete SIS (see,

e.g., Fig. 3 of [19]). This is indeed what happens in the example

of Fig. 7, as revealed by the simulation of the KE reported in

Fig. 8 for longer propagation distances. Actually, the parameter

that determines the robustness of a continuous SIS is the

amplitude of the noise background: As the background noise

level decreases, the continuous SIS becomes unstable and

relaxes toward its discrete counterpart [19]. In the experiment

the amplitude of the noise background is determined by the

quantum noise level, which is extremely small. Accordingly,

the apparently stable behavior of the SIS reported in Figs. 7(b)

and 7(c) refers in fact to a transient evolution, since the

continuous SIS suddenly decays to a discrete SIS at z ≈ 20 m

FIG. 8. (Color online) Numerical simulation of the KE (4)

showing the long-term propagation of the simulation reported in

Fig. 7(c). The continuous SIS is unstable and relaxes at z ≈

20 m toward a discrete SIS during the propagation.

(see Fig. 8). Actually, the issue of the stability properties

of SISs is a difficult problem whose study goes beyond the

present work and will be the subject of future investigations.

Nevertheless, to conclude this section, we underline that the

kinetic description of the experiment corroborates the previous

study of the RNLSE (Sec. IV A) and thus confirms that

the evolution of the incoherent structure identified in the

low-frequency edge of the SC experiment can be interpreted

as the emergence of a SIS.

V. CONCLUSION

In summary we have reported an experimental and numer-

ical study of the emergence of SIS in the incoherent regime of

SC generation in a two ZDWs PCF. An experimental cutback

of the PCF has allowed us to perform detailed measurements

of the evolution of the spectrum during the propagation of

the field. The emergence of SIS from the SC spectrum has

been analyzed in the framework of the reduced RNLSE and

the weak-turbulence KE. It turns out that the KE captures the

essential dynamical features that characterize the emergence of

SIS through SC generation. In particular, the analysis reveals

that in the first stage of propagation a transition from the

discrete SIS toward the continuous SIS occurs as the power

injected into the PCF is increased. On the other hand, although

the continuous SIS is preserved for more than 100 nonlinear

lengths LNL, it is shown to suddenly decay to a stable discrete

SIS. In a loose sense, this suggests that continuous SIS may

exhibit a kind of metastable behavior, a feature that will be the

subject of future investigations.
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