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Abstract

Statistical testing can be framed as a repetitive game between two players, Forecaster and Sceptic.
On each round, Forecaster sets prices for various gambles, and Sceptic chooses which gambles
to make. If Sceptic multiplies by a large factor the capital he puts at risk, he has evidence against
Forecaster’s ability. His capital at the end of each round isa measure of his evidence against
Forecaster so far. This can go up and then back down. If you report the maximum so far instead
of the current value, you are exaggerating the evidence against Forecaster. In this article, we show
how to remove the exaggeration. Removing it means systematically reducing the maximum in
such a way that a rival to Sceptic can always play so as to obtain current evidence as good as
Sceptic’s reduced maximum. We characterize the functions that can achieve such reductions.
Because these functions may impose only modest reductions,we think of our result as a method
of insuring against loss of evidence. In the context of an actual market, it is a method of insuring
against the loss of what an investor has gained so far.

1. Introduction

In game-theoretic probability (see, e.g., Shafer and Vovk 2001) Sceptic tries to prove Fore-
caster wrong by gambling against him: the values of Sceptic’s capitalKn measure the changing
evidence against Forecaster. We assume that Sceptic’s initial capital isK0 = 1, and that Sceptic
is required to ensure thatKn ≥ 0 at each timen.

Sceptic can lose as well as gain evidence. At a timen whenKn is large Forecaster’s per-
formance looks poor, but thenKi for some later timei may be lower and make Forecaster look
better. Our result will show that, for a modest cost, Scepticcan avoid losing too much evidence.

Suppose we exaggerate the evidence against Forecaster by considering not the current value
Kn of Sceptic’s capital but the greatest value so far:

K∗n := max
i≤n
Ki .
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Continuing research started in Shafer et al. (2010a), we show that there are many functions
F : [1,∞)→ [0,∞) such that

1. F(y)→ ∞ asy→ ∞ almost as fast asy, and
2. Sceptic’s moves can be modified on-line in such a way that the modified moves lead to

capital
K ′n ≥ F(K∗n), n = 1, 2, . . . . (1)

If we are dissatisfied by the asymptotic character of the firstof these two conditions, which does
not preventK ′n/Kn from becoming very small for somen, we can compromise by putting a
fractionc of the initial capital on Sceptic’s original moves and the remaining fraction 1− c on
the modified moves, thus obtaining capitalcKn + (1 − c)K ′n at each timen. This way Sceptic
may sacrifice a fraction 1− c of his capital but gets extra insurance against losing evidence. See
Section 3 for details.

As we will show, the set of nondecreasing functionsF for which (1) can be achieved can be
characterized very simply: it is the set of all nondecreasing F that satisfy

∫ ∞

1

F(y)
y2

dy ≤ 1. (2)

Similar results hold in measure-theoretic probability. One similar measure-theoretic result, for
the case where Sceptic’s strategy is known in advance, is proven in Shafer et al. (2010a) using a
simple method based on Lévy’s zero-one law. Lévy’s zero-one law generalizes to game-theoretic
probability (see Shafer et al. 2010b), but in the present article, where Sceptic’s strategy is not
necessarily known in advance and Sceptic’s moves must be modified on-line, we use an entirely
different method of proof, based on the idea of stopping and combining capital processes. This
idea has been used previously by various authors, e.g., El-Yaniv et al. (2001, Theorem 1, based
on Leonid Levin’s personal communication) and Shafer and Vovk (2001, Lemma 3.1). We show
that it gives optimal results in the setting of this article.

In Section 4 we explain the meaning of our results in the case where Sceptic represents
someone actually trying to make money, not a method for testing forecasts. Suppose Sceptic
is a gambler (or an investor) who comes to a casino (stock market) with initial capital 1. On
each round, we are allowed to observe how she gambles and thengamble on the same outcome,
before observing it, and we want to do so in such a way that our capital will always be at least
F(K∗), whereF is a fixed nondecreasing function andK∗ is her maximal capital so far. For
which functionsF can our goal be achieved? ForF satisfying (2).

Alternatively, suppose we have some commodity, such as gold, that we want to sell within
a fixed period, say a year. We would like to sell it at the point in time during the year when its
price is highest, but of course we never know whether the current price will be exceeded later. If
F satisfies (2), we have a strategy that guarantees the priceF(K∗), whereK∗ is the highest price
over the year. This provides an imperfect alternative to buying a floating lookback put option
(see, e.g., Hull 2009, Section 24.8); we get less protection, but we get it for free.

The main idea of the proof can also be explained in these terms. For every thresholdu we
consider the strategy that stops playing when the current capital reaches (or exceeds)u. This
corresponds to the functionFu(y) := u I{y≥u}. (If E is some property,I{E} is defined to be 1 ifE is
satisfied and 0 if not.) Now we can mix these strategies according to some probability measureP
on u. It remains to notice that every nondecreasing functionF satisfying (2) can be represented
as such a mixture:F(y) =

∫
Fu(y)P(du) =

∫ y

1
uP(du).
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In this article, we use the standard notationR for the set of real numbers; the set of natu-
ral numbers isN := {1, 2, . . .}. The extended real line [−∞,∞] is denotedR, and we use the
convention∞ + (−∞) := ∞.

2. Calibrating exaggerated evidence

Our prediction protocol involves four players: Forecaster, Sceptic, Rival Sceptic, and Reality.

Protocol 1 Competitive scepticism
K0 := 1 andK ′0 := 1
for n = 1, 2, . . . do

Forecaster announcesEn ∈ E
Sceptic announcesfn ∈ [0,∞]X such thatEn( fn) ≤ Kn−1

Rival Sceptic announcesf ′n ∈ [0,∞]X such thatEn( f ′n) ≤ K ′n−1
Reality announcesxn ∈ X
Kn := fn(xn) andK ′n := f ′n(xn)

end for

The parameter of the protocol is a setX, from which Reality chooses her moves;E is the set of all
“outer probability contents” onX (to be defined shortly). We always assume thatX contains at
least two distinct elements. The reader who is not interested in the most general statement of our
result and in Section 4 can interpretE as the set of all expectation functionalsE : f 7→

∫
f dP, P

being a probability measure on a fixedσ-algebra onX; in this case Sceptic and Rival Sceptic are
required to output functions that are measurable w.r. to that σ-algebra.

In general, anouter probability contentonX is a functionE : RX → R (whereRX is the set
of all functions f : X → R) that satisfies the following four axioms:

1. If f , g ∈ RX and f ≤ g, thenE( f ) ≤ E(g).
2. If f ∈ RX andc ∈ (0,∞), thenE(c f) = cE( f ).
3. If f , g ∈ RX, thenE( f + g) ≤ E( f ) + E(g).
4. For eachc ∈ R, E(c) = c, where thec in parentheses is the function inRX that is identically

equal toc.

An axiom ofσ-subadditivity on [0,∞]X is sometimes added to this list, but we do not need it in
this article. (And it is surprising how rarely it is needed ingeneral: see, e.g., Shafer et al. 2010b.)
In our terminology we follow Hoffmann-Jørgensen (1987) and Shafer et al. (2010b). Upper
previsions studied in the theory of imprecise probabilities (see, e.g., de Cooman and Hermans
2008) are closely related to (but somewhat more restrictivethan) outer probability contents.

Protocol 1 describes a perfect-information game in which Sceptic tries to discredit the outer
probability contentsEn issued by Forecaster as a faithful description of Reality’sxn ∈ X. The
players make their moves sequentially in the indicated order. On each round Sceptic and Rival
Sceptic choose gamblesfn and f ′n on howxn is going to come out, and their resulting capitals
areKn andK ′n, respectively. Discarding capital is allowed, but Scepticand Rival Sceptic are
required to ensure thatKn ≥ 0 andK ′n ≥ 0, respectively; this is achieved by requiring thatfn and
f ′n should be nonnegative.

Let us call a nondecreasing functionF : [1,∞)→ [0,∞) acapital calibrator if there exists a
strategy for Rival Sceptic that guarantees (1) withF(∞) understood to be limy→∞ F(y). We say
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that a capital calibratorF dominatesa capital calibratorG if F(y) ≥ G(y) for all y ∈ [1,∞). We
say thatF strictly dominates Gif F dominatesG andF(y) > G(y) for somey ∈ [1,∞). A capital
calibrator isadmissibleif it is not strictly dominated by any other capital calibrator.

Theorem 1. 1. A nondecreasing function F: [1,∞) → [0,∞) is a capital calibrator if and
only if it satisfies (2).

2. Any capital calibrator is dominated by an admissible capital calibrator.
3. A capital calibrator is admissible if and only if it is right-continuous and

∫ ∞

1

F(y)
y2

dy = 1. (3)

Proof. First we prove that any nondecreasing functionF : [1,∞)→ [0,∞) satisfying

F(y) =
∫

[1,y]
uP(du), ∀y ∈ [1,∞), (4)

for a probability measureP on [1,∞) is a capital calibrator. For eachu ≥ 1, define the following
strategy for Rival Sceptic: on roundn, the strategy outputs

f (u)
n :=


fn if K∗n−1 < u

u otherwise

as Rival Sceptic’s movef ′n. Let us check that this is a valid strategy, i.e., thatEn( f (u)
n ) ≤ K (u)

n−1,

n ∈ N, whereK (u) is defined byK (u)
0 := 1 andK (u)

n := f (u)
n (xn) for n ∈ N. There are three cases

to consider:

1. If K∗n−1 < u, we haveK (u)
n−1 = Kn−1 andEn( f (u)

n ) = En( fn) ≤ Kn−1 = K (u)
n−1.

2. If n is the smallest number for whichK∗n−1 ≥ u, we haveK (u)
n−1 = Kn−1 ≥ u andEn( f (u)

n ) =
En(u) = u ≤ K (u)

n−1.

3. Otherwise, we haveK (u)
n−1 = u and soEn( f (u)

n ) = En(u) = u = K (u)
n−1.

Set f ′n(x) :=
∫
[1,∞)

f (u)
n (x)P(du), x ∈ X; this givesK ′n =

∫
[1,∞)
K (u)

n P(du) when we setx to xn. Let
us check that this is a valid strategy for Rival Sceptic, i.e., thatEn( f ′n) ≤ K ′n−1 for all n ∈ N. This
is now obvious ifEn are expectation functionals, and in general we have

En( f ′n) = En

(∫

[1,∞)
f (u)
n P(du)

)

= En

(∫

[1,∞)

(
I{K∗n−1<u} fn + I{K∗n−1≥u} u

)
P(du)

)

= En

P((K∗n−1,∞)) fn +
∫

[1,K∗n−1]
uP(du)



≤ P((K∗n−1,∞))Kn−1 +

∫

[1,K∗n−1]
uP(du)

=

∫

(K∗n−1,∞)
Kn−1P(du) +

∫

(K∗n−2,K∗n−1]
uP(du) +

∫

[1,K∗n−2]
uP(du)

4



≤
∫

(K∗n−1,∞)
K (u)

n−1P(du) +
∫

(K∗n−2,K∗n−1]
K (u)

n−1P(du) +
∫

[1,K∗n−2]
K (u)

n−1P(du)

=

∫

[1,∞)
K (u)

n−1P(du) = K ′n−1.

The last inequality used the analysis of the three cases above. For small values ofn, our con-
vention wasK∗0 := 1 andK∗−1 := 1. Notice that our argument only used Axioms 2–4 for outer
probability contents; noσ-subadditivity was required. This strategy will guarantee

K ′n =
∫

[1,∞)
K (u)

n P(du) ≥
∫

[1,K∗n ]
K (u)

n P(du) ≥
∫

[1,K∗n ]
uP(du) = F(K∗n). (5)

We can now finish the proof of the statement “if” in part 1 of thetheorem, which says that
any nondecreasing functionF : [1,∞) → [0,∞) satisfying (2) is a capital calibrator. Without
loss of generality we can assume thatF is right-continuous and that (3) holds. It remains to apply
Lemma 1 below.

Let us now check that every capital calibrator satisfies (2).Suppose a capital calibratorF
violates (2). We can decreaseF so that, for somea > 1 andN ∈ N, it is constant in each interval
[an−1, an), n = 1, . . . ,N, is zero in [aN,∞), and still violates (2). Of course,F is still a capital

calibrator. The substitutionx = 1/y shows that
∫ 1

0
F(1/x)dx > 1, which can be rewritten as

F(1)

(
1− 1

a

)
+ F(a)

(
1
a
− 1

a2

)
+ · · · + F(aN−1)

(
1

aN−1
− 1

aN

)
> 1. (6)

Suppose, without loss of generality, thatX ⊇ {0, 1}, and let Forecaster always choose

En( f ) :=
1
a

f (1)+

(
1− 1

a

)
f (0), n ∈ N. (7)

Let Sceptic play the strategy of always betting all his capital on 1: fn(1) := aKn−1 and fn(x) :=
0 for x , 1. ThenK∗N = an wheren is the number of 1s output by Reality before the first
element different from 1 (except thatn = N if Reality outputs only 1s during the firstN rounds).
Backward induction shows that the initial capitalK ′0 required to ensureK ′N ≥ F(K∗N) must be at
least

F(aN)

(
1
a

)N

+ F(aN−1)

(
1
a

)N−1 (
1− 1

a

)
+ F(aN−2)

(
1
a

)N−2 (
1− 1

a

)

+ · · · + F(a)
1
a

(
1− 1

a

)
+ F(1)

(
1− 1

a

)
> 1; (8)

the inequality follows from (6), but we know that it is false asK ′0 = 1.
We have proved part 1 of the theorem. Part 3 is now obvious, andpart 2 follows from parts 1

and 3.

The following lemma was used in the proof of Theorem 1.

Lemma 1. A nondecreasing right-continuous function F: [1,∞) → [0,∞) satisfies (3) if and
only if (4) holds for some probability measure P on[1,∞).

5



Proof. Let us first check that the existence of a probability measureP satisfying (4) implies (3).
We have:

∫

[1,∞)

F(y)
y2

dy =
∫

[1,∞)

∫

[1,y]

u
y2

P(du)dy =
∫

[1,∞)

∫

[u,∞)

u
y2

dyP(du) =
∫

[1,∞)
P(du) = 1. (9)

It remains to check that any nondecreasing right-continuous F : [1,∞) → [0,∞) satisfy-
ing (3) satisfies (4) for some probability measureP on [1,∞). Let Q be the measure on [1,∞)
(σ-finite but not necessarily a probability measure) with distribution functionF, in the sense that
Q([1, y]) = F(y) for all y ∈ [1,∞). SetP(du) := (1/u)Q(du). We then have (4), and the calcula-
tion (9) shows that theσ-finite measureP must be a probability measure (were it not, we would
not have an equality in (3)).

According to (3), the function
F(y) := αy1−α (10)

is an admissible capital calibrator for anyα ∈ (0, 1).

3. Insuring against loss of evidence

Condition (2) implies lim infy→∞ F(y)/y = 0. Therefore, as we mentioned in Section 1,
K ′n/Kn may be very small for somen even if (1) holds, and we pointed out a simple way to use
Theorem 1 for insuring against this possibility. The following corollary says that it leads to an
optimal result.

Corollary 1. Let c≥ 0 and F : [1,∞)→ [0,∞) be a nondecreasing function. Rival Sceptic has
a strategy ensuring

K ′n ≥ cKn + F(K∗n) (11)

if and only if c and F satisfy ∫ ∞

1

F(y)
y2

dy ≤ 1− c. (12)

Proof. Suppose (12) is satisfied; in particular,c ∈ [0, 1). Usingc fn + (1− c) f ′n as Rival Sceptic’s
strategy, wherefn are Sceptic’s moves andf ′n are Rival Sceptic’s moves guaranteeingK ′n ≥

1
1−cF(K∗n) (cf. Theorem 1), we can see that Rival Sceptic can guarantee(11).

Now suppose Rival Sceptic can ensure (11), but (12) is violated. As in the proof of Theo-
rem 1, we can decreaseF so that, for somea > 1 andN ∈ N, it is constant in each interval
[an−1, an), n = 1, . . . ,N, is zero in [aN,∞), and still violates (12). Similarly to (6), we have

F(1)

(
1− 1

a

)
+ F(a)

(
1
a
− 1

a2

)
+ · · · + F(aN−1)

(
1

aN−1
− 1

aN

)
> 1− c.

SupposeX ⊇ {0, 1} and define Forecaster’s and Sceptic’s strategies as before.Now backward
induction shows that the initial capitalK ′0 required to ensureK ′N ≥ cKN+F(K∗N) must be at least

caN

(
1
a

)N

+ F(aN)

(
1
a

)N

+ F(aN−1)

(
1
a

)N−1 (
1− 1

a

)
+ F(aN−2)

(
1
a

)N−2 (
1− 1

a

)

+ · · · + F(a)
1
a

(
1− 1

a

)
+ F(1)

(
1− 1

a

)
> c+ (1− c) = 1.

This contradictsK ′0 = 1.
6



According to (10) and (11), Rival Sceptic can guarantee

K ′n ≥ cKn + (1− c)α(K∗n)1−α (13)

for any constantsc ∈ [0, 1] andα ∈ (0, 1).
Corollary 1 does not mean that (13) or, more generally, (11) cannot be improved; it only says

that the improvement will not be significant enough to decrease the coefficient in front ofKn.
For example, if we do not discard the term

∫
(K∗n ,∞)

K (u)
n P(du) in (5), we will obtain

K ′n ≥ P((K∗n ,∞))Kn + F(K∗n). (14)

The coefficientP((K∗n ,∞)) in front ofKn tends to zero asK∗n → ∞.
In particular, using (14) allows us to improve (13) to

K ′n ≥ cKn + (1− c)(1− α)(K∗n)−αKn + (1− c)α(K∗n)1−α.

4. Insuring against loss of money

In conclusion, we discuss an application of our results to finance. Consider a financial market
in which K securities are traded over successive periods. Recall thatthe return of a security
during a trading period is the ratio

closing price− opening price
opening price

,

and letxk
n be thekth security’s return in thenth trading period. For each periodn, write xn for the

vector (x1
n, . . . , x

K
n ), which is inX := [−1,∞)K.

Now consider how an investor might invest in the market during periodn. Write γk
n for the

amount of money invested in securityk during periodn, and writeγn for the vector (γ1
n, . . . , γ

K
n ).

Under the simplifying assumption that the investor is allowed to go long or short by any amount,
γn can be any vector inRK . If the investor choosesγn and the market choosesxn, then the
investor’s profit will beγ1

nx1
n + · · · + γK

n xK
n .

This simple model of a financial market can be embedded in Protocol 1 as follows. As we
said,X := [−1,∞)K. On each round Forecaster chooses the same outer probability content
En = E onX, which is defined by

E( f ) := inf
{
K | ∃γ ∈ RK∀x ∈ X : K + γ1x1 + · · · + γK xK ≥ f (x)

}
.

We leave it to the reader to verify that this satisfies the axioms for an outer probability content.
In the situation of Protocol 1, where the functionf is nonnegative, the infimum does not change
if we additionally require thatγ1, . . . , γK should be nonnegative and sum to at mostK , and
therefore, inf is attained and can be replaced with min.

Now Forecaster is a dummy player, Sceptic is an investor in the market, Rival Sceptic is
another investor, who decides on his own investment for eachtrading period after seeing Sceptic’s
decision, and Reality is the market. The initial capital is 1for both investors. Results of this
article show that Rival Sceptic can modify Sceptic’s decisions in such a way that his capitalK ′n
never drops much below the maximal valueK∗n achieved by Sceptic’s capitalKi so far. For
example, for any constantsc ∈ [0, 1] andα ∈ (0, 1), Rival Sceptic can guarantee (13).

7



Corollary 2. Let F : [1,∞) → [0,∞) be a nondecreasing function. In the protocol of this
section, Rival Sceptic has a strategy ensuring (1) if and only if F satisfies (2). Let c≥ 0. Rival
Sceptic has a strategy ensuring (11) if and only if c and F satisfy (12).

Proof. We will only prove the first statement. As discussed, the part“if” is a special case of
Theorem 1. The part “only if” is proved using the same idea as before. Namely, supposeF
violates (2). Leta > 1 andN ∈ N satisfy (6). We can assume, without loss of generality, that
Reality is restricted to choosingxn ∈ {u, d}, whereu, d ∈ X are the vectorsu := (a− 1, 0, . . . , 0)
andd := (−1, 0, . . . , 0). A simple calculation shows that, under this restriction,

E( f ) =
1
a

f (u) +

(
1− 1

a

)
f (d)

(cf. (7)). Suppose Sceptic always choosesγn = (Kn−1, 0, . . . , 0) (i.e., invests all his capital in the
1st security). As before, backward induction gives (8), andwe arrive at a contradiction.

We can apply these ideas not only to securities but also to commodities or dynamic portfo-
lios of securities. In particular, our two stories at the endof Section 1 are special cases of the
framework of this section corresponding toK = 1. (The case of an arbitraryK is not really more
general: as far as our results are concerned, it reduces to the case ofK = 1, since our argument
is also applicable to Sceptic’s returns.)
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