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Proportional Two Integral (P2I) Observer synthesis for Single Track
Vehicle

Chabane Chenane, Dalil Ichalal, Hichem Arioui and Said Mammar

Abstract— This paper deals with state estimation of Pow-
ered Two Wheeled (PTW) vehicle and robust reconstruction
of related unknown inputs. For this purpose, we consider
a Proportional two Integral (P2I) observer. Based on LMI
technique, we recover vehicle states and part of its dynamics
(rider action) within steering angle disturbances and system
uncertainties.

To prove the effectiveness and the robustness of the pro-
posed observer, two different scenarios are considered: first
we observe the system with disturbances without system’s
uncertainties. The second case is more general as the observer
synthesis is conducted in the presence of steering angle dis-
turbances/system’s uncertainties. Both the state and the rider
action, on the handlebar, are recovered in the two cases.

I. I NTRODUCTION

In recent years, the use of powered two wheeled (PTW)
vehicles is constantly growing, upsetting driving practices
and road traffic. Unfortunately, this change is also followed
by an increased risk of accident (20 times higher when
driving a car). The statistics confirm this observation and
riders are considered as the most vulnerable road users. In
2010, the French Agency of Road Safety made a finding
of around 1000 deaths (25% of traffic fatalities), while the
traffic volumes of motorcycles does not exceed 1%, [14].
Several reaserch programs are launched to answer this issue
and to find solutions in term of preventive and / or active
safety, [1], [3].

The success of these research programs or proposed safety
systems depends on the knowledge of: 1) the dynamics
of vehicle, including motorcycles, and 2) the evolution of
its states (observation/estimation). Regarding the first point,
several studies were carried out in order to understand the
motorcycle dynamics [18], [7], [9], stability analysis (eigen-
modes) of PTW [2], optimal and safe trajectories [4] and the
proposal of risk functions [19], [8] to detect borderline cases
of loss of adhesion or equilibrium. These research are very
few sustainable if they are not backed by a system (sensors
or observation technique) for estimating the dynamic states
of the bike.

The measurement, by sensors, of all the dynamic states
of the bike is not conceivable for two reasons: 1) instru-
mentation can be very expensive and leading inevitably to
expensive new bikes, and 2) according to used technologies,
the measurement noise can seriously compromise the future
safety systems. Thus, we propose to use the observation
techniques to overcome the previous shortcomings. In this
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context, including all methodologies (Luenberger observer,
Takagi-Seguno based observer, Extended Kalman filter), very
few studies exist [10], [20]. The present paper proposes a ro-
bust proportional two integral approach, [12], [11], [13],[17],
helping in states observation of linear motorcycle model and
the reconstruction of rider’s action (couple or steering angle)
under disturbances and system’s uncertainties. Disturbances
and the rider action are assumed to be almost affine. This
assumption is quite realistic according to common variation
of roads profile. AnH∞ performance index is included during
the design in order to attenuate the effect of the second
derivative of the Unknown Input (UI) on the estimation error.

This paper is organized as follows: section II is dedicated
to the motorcycle model description. Sections III and IV
present the robust estimation of the motorcycle states and
UI reconstruction. Finally, simulation results and conclusions
are given.

II. DYNAMIC MODEL OF MOTORCYCLE

The single track vehicle is more difficult to study than
the automobile. Stability of motion is an important issue
and should be studied to properly handle the vehicle. In this
section, the motorcycle dynamics considered here concerns
only the lateral motion (motorcycle and rider body are
assumed to be a single rigid body) and the longitudinal
speedvx is constant. The contribution of steering and twist-
ing dynamics are neglected (see [20], [15] for details and
other assumptions). Last assumptions concern small angles
approximation adopted to obtain a linear dynamic model and
roll axis is merged the road’s plane. Here, the steer angleδ
is the model input.

In figure 1, the motorcycle has been depicted while it
moves at a roll angleφ in the mainframe. The represented
motorcycle linearized model can be rewritten as follows:

m(v̇y + ψ̇vx) = Fy f +Fyr (1)

Iz ψ̈ = a Fy f −b Fyr (2)

−mh(v̇y + ψ̇ vx)

+Ixx φ̈ = mghφ (3)

with :

Fy f =C f (δ −
vy −a ψ̇

vx
)+C f cφ

Fyr =−Cr(
vy −b ψ̇

vx
)+Crcφ

wherevy denotes the lateral velocity of center of gravity,ψ̇
is the yaw angular velocity,φ and derivatives are the angle,
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Fig. 1. Motorcycle model configuration

velocity and acceleration of the roll motion.vx represents the
longitudinal speed.Fy f and Fyr are respectively the lateral
forces applied by the road on front and rear wheels in the
linear region.

m is the sum of total masses of mainframe, front upper
frame, front sub-frame and upper body of the rider.Ii are the
corresponding moment of inertia.h is the distance between
center of gravity and the roll axis.Ci j are stiffness constants
with respect to rear (i = r) and front (i = f ) wheels.

One can rewrite the previous dynamic model as linear
model state space equation as:

ẋ(t) = A1 x(t)+B u(t)+B1 Fh(t)+B2 ω(t) (4)

y(t) = Cx (5)

where :
x(t) is the state vector given by[ψ̇ φ̇ vy φ ]T . Fh(t)

represents the steer angle inputδ (t) , ω(t) is the unknown
disturbance input which can model the steering angle dis-
turbance, andu(t) is the feedback control. To stabilize the
system, we apply the following control inputu(t) =−K x(t),
whereK is a control gain synthesized using a specific pole
placement. Then we write (4) as:

ẋ(t) = (A1−BK)x(t)+B1 Fh(t)+B2 ω(t) (6)

= A x(t)+B1 Fh(t)+B2 ω(t)

y(t) = Cx (7)

III. P2I OBSERVERDESIGN UNDERDISTURBANCES

Proportional-Integral (PI) observer is an extension of the
Luenberger observer. The presence of the integral of the
estimation error makes it effective in estimating the system
perturbations and input disturbances. The PI observer can be
extended for the estimation of non constant UI faults by the
use of Multiple Integral loops (PMI). In fact, any unknown
input with zerokth derivative can be estimated [12].

In the following, we aim to robustly estimate the envi-
ronmental disturbances which are considered as an unknown
input (fault signal). Here, we consider that the second deriva-
tive F(2)

h (t) of theFh(t) is bounded. The previous system (6)

is augmented withξ̇1 = F(2)
h (t), ξ̇2 = ξ1 = F(1)

h (t), which
leads to the augmented system described by state vector,
x̄ =

[

xT ξ1 ξ2
]T

. The new state space system is given by:

˙̄x(t) = Āx̄(t)+ B̄ω̄(t) (8)

y(t) = C̄x̄(t) (9)

with

Ā =





A 0 B1

0 0 0
0 1 0



 , B̄1 =





0
1
0



 , B̄2 =





B2

0
0





B̄ =
[

B̄1 B̄2
]

, ω̄(t) =

[

χ(t)
ω(t)

]

andC̄ =
[

C 0 0
]

whereχ(t) = F(2)
h (t).

Note that zeros in bold are zero matrices with appropriate
dimensions. The necessary requirement for the P2I observer
design is the full observability of the augmented system
(A,C).

Let us consider now the following state-space observer:

˙̂x(t) = Ax̂(t)+L(y(t)−C̄ ˆ̄x(t)) (10)

the vectorL is the gain to be designed.
Letse(t) = x− x̂ be the estimation error. Its time derivative

is given by:

ė(t) = ˙̄x(t)− ˙̂̄x(t) (11)

= (Ā− L̄C̄)e(t)+ B̄ω̄(t) (12)

The considered Lyapunov function is:

V (t) = eT (t)Pe(t) (13)

whereP is a symmetric positive definite matrix. The deriva-
tive of the Lyapunov function is given by:

V̇ = eT [P(Ā− L̄C̄)+(Ā− L̄C̄)T P]e+ ω̄T B̄T Pe+ eT PB̄ω̄ (14)

The observer gain̄L is computed in order to stabilize
the system generating the state estimation error and also
to attenuate the effect of the Unknown Input,̄ω(t), on
the estimation error, namely‖Teω̄‖∞ < γ, γ > 0, whereTeω̄
represents the transfer from̄ω(t) to the errore(t).

Let us define theL2-gain of the system as the quantity:

sup
‖e‖2

‖ω̄‖2
, ‖ω̄‖2 6= 0 (15)

where theL2-norm of e(t) and ω̄ are defined by:

‖e(t)‖2 =

(

∫ ∞

0
e(t)T e(t)dt

)1/2

(16)

‖ω̄(t)‖2 =

(

(
∫ ∞

0
ω̄(t)T ω̄(t)dt)

)1/2

(17)

Then, if the inequality

V̇ (t)+ eT e− γ2ω̄T ω̄ < 0 (18)



holds, the state estimation error dynamics is stable and the
transfer fromω̄(t) to e(t) is bounded byγ. By replacing (14)
in (18) one obtains:

eT [P(Ā− L̄C̄)+(Ā− L̄C̄)T P+ I]e

+ ω̄T B̄T Pe+ eT PB̄ω̄ − γ2ω̄T ω̄ < 0 (19)

Since the final objective is to derive LMI conditions, let us
consider the change of variablēL = P̄−1Z̄. The inequality
(19) is equivalent to

eT [ĀT P̄+ P̄Ā−C̄T Z̄T − Z̄C̄+ I]e

+ ω̄T B̄T Pe+ eT PB̄ω̄ − γ2ω̄T ω̄ < 0 (20)

In matrix formulation, (20) is equivalent to
(

e
ω̄

)T ( ĀT P̄+ P̄Ā−C̄T Z̄T − Z̄C̄+ I P̄B̄
B̄T P̄ −γ2I

)(

e
ω̄

)

< 0

(21)
The quadratic form (21) is negative definite if and only if
the linear matrix inequality

(

ĀT P̄+ P̄Ā−C̄T Z̄T − Z̄C̄+ I P̄B̄
B̄T P̄ −γ2I

)

< 0 (22)

holds. Finally, given a scalarγ, if there exists a symmetric
and positive definite matrixP and a matrixZ̄ such that the
LMI (22) is satisfied, then the system generating the state
estimation error is stable and the transfer from̄ω(t) to e(t)
is bounded by theL2 gainγ. Furthermore, in order to enhance
the performances of the observer, it is possible to minimize
the transfer gainγ subject to LMI constraints. The following
optimization problem is then stated

(

ĀT P̄+ P̄Ā−C̄T Z̄T − Z̄C̄+ I P̄B̄
B̄T P̄ −γI

)

< 0 (23)

by choosingγ as a variable and using the change of variables
γ̄ = γ2. After solving this optimization problem, the gains of
the observer are obtained byL = P−1Z̄ and the attenuation
gain is given byγ =

√

γ.
In the following section, we will consider the uncertainty

of modeling and the disturbances impact as two separate
problems.

IV. P2I OBSERVERDESIGN UNDERDISTURBANCES AND

UNCERTAIN SYSTEM PARAMETERS

In this part, the system is considered uncertain and sub-
jected to parameters variation on the matricesA and B1. In
similar way, as in the first part, the augmented system is
obtained. The parameters variations are modeled as time-
varying uncertainties∆Ā(t). The augmented system is written
as follows:

˙̄x(t) = (Ā+∆Ā(t))x̄(t)+ B̄ω̄(t) (24)

y(t) = C̄x̄(t) (25)

Considering the same P2I observer of equation (10), the time
derivative of the estimation error is now given by:

ė(t) = ˙̄x(t)− ˙̂x(t)

= (Ā− L̄C̄)e(t)+ B̄ω̄(t)+∆Āx̄(t)

= (Ā− L̄C̄)e(t)+ B̄ω̄(t)+∆Ãx(t)+∆B̃F̄h (26)

where :

∆Ã =

(

∆A
0

)

, ∆B̃ =





0 ∆B1

0 0
1 0



 , F̄h =

(

Ḟh

Fh

)

Then we can write:

˙̄x(t) = (A+∆A(t))x(t)+(B1+∆B1)Fh +B2ω (27)

Let us define the augmented vector ˜x = [eT xT ]T , we can
obtain the following system:

˙̃x = A x̃+Bω̃ (28)

z = Hx̃ (29)

A =

(

Φ ∆Ã
0 A+∆A

)

, B =

(

B̄ ∆B̃
Λ1 Λ2

)

Λ1 = [0 B2], Λ2 = [0 B1+∆B1]

Φ = (Ā− L̄C̄), ω̃ = [ω̄, F̄h]
T , H = [I 0]

Let us consider the same Lyapunov functionV (t) =
x̃T (t)Px̃(t). The system (29)-(30) is stable and the gainL2 of
the transfer fromω̃(t) to z(t) is bounded byγ if the following
condition holds:

V̇ (t)+ zT (t)z(t)− γ2ω̃T (t)ω̃(t) < 0 (30)

we obtain:
(

x̃
ω̃

)T (
A T P+PÃA+HT H PB

(PB)T −γ2I

)(

x̃
ω̃

)

< 0

Let us consider the following particular form of the matrix
P:

P =

(

P1 0
0 P2

)

then after replacing all the matrices, one can obtain:








e(t)
x(t)
ω̄(t)
F̄h(t)









T

Ξ









e(t)
x(t)
ω̄

F̄h(t)









< 0 (31)

If (Ξ < 0) the inequality (31) is hold, where:

Ξ =









Π P1∆Ã P1B̄ P1∆B̃
∗ Ψ P2Λ1 P2Λ2
∗ ∗ −γ2I 0
∗ ∗ ∗ −γ2I









(32)

where (∗) represents the symmetric and transposed term
and where:

Π = ΦT P1+P1Φ+ I

Ψ = AT P2+P2A+P2∆A+∆AT P2



Ξ =









Π 0 P1B̄ 0
∗ AT P2+P2A P2

[

0 B2
]

P2
[

0 B1
]

∗ ∗ −γ2I 0
∗ ∗ ∗ −γ2I









+









0 P1∆Ã 0 P1∆B̃
(P1∆Ã)T P2∆A+∆AT P2 0 P2∆B̆1

0 0 0 0
(P1∆B̃)T (P2∆B̆1)

T 0 0









(33)

Ξ is divided into two parts with respect to time dependence
in order to derive time independence matrix. The uncertain
terms are defined by:

∆A(t) = NΣ(t)E1 , ∆Ã = ÑAΣ̃A(t)ẼA, ∆B̃ = ÑBΣ̃B(t)ẼB

, ˘∆B1 = N̆Σ̆(t)Ĕ. By applying the claim [16], we can say
that for X , Y , F real matrices with appropriate dimension
verifying FT F ≤ 1 and for any scalarε > 0, the following
inequality holds:

XFTY T +Y FXT ≤ εXXT + ε−1YY T (34)

then, the second part of (34) can be bounded as follows:








0 P1∆Ã 0 P1∆B̃
(P1∆Ã)T 0 0 0

0 0 0 0
(P1∆B̃)T 0 0 0









+









0 0 0 0
0 P2∆A+∆AT P2 0 0
0 0 0 0
0 0 0 0









+









0 0 0 0
0 0 0 P2∆B̆1

0 0 0 0
0 (P2∆B̆1)

T 0 0









(35)

Using (35), we have

P2∆A+∆AT P2 ≤ εE1
T E1+ ε−1P2NNT P2 (36)

then we obtain:








π1 0 0 0
0 π2 0 0
0 0 0 0
0 0 0 π3









(37)

where:

π1 = λ1
−1P1ÑAÑA

T P1+λ2
−1P1ÑBÑB

T P1 (38)

π2 = εE1
T E1+ ε−1P2NNT P2+λ1ẼA

T ẼA +λ3
−1P2N̆N̆T P2

(39)

π3 = λ2ẼB
T ẼB +λ3ĔT Ĕ (40)

Using the variable transform̄L = P−1
1 Z̄ and the following

Schur complement given in the lemma 1:
Lemma 1: [5] Let us consider the matricesQ = QT ,

R = RT and S with appropriate dimensions. The following
inequalities are equivalent:

•

(

Q S
ST R

)

< 0

• R < 0, Q−SR−1ST < 0
we can write the above nonlinear matrix inequalityΞ < 0

into a linear matrix inequality:























Ω1 0 P1B̄ 0 P1ÑA P1ÑB 0 0
∗ Ω2 P2η1 P2η2 0 0 P2N P2N̆
∗ ∗ −γ2I 0 0 0 0 0
∗ ∗ ∗ −γ2I +π3 0 0 0 0
∗ ∗ ∗ ∗ −λ1I 0 0 0
∗ ∗ ∗ ∗ ∗ −λ2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −λ3I























<0

(41)

Ω1 = P1Ā+ ĀT P1− Z̄C̄−C̄T Z̄T + I (42)

Ω2 = AT P2+P2A+ ε−1E1
T E1+λ1ẼA

T ẼA (43)

η1 = [0 B2], η2 = [0 B1] (44)

In a similar way, as in the first part, it is possible to
enhance the performances of the observer by minimizing the
parameterγ. The change of variablēγ = γ2 is then used. An
optimization problem is then obtained by minimizingγ under
LMI constraint (42) after changingγ2 by γ̄.

V. SIMULATION RESULTS

The model considered here is that of a two-wheeled
vehicle with a single body, whereFh(t) is the steering angle.
All parameters are given in the appendix . The objective is
to estimate the state vector and the steering angle of the
motorcycle. For that purpose, three simulations are proposed
in order to illustrate the two approaches. The first one uses
the first method taking into account the external disturbances
ω(t), which is considered as a centered random signal (can
be considered, in practice, as the disruption resulting from
road irregularities or aerodynamic forces, etc.) with maximal
amplitude 2 and without taking into account the parameter
uncertainties, since the second simulation deals with the
problem of observer design with taking into account the
uncertainties of the model and the effect of the perturbations
ω(t). It is possible to enhance the performances of the
observer by choosing an LMI region in order to limit the
imaginary part of the dynamics matrix of the observer which
limits the effect of the oscillatory phenomenon in the transit
phase. To do that the LMI regionS defined byS defined by
S = {z ∈C | Re(z)<−a, |z|< R}, is chosen, which is an
intersection between the left plan defined by the Re(z)<−a
and the disc with center(0,0) and radiusR. So, the problem
is now to solve simultaneously the proposed optimization
problems and the LMI constraints, corresponding to the LMI
region, given as follows (for more details see [6])

ĀT P+PĀ− Z̄C−CT Z̄T +2aP < 0 (45)

[

−RP PĀ− Z̄C
ĀT P−CT Z̄T −RP

]

< 0 (46)

In all the simulationsa = 12 andR = 15.



A. State and unknown input estimation

By solving the optimization problem minimizinḡγ subject
to the LMI constraint (23), the following gain of the observer
is obtained:

L =

















−27.7916 38.5655
−42.6005 153.5974
−137.8306 341.5682
−26.0097 69.3984
−19.7071 65.3497
−8.2148 24.7726

















The obtained attenuation level isγ = 0.6665. The simulation
results concerning the state estimation is depicted in the
figure 2. The results concerning the unknown input (steering
angle) is given in the figure 3. We can note that we have an
acceptable results and a good attenuation level of the external
disturbances.
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Fig. 2. Actual states (blue line) and estimation (dashed red line)
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Fig. 3. Steering angle and its estimation (top) and estimationerror (bottom)

B. Robust state and unknown input estimation

In this sub-section, the parameter are assumed to be
uncertain (can be considered, in practice, as the unmodeled

dynamics or error in identification parameters or changes
in road adhesion coefficient, etc.) and modeled with norm
bounded uncertainties given by∆A(t)=NAΣ(t)EA and∆B1 =
NBΣ(t)EB and defined byNA = 0.1I, EA = 0.1∗A, NB = 0.1I,
EB = 0.1∗B1, and Σ(t) = cos(t) ∗ I where I is the identity
matrix with dimension 4. By solving the optimization prob-
lem minimizing γ̄ subject to the LMI constraint (42), the
obtained attenuation level isγ = 13.03.
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Fig. 4. Nominal system vs uncertain system

In the figure 4 the effect of the uncertainties on the system
is illustrated by the states of the nominal system and those
of the uncertain one. The states and the unknown input and
their estimations are depicted in the figures 5 and 6.
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Fig. 5. States and their estimations

As a conclusion, with this matrix̄L we can design the UI
observer to estimate thêx(t). We see that the observer is
estimating the state vector[ψ̇ φ̇ Vy φ ]T and the UI quite
efficiently.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

A P2I observer, based on LMI approach, is designed
for linear motorcycle model. From results, the proposed
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Fig. 6. UI estimation (bottom) and UI estimation error

observer can handle both perturbation (road irregularities and
aerodynamic forces) and uncertainties (identification error in
motorcycle inertial parameters) robustly. This observation ap-
proach is efficient because it allows to reconstruct motorcycle
unknown inputs (rider action and/or tire-road forces).

B. Future Works

In the near future, we plan to consolidate these results with
validation on a real benchmark, which is electrical scooter,
7. This motorcycle is almost instrumented with steering
angle sensors, inertial unit (linear acceleration and angular
velocity), angular speeds of the two wheels and an embedded
data acquisition system. Other sensors are planned to be
added. This work will be, also, extended for both purposes:
1) take into account more motorcycle dynamics (steering,
twisting, longitudinal, etc.) and 2) reconstruction of other
inputs as force of tire-road.

Fig. 7. Sensors implementation on our Motorcycle

APPENDIX

A1 =









−39.47 −2153 20.34 −192.06
3.77 −10.86 −2.84 −12.17

−10.88 −2.52 −0.66 −12.63
0 1 0 0









,

B1 =









438.40
221.23
51.38

0









, B2 =









0
0
1
0









, C =

(

1 0 0 0
0 1 0 0

)

m = 217.43 h = 0.6140 Iz = 20.95
Ix = 31.01 g = 9.81 a = 0.822
b = 0.478 vx = 10 C f= 11173.37
Cr= 15830.4
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