N

N

Introduction to ”Interactive models of computation and
program behaviour”

Pierre-Louis Curien

» To cite this version:

Pierre-Louis Curien. Introduction to "Interactive models of computation and program behaviour”.
Société Mathématique de France, pp.xi-xv, 2009, Panoramas et Syntheses. hal-00697119

HAL Id: hal-00697119
https://hal.science/hal-00697119

Submitted on 14 May 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00697119
https://hal.archives-ouvertes.fr

Introduction to “Interactive models of
computation and program behaviour”

Pierre-Louis Curien (PPS, CNRS and Université Paris 7)
May 14, 2012

Since the mid-eighties of the last century, a fruitful interplay between com-
puter scientists and mathematicians has led to much progress in the under-
standing of programming languages, and has given new impulse to areas of
mathematics such as proof theory or category theory. Two of the authors of
the present volume (Krivine and Curien) designed independently, at around the
same time (1985), interpreters for the lambda~calculus, which both turned out
to have important consequences. The lambda-calculus, besides being one of the
formalisms capturing the notion of computable function, is by far the best un-
derstood core programming language. It underlies many modern programming
languages, like LISP, ML, Haskell.

e Curien’s device (developped in collaboration with Cousineau and Mauny),
called the Categorical Abstract Machine (CAM) [1], served as the basis
for the compiler of the French dialect of ML, the language CAML — a
language which is well-suited for teaching computer programming, and
for prototyping various pieces of software.

e Krivine’s device, called Krivine Abstract Machine (KAM) [5], is at the
heart of his subsequent work on the extraction of computational contents
from mathematical axioms and statements.

In the CAM acronym, “categorical” stands for the connection between the
lambda-calculus and cartesian closed categories. As a matter of fact, lots of
structuring thoughts and results have come from the triangle formed by the
languages of proofs, categories, and programs, respectively. Mellies’ contribu-
tion to this volume recounts the latest state of the art on this correspondence,
which has learned a lot from the rise of Girard’s linear logic, from 1986 on [3].
Categories are particularly good at capturing some invariants in an algebraic
way. We just mentioned cartesian closed categories which capture the invari-
ance of A-terms under the two basic equalities in this theory, 5 and 7, in terms
of the universal constructions of categorical product and internal homspace. In
his contribution, Mellies places this role of categories in context, by recalling
the role of categories in capturing, say, the invariants of knot theory.

In the rest of this introduction, we give some background on the lambda-
calculus and its dynamics. Lambda-calculus comes in two flavours: untyped

and typed. Mellies’ contribution in this volume is of the second flavour, while
the other two contributions build on untyped terms.

The A-calculus is a language of terms built with only three operations:

1. variables: x is a A-term (think of an identifier in a program, or of a variable
in a function f(z));

2. application: if M, N are terms, then M N is a term (think of the applica-
tion f(a) of a function f to an argument a);

3. abstraction: if M is a term, then Ax.M is a term.

One may also wish to add constants, as Krivine does a lot in his contribution
to this volume.

Above, A is the only non-familiar symbol for the general mathematician (or
the high school student). It makes explicit on which parameter we want the
term M to depend. Think of an expression like x? 4+ 3ma + 4, where m is a
parameter, and x is the unknown — a difference of status that one might want
to stress by writing = — 2.2% + 3ma + 4, or Ax.z? 4+ 3mx + 4 in the notation of
the A-calculus.

The next important thing to know about the A-calculus is its dynamics: A-
terms are programs, and hence should be executable. The theoretical model for
this is by successive transformations, or rewritings, of the term, using again and
again the following unique rule, called g-reduction:

(Az.M)N — M|z < N]

(for example, (A\z.z*> + 3mz +4)(5 +y) — (5+y)> + 3m(5 +y) +4). This
is the only computational rule of the pure A-calculus, i.e., without constants.
Generally, when constants are added, corresponding rules are given (for example,
for an addition constant +, one has, say, 3+4 — 7).

The p-rule can be applied to any subterm of our working term, and hence
gives rise to a number of possible rewriting paths. For example, if N = (\z.P)Q,
then we can reduce (Az.M)N either to M[x < N] or to (Az.M)N’, where
N’ = Plx < Q). The first key theorem of the A-calculus is the confluence
theorem, which says that no matter which paths are used, they can be made to
converge to a same term: if M rewrites (in a number of steps) to M’ and to
M" | then there exists a term M"’ which can be reached by rewriting both from
M’ and from M".

We also mentioned a further equality above, the n rule, which is the following;:

e Mx =M

where 2 is chosen so as not to appear free in M. (The notions of free and bound
variables are rather straightforward, e.g. « is bound and y is free in Az.zy.)
This rule is quite different from (. Its primary purpose is to assert that
(in the untyped A-calculus) every term is a function. Thus, the most inter-
esting way to look at this equality is to orient it from right to left: this is

called n-expanding). Curien and Herbelin’s contribution sheds some light on
n-expansion, and gives it some computational meaning.

There are more practical models of the dynamics of the A-calculus than
the one given by the notion of S-reduction, that are formalised through an
abstract machine, like the CAM or the KAM (cf. above). While we refer to the
respective papers for their precise description, we just mention here that they
share a common structure. Computation proceeds by successibely rewriting
triples, or states, or processes, as Krivine calls them, of the form

(term, environment, stack)

The environment is there to avoid actually performing the (costful) substitution
M|z < N]. Typically, starting from

((Az.M)N, empty, empty)

(empty environment and empty stack), we reach (roughly — we only want to
give an idea here)
(M, [z < NJ],empty) .

where [x + N] has now the meaning of storing the value N for z. Later on,
when we reach a variable, we consult its value in the environment: so if we
reach a state whose first two components are z and [...,x + N,...], then the
machine proceeds by replacing « by N in the first component (variable look-up).
Formally, the machine will thus proceed from

(,[...,z« N,...],S)

to
(N,[...,z«+ N,..],5)

The third component serves to store the context of a computation. Typically, if
the actual S-reduction is applied to a subterm (Az.P)Q of M — a situation that
we can write formally as M = C[(Az.P)Q]], where C' is a context, i.e. a A\-term
with a hole, which is filled here with (Axz.P)Q —, then the abstract machine will
lead us, typically, from

(M, empty, empty)

to
((Az.P)Q, empty, C]) .

For example, in Krivine abstract machine, if C' has the form ([]N1) N2, and hence
M = (((Ax.P)Q)N1)N2, then starting from (M, empty, empty), one reaches
(((Ax.P)Q)N1,empty, [| Vo], and then ((Ax.P)Q,empty, [[[N1]N2]) (and then,
cf. above, (P, [z < Q],[[]IN1]N2]). Thus we use the stack to store the context,
which is accumulated gradually. Read [[[N1]Nz] as the context obtained from
the context [[Na by placing in its hole the context [|Ni, which results in the
context C' = ([]N1) N2, which in English spells as “apply to N, and then to Na.

The reader will see two different simplified versions of such abstract machines
in this volume:

e In Krivine’s paper, the environment component is omitted. The machine
is extended to deal with various new instructions that are added to the
A-calculus.

e In Curien and Herbelin’s paper (see in particular section 5.2), in order to
stress the duality between the term and the environment, the framework
is adapted so as to avoid the use of a stack.

Also, both in Curien-Herbelin’s and in Krivine’s papers, the computing de-
vices, or the programs, receive a natural interpretation in a two-player’s game:

e In Curien-Herbelin’s paper, this idea is so basic that it has guided the first
author in the design of a generalization of the A-calculus (first described
in [2]) that encompasses various common extensions of the A-calculus. We
explain briefly the idea. The reader may easily check that a A-term P in
normal form (i.e., which cannot be further reduced) is made of bricks of
the form

Axy.(Azg. A (-o - (YP1) ... Pp)) ..)

where the P,;’s are themselves (hereditarily) of this form. Such a brick is
called a head normal form, and y, which is the most important information
in the brick, is called the head variable. The brick can itself be divided in
two “moves”:

— a move “Azi.(Aze;....(Az,” made by a player called Opponent (or
attacker, or context),

— and a move y made by the other player, called Player (or defendent,
or program,).

The Opponent’s move reads as a question: “what is the head variable of
P?”, while the Player’s move reads as an answer to this question. Then the
Opponent may pick up one of the i’s, and ask the same question relative
to P;, etc...

Potentially infinite normal forms as above in the A-calculus are called
Bohm trees.

e In Krivine’s paper, it is shown that all the proofs (in fact, all the realisers,
see below for this notion) of an arithmetic formula of the form

JavVy. f(z,y) =0

behave like the following stategy: the defendent (or proof) plays an x =
myg, the attacker then tries a y = ng. If f(mg,no) = 0, then the attacker
failed in disproving the formula, and the game is over. Otherwise, the
play goes on: the player chooses a new my, and so on. Of course it is not
through a single play of this kind that the formula can be fully proved.
But the fact that the attacker looses in all possible plays characterises the
validity of the formula.

We end this introduction with a short hint on types and on the logical back-
ground of the A-calculus. Originally, the A-calculus served to describe formally
languages of formulas, for example A = B is represented by the term (= A)B,
where = is a constant. But a tighter connection, known as the Curry-Howard
isomorphism, arises when A-terms are used to denote not formulas, but proofs
of formulas: then we restrict attention to A-terms denoting proofs, that are
called typed A-terms. We illustrate this here only with a trivial example: A\z.z
denotes the identity function, but it also denotes a proof of A = A, for any A.
In typed A-calculus, terms come with a type (which can be explicit, or can be
reconstructed from type informations in the term, or can be inferred). More
precisely, typed A-terms are formalised as so-called judgements of the form

1A, Tt A EM A

where z1,...,x, include the free variables of M. From there, the categorical
reading (alluded to above) is easy: M is (interpreted as) a morphism from
Ay x...x A, to A. In other words, formulas correspond to objects and A-terms
correspond to morphisms in a suitable category (with products). This is very
much the starting point of Mellies’ contribution to this volume.

There are less typed A-terms than untyped ones: in other words, not all
A-terms are typable. A second key theorem of (typed) A-calculus is that typed
terms M terminate, i.e. there is no infinite reduction sequence

M—->M —...— M, —...

Since some A-terms (like (Az.xzz)(Az.zx)) do not terminate, not all A-terms are
typable.

Also, in some sense, when remaining in the untyped realm, there are more
“types” (and more “typed terms”). While in typed A-calculi there is a fixed,
extrinsic syntax of types (or formulas), in untyped A-calculus one can define
types intrisically (or internally) as sets of (untyped) terms “behaving the same
way”. More precisely, and equivalently, a type U is given by any set of contexts,
and the terms “of that type”, or realizing that type, are the terms M such that

for any C[] € U,C[M] € L,

where L is a fixed set of terms (actually, of processes — read C[M] as a state
(M, C) in Krivine stack-free abstract machine, cf. above). Saying that C[M]
belongs to L formalises the fact M and C[|] “get along” well, or socialise, as
Girard would say. The notion of “term of type A” (above) and “term realizing
(the interpretation of) A” are related by inclusion of the former concept in the
latter one (a result which is called Adequation by Krivine). The set 1 can
itself vary (and it does vary in the different applications of the idea described
in Krivine’s paper), but then we get a different whole model.

These models are called realizability models. The general idea goes back
to Kleene (see e.g. [4]), whose motivation was to connect formally logic and
recursive function theory. Krivine makes an intensive use of the flexibility offered

by the whole framework, with the aim of associating A-terms, that is, computer
programs, with mathematical statements: every theorem is a specification, all its
realisers behave according to this specification, and in many cases this behaviour
can be described in illuminating terms. The flexibility is also offered by the
possibility of adding insightful new constants to realise different axioms, the
most challenging being the axiom of choice.

Just as there are untyped and typed A-calculi, there are typed and untyped
approaches to games and strategies. We mentioned two untyped approaches
above. In the final section of his contribution, Mellies constructs a game model of
linear logic, by assigning games to types, and typed strategies (i.e., strategies in
these games) to terms. His approach permits to display the algebraic structure of
the underlying game semantics, i.e., of the game interpretation of proof systems
and programming languages.

References

[1] G. Cousineau, P.-L. Curien, and M. Mauny, The categorical abstract ma-
chine, Science of Computer Programming 8, 173-202 (1987).

[2] P.-L. Curien, Abstract Béhm trees, Mathematical Structures in Computer
Science 8(6), 559-591(1998).

[3] J.-Y. Girard, Linear logic, Theoretical Computer Science 50, 1-102 (1987).

[4] S.C. Kleene, Realizability: a retrospective survey, in Proc. Cambridge Sum-
mer School in Mathematical Logic, Lecture Notes in Mathematics 337, 95-
112, Springer (1973).

[5] J.-L. Krivine, A call-by-name lambda-calculus machine, Higher-Order and
Symbolic Computation 20, p.199-207 (2007).

