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FULLY-DISTRIBUTED DEBUGGING AND VISUALIZATION
OF DISTRIBUTED SYSTEMS IN ANONYMOUS NETWORKS

Keywords: Distributed algorithm, Visualization, Debugging, Anonymous network, Snapshot, Global predicate evaluation.

Abstract: The debugging of distributed algorithms is a major challenge which greatly benefits from the help of an in-
teractive and informative human-computer interface. In this paper wepresent ViSiDiA, a platform for the
visualization, simulation and debugging of distributed algorithms. Our approach respects real-life constraints
such as process anonymity and privacy, network synchronicity. We propose a new fully-distributed method
for the debugging and monitoring of distributed systems, based on the computation of global states and global
predicates from local information in anonymous and asynchronous networks. We show how the debug infor-
mation can be visualized concurrently with the algorithm execution.

1 INTRODUCTION

Many complex information systems require a
large number of servers and machines, interconnected
on either local or remote networks. Such distributed
applications aim at making several processes collab-
orate to the execution of a same task. Problems are
raised concerning concurrent access to resources, crit-
ical failure detection, or even process communication
strategy. The generalization of heterogeneous and
large networks thus involves substantial studies in the
distributed algorithm field.

The design and validation of distributed applica-
tions depend on the analysis and understanding of
underlying algorithms that must be proved, imple-
mented, debugged and tested. The emergence of sim-
ulation softwares is an important step towards this ob-
jective. A visualization of running algorithms, with
the ordered observation of data transfers and property
changes over the network, is of great help. A quantifi-
cation of all events occurring over the network leads
to the evaluation of distributed algorithms in terms of
complexity or global performance.

Among services required in a distributed system,
monitoring the execution of every process in a dis-
tributed way can be a critical issue but is useful to
evaluate network properties or to debug the entire ex-
ecution. By definition, in a fully distributed asyn-
chronous system there is no global clock and thus it
is not possible to take an instant picture of the whole
system in a distributed manner. Every process knows
neither the states of other processes nor the state of
any communication channel. This impossibility is re-
inforced by the analysis proposed by Guerraoui and
Ruppert (Guerraoui and Ruppert, 2005) in which they

consider that a vast majority of papers on distributed
computing assume that processes have unique identi-
fiers or do not want to share their private data.

Hence, there exist three important challenges in
developing a visual interface for distributed algo-
rithm debugging. First a debugger needs snapshots
of the system, which are composed of the state of
each process and the state of each communication
channel. How can we compute such a global net-
work snapshot using only local information processes
exchange? Second, what if processes do not have
unique identifiers or do not wish to divulge them for
privacy reasons? Finally, these debug information
must be available along with the algorithm execution.
How can we obtain an efficient computation and visu-
alization of debug information along with simulation
events display?

To address the aforementioned challenges, this
paper presents a complete, stable framework named
ViSiDiA for the simulation, visualization and de-
bugging of distributed algorithms in anonymous net-
works. Our approach relies on both the development
of a new fully-distributed debugging technique with
solid theoretical fundaments, and the design of an in-
teractive simulation viewer offering a high level, sim-
ple interface to implement and test new algorithms.
This paper has the following contributions.

• We propose an original method to debug the exe-
cution of distributed algorithms with which global
information can be computed from local data col-
lection in the context of anonymous networks.

• Debug information is visualized along with the
execution of asynchronous distributed algorithm.
The user can observe and interact with the net-
work.



• We present a platform for creating, visualizing
and simulating distributed networks. This is of
particular interest when testing and thus debug-
ging new algorithms.

• We incorporate a visual debugger to this platform,
and extend its Application Programming Interface
(API, for short) to easily design new distributed
algorithms.

The rest of this paper is organized as follows. First,
we present our model and recall in Section 2 notions
we use in our approach. Section 3 describes and as-
sesses our prototype used to monitor the behavior of
a distributed system. The design of debugging algo-
rithms is detailed and explained in Section 4. Finally,
we discuss related work in Section 5 before drawing
conclusions and sketching current and future work in
Section 6.

2 PRELIMINARIES

Model. Our model is the usual asynchronous mes-
sage passing model (Tel, 2000; Yamashita and
Kameda, 1996). A network is represented by a simple
connected graphG = (V(G),E(G)) = (V,E) where
vertices correspond to processes and edges to direct
communication links. The state of each process is
represented by a labelλ(v) associated to the corre-
sponding vertexv∈ V(G); we denote byG = (G,λ)
such a labelled graph. We assume the network to be
anonymous: the identities of processors are not nec-
essarily unique or for privacy reasons, processes do
not share their identities during computation steps.

We assume that each process can distinguish the
different edges that are incident to it, i.e., for eachu∈
V(G) there exists a bijectionδu between the neighbors
of u in G and[1,degG(u)]. We will denote byδ the set
of functions{δu | u ∈ V(G)}. The numbers associ-
ated by each vertex to its neighbors are calleddoor-
numbers(also calledport-numbers) andδ is called a
door-numberingof G. We will denote by(G,δ) the
labelled graphG with the door-numberingδ.

Each process in the network represents an en-
tity that is capable of performing computation steps,
exchanging (sending/receiving) messages with its
neighbors via the corresponding doors. We consider
asynchronous systems, i.e., no global time is available
and each computation may take an unpredictable (but
finite) amount of time. Note that we consider only
reliable systems: there are no message loss or dupli-
cation. We also assume that the channels are FIFO
(First In First Out), i.e. for each channel, the mes-
sages are delivered in the order they have been sent.

In this model, a distributed algorithm is given by a
local algorithm that all processes should execute. A
local algorithm consists of a sequence of computation
steps interspersed with instructions to send and to re-
ceive messages.

Snapshots and global predicates. As explained by
Tel (Tel, 2000) (p. 335-336), the construction of snap-
shots is motivated by:

• it can be involved in debugging distributed algo-
rithms,

• the evaluation of global predicates (properties
which remain true as soon as they are verified) of
the distributed system,

• if the system crashes (due to a failure of a com-
ponent), it may be restarted from the last known
snapshot (and not from the initial configuration).

A consistent snapshotof a distributed system is a
global state of the distributed system or a global state
that the system could have reached. Since the semi-
nal paper of Chandy and Lamport (Chandy and Lam-
port, 1985) which presents an algorithm to compute
a consistent snapshot, many papers give such algo-
rithms according to the model of the distributed sys-
tem. They assume that processes have unique identi-
fiers and/or there is exactly one initiator. Many papers
give also specific algorithms to detect some specific
predicates that hold in a system such as termination
or deadlock (Mattern, 1987; Bracha and Toueg, 1987;
Marzullo and Sabel, 1994; Kshemkalyani and Wu,
2007; Kshemkalyani, 2010). Among well-known
global predicates of distributed systems detected with
snapshots, one can also consider loss of tokens and
garbage collection (see (Tel, 2000; Santoro, 2007;
Kshemkalyani and Singhal, 2008)).

The main motivation of the global predicate evalu-
ation (GPE, for short) problem is induced by the need
to react against particular situations which can occur
in distributed systems. As an example, consider sit-
uations of natural disasters, such as earthquakes or
floods. Spatial areas must be covered with a large
number of sensors to assist rescue teams. The sponta-
neous and distributed features of such a network make
the monitoring of what is currently happening an is-
sue. For instance, one would like to check whether
the water level is under a specified threshold for each
sensor. When the water is lower than the threshold
at one sensor, it verifies if the condition also holds at
its neighbors and the neighbors of its neighbors and
so on. If a sensor have detected a problem, a domino-
effect can occur, i.e., sensors with no problem become
wrong (flood propagation) and the monitoring has to
be done again from the beginning.



As far as we know, no solutions have been pro-
posed for visualization and debug in anonymous net-
works without any knowledge on the underlying net-
work such as processes identifiers or spanning trees.
A distributed approach to the GPE problem must be
considered and addressed for which the only possi-
ble assumption is the number of processes (sensors)
that have been deployed. Many notions and algo-
rithms concerning snapshots and global predicates
evaluation can be found in (Kshemkalyani and Sing-
hal, 2008).

3 THE VISIDIA PLAFTORM

ViSiDiA ∗ (Visualization and Simulation of Dis-
tributed Algorithms) is a tool aiming at simulating
and visualizing the execution of distributed algo-
rithms (Bauderon et al., 2001; Derbel and Mosbah,
2003; Bauderon and Mosbah, 2003). ViSiDiA is used
as an educational and research utility, and has been
developped and validated by various students and re-
searchers. We have recently added value to ViSiDiA
by incorporating it into a web interface, by making it
consider both local and remote client/server systems,
and by making it platform independent. For these de-
velopments, we have entirely redesigned and reim-
plemented ViSiDiA, although preserving its original
concepts.

We here present this new design, with which
our fully-distributed debugger is developed. First, a
new object-oriented architecture has been defined to
make our platform robust and extensible. Second, the
Graphical User Interface (GUI) has been relooked to
gain clarity, to be compatible with a client-server sys-
tem and used into most of web browsers. Third, we
have incorporated various standard distributed mod-
els such as message passing, mobile agents, graph re-
labeling rules, sensors, considering both synchronous
and asynchronous systems. Finally, all these concepts
have been made accessible in an API allowing users to
implement new distributed algorithms and test them
on ViSiDiA. We here focus on the visual components
for executing and debugging algorithms on ViSiDiA.

3.1 System architecture

We adopt the classic Model-View-Controller pattern
as a logical part of ViSiDiA implementation. The
model is the distributed network, the view is a GUI,
and the controller is a simulator of distributed algo-
rithm execution. This simulation console receives

∗http://visidia.labri.fr

Figure 1: Structural and logical organization of ViSiDiA.
Plain arrows represent direct associations (both GUI and
console have access to the graph; console and algorithms
can communicate and call each other). The dashed arrow
is an indirect association; the GUI observes the console
(e.g. to update the display) but the console does not directly
transmit information to the GUI.

Figure 2: Example of setting an edge properties. Three
properties are specific to edges and cannot be removed (ori-
ented, label, weight). The user has added two other prop-
erties (comment, nbTransfers) which are both displayable,
but only nbTransfers is displayed on the graph.

events relative to user actions from the GUI, and
manages update and synchronization events with both
model and view. This pattern is illustrated by Fig-
ure 1.

ViSiDiA contains an API to implement distributed
algorithms thanks to a set a simple primitives, such
as node/edge states and communication strategies be-
tween processes. This API is linked to the simulation
core (including the network graph and a simulation
console), on top of which the GUI is built. This forms
a 3-layers system which defines the structural part of
the application.

3.2 Network graph and processes

ViSiDiA contains a graph editor used to define dis-
tributed networks. By the means of mouse clicks, the
user can easily perform standard operations on nodes
and edges: add, delete, duplicate, move, connect.



Figure 4: Some statistics on number of sent messages over
5 cloned simulations executed in a raw.

Undo/redo operations, as well as graph input/output,
are also available. Nodes and edges have specific
properties, such as labels or weights. The user can
adjust these predefined properties and add new ones,
deciding if they are displayed or not, through a simple
dialog window (Figure 2).

From a given graph, it is then possible to run one
or more simulations, for example changing initial set-
tings and comparing the final results obtained on the
same graph. The user can interact with the network
(e.g. changing some properties), whilst the simula-
tion executes.

Each graph node corresponds to a process, and
graph edges represent communication channels be-
tween processes on which messages transit. A pro-
cess is implemented as an autonomous thread asso-
ciated to a local copy of the simulated algorithm.
The reason for this copy is that as the network is
anonymous, in our approach we must run the same
algorithm on every node. As processes have a
very restricted knowledge of their neighborhood, they
mainly operate on their state and send messages on
communication channels (through doors). These op-
erations are visualized using colors, line styles and
text animations (Figure 3).

The user can select displayable messages accord-
ing to their types. Since many information may be
displayed at the same time, the simulation can also
be paused or recorded, and its speed adjusted. Real-
time statistics about number of delivered messages or
number of property changes are computed and can be
displayed during the simulation. A simulation can be
automatically run several time, and the various statis-
tics can be compared over simulations (Figure 4).

3.3 Sending and receiving messages

A process can send (resp. receive) messages through
any door but no information is available on the re-
ceiver (resp. sender) identity.
As a consequence, processes define messages to send,
then ask the simulation console to deliver them to the
appropriate recipient. A message is delivered when

Figure 5: Implemented architecture within ViSiDiA. Each
process contains an algorithm thread and a debugging
thread. Once messages are received, the sentinel dispatches
them to the threads according their types. Note that each
message is always considered by the debugging thread to
compute the snapshot and the GPE algorithms.

the console has pushed it on the receiver message
queue. According to our model, reception is FIFO.

3.4 Simulation console and events
scheduling

The console if responsible for scheduling all oper-
ations on the network, including message delivery.
These operations are self-executable commands man-
aged by the console using a event/acknowledgement
system. When a process requires for a new command
to be treated, the console first generates an event and
locks it until the command is completely processed.
The console then asks for the command to execute
and waits for an acknowledgment which indicates that
the command has terminated. The lock is finally re-
leased and a new command can be treated. This sys-
tem is used to synchronize simulation events and dis-
play on the GUI, and guaranty events priority and
scheduling agreements.

3.5 Monitoring and debugging feature

Any distributed system may suffer from any local fail-
ures, then it might crash. It can be the case if an
algorithm suffers from a bug or if a process is dis-
connected from the network. Our distributed system
must be robust enough to react to any local failures,
blocking failure propagation to the entire system. For
instance, we want our debugger to detect if a process
is deadlockedand to inform other processes which are
still waiting for its termination. As a consequence we
cannot use the mono-thread per process solution as a
support for debugging algorithm execution.

From our assumptions, we adopt a solution which
is not coupled with the thread that executes the un-
derlying algorithm. For a sake of simplicity, we add
another thread to each process (see Figure 5). This
thread deals with the debugging algorithm. A process
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Figure 3: Overview of the visual interface. Settings are accessible on the top and left panels. The distributed network is
displayed while an algorithm executes. The user can observe changes on node and edge states, as well as transiting messages.
A button to launch the debugger is available on the left panel.

is endowed with a sentinel that checks every incom-
ing message. Each received message that belongs to
the underlying algorithm is sent to both the debug and
the algorithm threads. Debugging messages are only
sent to the debugging thread. Thus, we ensure that
if the execution of the underlying algorithm crashes,
the debug thread remains alive and still monitor the
execution.

The GUI of ViSiDiA is upgraded with two new
functionalities. We add a button in the simulation
panel that launches a snapshot computation during the
execution of the underlying algorithm and we develop
a new panel that appears once the snapshot computa-
tion is over. This panel sums up the output of snapshot
computation in one tab and presents the results of the
global predicates evaluation in another tab. The first
tab consists of a tree of the local snapshot of each pro-
cess in which incoming channels states and specified
variables values are listed (Figure 6).

3.6 Extension of the API and case study

In order to monitor the value of specified variables
and test if a global predicate occurs in the system we
also extend the existing API. We present how to use

the debugging feature with our extension of the Vi-
SiDiA API. Our case study is based on a simple dis-
tributed broadcast algorithm: each process broadcasts
each incoming message to every neighbors except the
message sender (Algorithm 1). At the end of an exe-
cution of this algorithm, a spanning tree is computed.
A frequent designing error comes from the fact that
acknowledgment messages are not sent back to sender
or are sent to all neighbors. Thus, it results in the end
of the broadcast and therefore the end of the spanning
tree computation. Hence, in this example, a developer
would like to know the evolution of the process state
(e.g. the label value) and the exchanged messages
(e.g. the content of each channels). A naive approach
could be to write in the standard output (or in a file per
process) the local snapshot of each process, or each
process could send its local snapshot to the simulator
to be displayed within the visualization software. But
as explained throughout this paper, since the broad-
cast algorithm is asynchronous one cannot rely on this
debugging method. Our distributed debugging mech-
anism reliably addresses these problems. It is enabled
by using theregisterVariable()method. This method
is sufficient to detect above typical errors. Once the
snapshot computation is terminated, even if the broad-



Figure 6: Screenshots from ViSiDiA that show the result of a snapshot taken during an execution of the broadcast algorithm.
(a) and (b): monitoring result of the label of the process 2 with the value of its label and the state of its incoming channels.
(c): list of GPE such as termination and token loss.

cast failed to reach all processes, the ViSiDiA panel
(see Figure 6(b) and (c)) shows the state of every pro-
cess and its corresponding incoming channels. Thus,
designing errors could be detected.

We also provide a set of methods to apply a
GPE. One of these methods allows to specify that the
underlying algorithm is terminated (setTerminated()
method). At the end of the snapshot computation if
the underlying algorithm is terminated then it will be
notified in the ViSiDiA panel (Figure 6(c)). Further-
more, we allow developers to create their own global
predicate (e.g. flood propagation detection). They
only have to create this new global predicate and use
theaddGlobalPredicate()method, to inform the GPE
algorithm that it has to check this predicate for ev-
ery process. Note that more than one predicate can
be evaluated at the same time during algorithm exe-
cution.

4 DEBUGGING DISTRIBUTED
ALGORITHMS

This section presents the corresponding algo-
rithms we design (Chalopin et al., ) and add to Vi-
SiDiA to address the global snapshot and the global
predicate evaluation problems.

We give algorithms based on the composition
of an algorithm by Szymanski, Shy, and Prywes
(Szymanski et al., 1985) with the Chandy-Lamport
(Chandy and Lamport, 1985) algorithm which en-
able each process to detect an instant where all pro-
cesses have obtained their local snapshot and to eval-
uate global predicates anonymously.

begin
staticMessage wave = newMessage(”Wave”, true);

staticMessage ack = newMessage(”Acknowledgment”, true,

java.awt.Color.blue);

int arity = getArity();

String label =getProperty(”label”);

registerVariable(”label start”, label);

addGlobalPredicate(sp);

if label.compareTo(”A”) == 0 then
for neighbor = 0to arity-1 do

sendTo(neighbor, Broadcast.wave);

else
Door door =receiveMessage();

int doorNum = door.getNum();

sendTo(doorNum, Broadcast.ack);

putProperty(”label”, new String(”A”));

registerVariable(”label in progress”, label);

setDoorState(newMarkedState(true), doorNum);

for neighbor = 0to arity-1 do
if neighbor != doorNumthen

sendTo(neighbor, Broadcast.wave);

registerVariable(”label end”, label);

setTerminated(true);
end

Algorithm 1: Example of a broadcast algorithm
written in Java using the API of ViSiDiA. In black
appears the algorithm as written without any debug
procedure. In blue, the only 5 lines of code needed
to debug this algorithm on the visual interface.

4.1 The Chandy-Lamport snapshot
algorithm

The aim of a snapshot algorithm is to construct a sys-
tem configuration defined by the state of each process
and the state of each channel.

This section presents the Chandy-Lamport snap-
shot algorithm (Chandy and Lamport, 1985); it is pre-



sented as Algorithm 2. Each processp is equipped
with:

• a boolean variabletakenp which is initialized at
f alse, it indicates if the processp has already
recorded its state;

• a boolean variablelocal-snapshotp initialized at
f alse, it indicates if the processp has recorded its
state and the state of incoming channels;

• a multiset of messagesMp,i , initially Mp,i = /0, for
each incoming channeli of p.

We assume that Algorithm 2 is initiated by at least
one process which: saves its state, sends a marker
on each outcoming door and for each incoming door
memorizes messages which arrive until it receives a
marker through this door. When a process receives
for the first time a marker, it does the same thing that
an initiator; the incoming channel by which it receives
for the first time a marker is set as empty.

Init-CLp : {To initiate the algorithm by at least
one processp such thattakenp = f alse}
begin

record(state(p)) ;
takenp := true;
send< mkr> to each neighbor ofp;
For each doori the processp records
messages which arrive viai

end

R-CLp : {A marker has arrived atp via door j}
begin

receive< mkr>;
mark door j;
if not takenp then

takenp := true;
record(state(p)) ;
send< mkr> via each door;
For each doori 6= j the processp
records messages which arrive viai in
Mp,i

else
The processp stops to record messages
from the channelj of p;
record(Mp, j)

if p has received a marker via all incoming
channelsthen

local-snapshotp := true

end
Algorithm 2: The Chandy-Lamport snapshot algo-
rithm.

If we consider an execution of the Chandy-
Lamport algorithm we obtain a consistent snapshot

within finite time after its initialization by at least one
process (see (Tel, 2000) Theorem 10.7 ). In particular:

Fact 1. Within finite time after the initialization of the
Chandy-Lamport algorithm, each process p has com-
puted its local snapshot (local-snapshotp = true).

Once the computation of local snapshots is
completed (for each processp the booleanlocal-
snapshotp becomes true), the knowledge of the snap-
shot is fully distributed over the system. The next
question is “how to exploit this distributed knowl-
edge?”

A first answer is obtained by the construction of
the global state of the system centralized on a process.
As is explained by Raynal (Raynal, 1988):Providing
an algorithm for the calculation of a global state is a
basic problem in distributed systems.Several assump-
tions can be done to obtain a global state: exactly
one initiator for the Chandy-Lamport algorithm, there
exists a global clock, processes have unique identi-
fiers, global colors associated to each computation of
a global state.

A global clock can be simulated by local logical
clocks (Raynal, 1988), nevertheless it does not enable
iterated computations of snapshots.

Another way to exploit local knowledge is based
on wave algorithms: a message is passed to each pro-
cess by a single initiator following the topology of
the network or a virtual topology (ring, tree, complete
graph, . . . ), see (Matocha and Camp, 1998).

These solutions are not available in the context of
anonymous networks with no distinguished processes
and no particular knowledge on the topology.

4.2 Termination detection of the
Chandy-Lamport snapshot
algorithm

A first step to answer the above requirement is given
by the termination detection of the computation of all
local snapshots. More precisely, it requires that all
processes certify, in a finite computation, that they
have completed the computation of the local snap-
shot. The algorithm by Szymanski, Shy, and Prywes
(the SSP algorithm for short) (Szymanski et al., 1985)
does this for a region of pre-specified diameter; the
assumption is necessary that an upper bound of the
diameter of the entire network is known by each pro-
cess (note that the network size also suffices). In the
sequel this upper bound is denoted byβ and we as-
sume that each process knows it. This knowledge is
available at any process in the ViSiDiA API.

We consider a distributed algorithm which termi-
nates when all processes reach their local termination



conditions. In particular in Algorithm 2, each process
is able to determine only its own termination condi-
tion. SSP’s algorithm detects an instant in which the
entire computation is achieved.

Let G be a graph, to each processp is associated
a predicateP(p) and an integera(p). Initially P(p) is
false anda(p) is equal to−1. Transformations of the
value ofa(p) are defined by the following rules.

Each local computation acts on the integera(p0)
associated to the processp0; the new value ofa(p0)
depends on values associated to neighbors ofp0.

More precisely, letp0 be a process and let{p1, ..., pd}
the set of processes adjacent top0.

• If P(p0) = f alsethena(p0) =−1;

• if P(p0) = true thena(p0) = 1+Min{a(pk) | 1≤
k≤ d}.

We assume that for each processp the value of
P(p) eventually becomes true and remains true there-
after.

To apply the SSP algorithm, each process is en-
dowed with three variables:

• a(p) ∈ Z is a counter and initiallya(p) = −1,
a(p) represents the distance up to which all pro-
cesses have the predicate true;

• A(p) ∈ Pfin(N×Z)† encodes the informationp
has about the values ofa(q) for each neighborq.
Initially, A(p) = {(i,−1) | i ∈ [1,degG(p)]}.

A precise description is given in Algorithm 3.
From this algorithm, we can compose the application
of the Chandy-Lamport algorithm and the SSP algo-
rithm to enable each process to detect an instant where
all processes have completed the computation of their
local snapshot. In some sense,a(p) represents the
distance up to which all processes have completed the
computation of the local snapshot.

If a process has completed the computation of its
local snapshot then it changes the value ofa(p) to 0
and it informs its neighbors. When a processp re-
ceives a valuea(q) for some neighborq via the door
i then it substitutes the new value(i,a(q)) to the old
value(i,x) in A(p). Finally, p computes the new value
a(p) = 1+Min{x | (i,x) ∈ A(p)}.

A processp knows that each process has com-
pleted the computation of its local snapshot as soon
asa(p)≥ β (we recall thatβ is an upper bound on the
number of processes of the network or its diameter).
Thus we add a boolean variablesnapshotp initialized
at false; it indicates if the process knows whether all
processes have completed the computation of the lo-
cal snapshots.

†For any setS, Pfin(S) denotes the set of finite subsets of
S.

Init-SSPp : {To initiate termination detection on
the processp such thatP(p) = true}
begin

a(p) := 0;
m := Min{x | (i,x) ∈ A(p)};
if m≥ a(p) then

a(p) := m+1 ;

send< a(p)> to each neighbor ofp
end

R-SSPp : {An integer< α > has arrived atp via
door j}
begin

receive< α >;
A(p) := (A(p)\{( j,x)})∪{( j,α)};
m := Min{x | (i,x) ∈ A(p)};
if (m≥ a(p) and P(p) = true) then

a(p) := m+1;

if a(p)≥ β then
p detects the entire termination: the
predicateP is true for each process

else
send< a(p)> via each door

end
Algorithm 3: The SSP algorithm.

4.3 GPE algorithm

Let A be a distributed algorithm. LetE be an exe-
cution ofA . Our aim is to detect the termination of
E .

An executionE has terminated if and only if all
the processes are passive and all the channels are
empty. Thus to detect the termination of the execution
E , it suffices that from time to time (to be defined)
at least one process initializes the computation of a
snapshot and if its state is passive and its incoming
channels are empty it must detect if the same prop-
erty holds for all the processes. This is done by using
an occurrence of the SSP algorithm. If variables of a
processp indicate that the execution is not completed
then p emits a signal through the network to inform
each process.

In this way, we obtain an algorithm to detect
global termination of the execution of a distributed al-
gorithm. These repeated termination queries are simi-
lar to the solution described by Santoro in Section 8.3
of (Santoro, 2007).

As a corollary, this procedure can be extended to
evaluate other global predicates. It requires SSP to
be done over some local predicates. Thus, from local
snapshots, one can detect an instant of the execution
in which a global predicate holds. An example of such



a local global predicate is depicted in Section 2. The
main ideas are:

1. at least one process initiates the computation of a
snapshot (Algorithm 2),

2. each processp detects an instant where the com-
putation of its local snapshot is completed,

3. each processp detects an instant where the
computation of all local snapshots is completed:
snapshotp = true,

4. if the local snapshot of the processp is such that
the local predicate holds thenp initiates an occur-
rence of the SSP algorithm over the local predi-
cate to check whether the predicate holds in the
whole network,

5. if the local snapshot of the processp is such that
the predicate is not satisfied then it sends a sig-
nal to inform every process that the execution of
A is not completed and at least another snapshot
must be computed. Variables of Algorithm 2 and
Algorithm 3 are reseted andsnapshotp = f alse.

4.4 Theoretical evaluation

We are interested in characterizing the theoretical
complexity of these three algorithms. As Tel(Tel,
2000), we define the time complexity by supposing
that internal events need zero time units and that the
transmission time (i.e. the time between sending and
receiving a message) is at most one time unit. This
corresponds to the number of rounds needed by a syn-
chronous execution of the algorithm. LetA be an al-
gorithm we want to debug and letG be a graph of size
n with medges and of diameterD. We denotetime(A)
its time complexity,mess(A) its message complexity
andsize(A) the size required by each exchanged mes-
sage.

From the complexity viewpoint, Algorithm 2
yields O(2m) messages of size one bit. Moreover,
it requires the size of a local snapshot of mem-
ory at any processp. More precisely, it requires
O(∆time(A)mess(A)size(A)) bits of memory. We
store each incoming channel state in a list. Hence, the
memory depends on the number of incoming chan-
nels and the size induced by each message. Its time
complexity isO(D).

We now study the complexity of the SSP algo-
rithm which is used by Algorithm 3 and by the global
predicate evaluation. One know that once the confi-
dence levela(p) of every process is greater than the
size of the network, the underlying algorithm is ter-
minated (Algorithm 3) and more generally the global
predicate is satisfied on the network (Section 4.3).
Thus, one deduces that to reach a step in which a

global predicate is checked, it requiresO(n) time
units. The message complexity yielded by the SSP
layer is equal toO(mD) while the size of each mes-
sage isO(log(D)) bits.

5 RELATED WORK

In recent years, several tools have assessed the
question of simulation and visualization of distributed
algorithms (Moses et al., 1998; Stasko and Kraemer,
1993; Koldehofe et al., 2003; Ben-Ari, 2001; Carr
et al., 2003; Pongor, 1993; Chang, 1999).

As opposed to ViSiDiA, none fully satisfies to
our needs: a distributed algorithm simulation based
on a strong theoretical basis, ensuring event schedul-
ing and using a message passing model available for
asynchronous systems and anonymous networks; a
visual interface for network creation and a visualiza-
tion of both local and global properties and statistics;
a programming interface to allow designing new al-
gorithms; a visual debugger running concurrently to
the distributed algorithm. In regard to debugging al-
gorithms, there exist different approaches to add de-
bugging and GPE features to a simulation software.
Most of existing softwares allow the simulation of
distributed systems but require a centralized entity to
get the state of each process and thus to compute a
snapshot of the whole network. Our approach over-
comes this problem and makes the ViSiDiA debugger
to be a fully distributed component.

Many notions and algorithms concerning snap-
shots and global predicates evaluation can be found in
(Kshemkalyani and Singhal, 2008). A dedicated pro-
cess is usually in charge of determining if the global
state of a distributed system satisfies a global predi-
cate. Such a process starts the Chandy-Lamport al-
gorithm, collects processes and channels states, com-
putes a network map, and finally tests if the labelled
network satisfies the given property. To collect or to
analyze local snapshots, different assumptions may
be done (see (Kshemkalyani et al., 1995)): processes
have unique identifiers, there is exactly one initiator
or one collector process. The analysis may be done
thanks to a wave. As is explained in (Kshemkalyani
et al., 1995):A wave is a flow of control messages
such that every process in the system is visited exactly
once by a wave control message, and at least one pro-
cess in the system can determine when this flow of
control messages terminates.Furthermore waves se-
quence may be implemented through a traversal struc-
ture such as a tree or a ring. Some papers present spe-
cialized algorithms to obtain efficient algorithms to
evaluate particular properties of networks (Mattern,



1987; Bracha and Toueg, 1987; Marzullo and Sabel,
1994; Kshemkalyani and Wu, 2007; Kshemkalyani,
2010). In any case, it is assumed that processes have
identifiers and/or that there is exactly one initiator.

No such possibilities exist under our assumptions.
As for as we know, our method is a new emerging
solution for snapshots and GPE over anonymous net-
works without any knowledge about the underlying
network.

6 CONCLUSION

In this paper, we have proposed a new method
for debugging distributed algorithms. Our solution
respects a fully-distributed scheme, releasing strong
constraints usually imposed (such as process identifi-
cation and network synchronicity). We assessed the
question of visualizing debug information along with
algorithm execution in the context of anonymous and
asynchronous networks. We have proposed a new de-
sign of ViSiDiA, a simulation and visualization plat-
form which incorporates our fully-distributed debug-
ger. It allows several processes to initiate the debug-
ger at any time; processes only have to initially know
the network size. Hence, our tool helps in monitoring
what happens locally on the network and in finding
the stage when something goes wrong. It also enables
to determine in a distributed manner the state of the
whole system during the execution of an algorithm.

In terms of future work, several points will be
dealt with. First, a checkpoint and rollback recovery
system is currently being designed and implemented
for ViSiDiA. It will be an extension of the existing
play, pauseandstopbuttons by adding apreviousand
a nextbuttons. With these buttons, users will be able
to define the number of checkpoints to compute and to
browse the algorithm execution history. Besides, we
are developing another layer to our debugging algo-
rithm which permits each process to compute aweak
snapshotof the network i.e., the maximal informa-
tion it can get anonymously from this network by only
knowing its size. Finally, we are also planning to ex-
tend our theoretical and practical results on debugging
to local computations, mobile agents and broadcast
multi-hop models (e.g. radio networks).

REFERENCES
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