M. Alexander, Terahertz optical rectification from h110i zinc-blende crystals, Appl. Phys. Lett, vol.64, p.1324, 1994.

M. Y. Gupta, J. A. Frankel, J. F. Valdmanis, and G. A. Whitaker,

. Mourou, Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures, Appl. Phys. Lett, vol.59, p.3276, 1991.

A. N?mec, P. Pashkin, M. Ku?el, S. Khazan, I. Schnüll et al., Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy, Journal of Applied Physics, vol.90, issue.3, p.1303, 2001.
DOI : 10.1103/PhysRev.79.1013

J. Chimot, L. Mangeney, P. Joulaud, H. Crozat, K. Bernas et al., Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 lm, Appl. Phys. Lett, vol.87, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00162807

M. Martin, J. Mangeney, P. Crozat, and P. Mounaix, Optical phase detection in a 4-N,N-dimethylamino-4???-N???-methyl-stilbazolium tosylate crystal for terahertz time domain spectroscopy system at 1.55?????m wavelength, Applied Physics Letters, vol.97, issue.11, p.111112, 2010.
DOI : 10.1364/OE.16.009565

URL : https://hal.archives-ouvertes.fr/hal-00671179

M. Schneider, P. Stillhart, and . Günter, High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths, Optics Express, vol.14, issue.12, p.5376, 2006.
DOI : 10.1364/OE.14.005376

M. Schneider, M. Neis, B. Stillhart, R. U. Ruiz, P. Khan et al., Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, Journal of the Optical Society of America B, vol.23, issue.9, p.1822, 2006.
DOI : 10.1364/JOSAB.23.001822

M. Takazato, T. Kamakura, J. Matsui, Y. Kitagawa, and . Kadoya, Detection of terahertz waves using low-temperature-grown InGaAs with 1.56??m pulse excitation, Applied Physics Letters, vol.90, issue.10, p.101119, 2007.
DOI : 10.1063/1.1567459

K. Azad, R. P. Prasankumar, D. Talbayev, A. J. Taylor, R. D. Averitt et al., Carrier dynamics in InGaAs with embedded ErAs nanoislands, Applied Physics Letters, vol.93, issue.12, p.121108, 2008.
DOI : 10.1063/1.99309

D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies et al., Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55?????m excitation, Applied Physics Letters, vol.96, issue.19, p.194104, 2010.
DOI : 10.1364/OL.32.002297

M. Suzuki and . Tonouchi, Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56??m femtosecond optical pulses, Applied Physics Letters, vol.86, issue.16, p.163504, 2005.
DOI : 10.1063/1.1579565

J. Chimot, P. Mangeney, M. Mounaix, K. Tondusson, J. F. Blary et al., Terahertz radiation generated and detected by Br+-irradiated In0.53Ga0.47As photoconductive antenna excited at 800nm wavelength, Applied Physics Letters, vol.58, issue.8, p.83519, 2006.
DOI : 10.1063/1.1289037

URL : https://hal.archives-ouvertes.fr/hal-00162817

N. Mangeney, L. Chimot, N. Meignien, P. Zerounian, K. Crozat et al., Emission characteristics of ion-irradiated In 0.53 Ga 0.47 As based photoconductive antennas excited at 1.55 lm, Opt. Express, vol.156, p.8943, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283049

C. Delagnes, P. Mounaix, H. N?mec, L. Fekete, F. Kadlec et al., High photocarrier mobility in ultrafast ionirradiated In 0.53 Ga 0.47 As for terahertz applications, 2009.

E. Ralph, Y. Chen, J. Woodall, and D. Mcinturff, As: Intervalley scattering rates observed via THz spectroscopy, Physical Review B, vol.37, issue.8, p.5568, 1996.
DOI : 10.1103/PhysRevB.37.6941

W. Dittrich and . Schroeder, Empirical pseudopotential band structure of In0.53Ga0.47As and In0.52Al0.48As, Solid-State Electronics, vol.43, issue.2, p.403, 1999.
DOI : 10.1016/S0038-1101(98)00278-0

P. Biersack and L. G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nuclear Instruments and Methods, vol.174, issue.1-2, p.257, 1980.
DOI : 10.1016/0029-554X(80)90440-1

L. N?mec, F. Fekete, P. Kadlec, M. Ku?el, J. Martin et al., -bombarded InP studied by time-resolved terahertz spectroscopy, Physical Review B, vol.104, issue.23, p.235206, 2008.
DOI : 10.1103/PhysRev.87.835

J. Joulaud, L. M. Mangeney, P. Lourtioz, G. Crozat, and . Patriarche, Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime, Applied Physics Letters, vol.22, issue.6, p.856, 2003.
DOI : 10.1063/1.98679

K. Schroder, Semiconductor Material and Device Characterization, p.97, 2006.

P. Fekete, H. Ku?el, F. N?mec, A. Kadlec, J. Dejneka et al., Ultrafast carrier dynamics in microcrystalline silicon probed by time-resolved terahertz spectroscopy, Physical Review B, vol.102, issue.11, p.115306, 2009.
DOI : 10.1088/0953-8984/16/44/023

A. Humphreys, R. J. King, D. Jenkins, A. J. Moseley, E. Zielinski et al., Measurement of absorption coefficients of Ga0.47In0.53As over the wavelength range 1.0???1.7 ??m, Excitonic transitions and exciton damping processes in InGaAs/InP, pp.1187-2196, 1985.
DOI : 10.1049/el:19850839

F. Ku?el, H. Kadlec, and . N?mec, Propagation of terahertz pulses in photoexcited media: Analytical theory for layered systems, The Journal of Chemical Physics, vol.5, issue.2, p.24506, 2007.
DOI : 10.1364/OE.15.008898

, 25 Handbook Series on Semiconductor Parameters, p.62, 1999.

F. N?mec, S. Kadlec, P. Surendran, P. Ku?el, and . Jungwirth, Ultrafast far-infrared dynamics probed by terahertz pulses: A frequency domain approach. I. Model systems, The Journal of Chemical Physics, vol.820, issue.10, p.104503, 2005.
DOI : 10.1063/1.453761

F. N?mec, C. Kadlec, P. Kadlec, P. Ku?el, and . Jungwirth, Ultrafast far-infrared dynamics probed by terahertz pulses: A frequency-domain approach. II. Applications, The Journal of Chemical Physics, vol.820, issue.10, p.104504, 2005.
DOI : 10.1063/1.361417

, Comparison of (a) carrier lifetimes [s c is effective carrier lifetime obtained in experiments with photoexcitation at 800 nm, 15 s e is the lifetime of electrons, and s h is the lifetime of holes] and (b) mobilities [l c refers to Ref. 15, l e is the mobility of electrons, and l h is the mobility of holes] as a function of host-atom displacement concentration. Closed symbols: excitation at 800 nm; 15 open symbols: excitation at 1400 nm, pp.93721-93728

. Fekete,

, J. Appl. Phys, vol.111, p.93721, 2012.

C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, Ultrafast photoresponse at 1.55 ??m in InGaAs with embedded semimetallic ErAs nanoparticles, Applied Physics Letters, vol.86, issue.5, p.51908, 2005.
DOI : 10.1109/3.159553

D. C. Driscoll, M. P. Hanson, and A. C. Gossard, Carrier compensation in semiconductors with buried metallic nanoparticles, Journal of Applied Physics, vol.97, issue.1, p.16102, 2005.
DOI : 10.1103/PhysRevB.53.4324

W. Shockley and W. T. Read, Statistics of the Recombinations of Holes and Electrons, Physical Review, vol.83, issue.5, p.835, 1952.
DOI : 10.1103/PhysRev.87.387

J. Mangeney and P. Crozat, Ion-irradiated In0.53Ga0.47As photoconductive antennas for THz generation and detection at 1.55 ??m wavelength, Comptes Rendus Physique, vol.9, issue.2, p.142, 2008.
DOI : 10.1016/j.crhy.2007.07.008

URL : https://hal.archives-ouvertes.fr/hal-00247428

. Fekete,

, J. Appl. Phys, vol.111, p.93721, 2012.