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Abstract

Global sensitivity has mainly been analyzed in static models, though most physi-
cal systems can be described by differential equations. Very few approaches have
been proposed for the sensitivity of dynamic models and the only ones are lo-
cal. Nevertheless, it would be of great interest to consider the entire uncertainty
range of parameters since they can vary within large intervals depending on their
meaning. Other advantage of global analysis is that the sensitivity indices of
a given parameter are evaluated while all the other parameters can be varied.
In this way, the relative variability of each parameter is taken into account,
revealing any possible interactions. This paper presents the global sensitivity
analysis for dynamic models with an original approach based on the polynomial
chaos (PC) expansion of the output. The evaluation of the PC expansion of the
output is less expensive compared to direct simulations. Moreover, at each time
instant, the coefficients of the PC decomposition convey the parameter sensi-
tivity and then a sensitivity function can be obtained. The PC coefficients are
determined using non-intrusive methods. The proposed approach is illustrated
with some well-known dynamic systems.

Keywords: Global sensitivity analysis, dynamic system, polynomial chaos
expansion, sensitivity functions

1. Introduction

Very often, the equations of a model involve unknown parameters which
must be estimated from experimental data. A number of parameters are esti-
mated with more or less precision, which may lead to unacceptable uncertainty
on the model output. Among all the parameters, however, only few have a small

∗Principal corresponding author. Tel.:(52) 5882 1600, Fax:(52) 5482 1700
∗∗Corresponding author. Tel.: +33 (0)3 83685139, Fax: +33 (0)3 83685001

Corresponding author. Tel.: +33 (0)3 89336996, Fax: +33 (0)389423282
Email addresses: eharo@up.edu.mx (Eduardo Haro Sandoval),

floriane.collin@univ-lorraine.fr (Floriane Anstett-Collin)

Preprint submitted to Elsevier March 27, 2012



or insignificant influence on the model response and therefore do not need to be
determined precisely. On the other hand, some parameters are decisive for the
model response and thus influence its uncertainty significantly. These param-
eters may require additional measurement data in order to be estimated with
relatively high accuracy. To prepare and plan the experiments, it is necessary
to distinguish the parameters with an insignificant influence on the response
uncertainty, so as to set them at their nominal value in their interval of varia-
tion, thanks to the sensitivity analysis. Numerous studies have focused on the
sensitivity analysis for static nonlinear models, for example, [1, 2, 3, 4, 5, 6, 7].
The approaches may be local or global. Local approaches help to determine
the impact of a small parameter variation around a nominal value [8]. Global
approaches also allow the determination of the same impact but by varying the
parameter in its entire range of variation. Global methods are often based on
the analysis of the output variance and are known as ANOVA (ANalysis Of
VAriance) techniques [9, 10, 7]. More recently, sensitivity moment-independent
methods have been used, where emulation model is used to compute density-
based sensitivity measure [11]. The emulator is the one of [12].

The model function is split into a sum of functions of increasing dimension
[7]. This decomposition, known as High Dimensional Model Representation
(HDMR), performs the separation of the effects of different input parameters,
which are transmitted in the decomposition of the variance. The present study
exclusively focuses on global approaches. In order to quantify the contribution
of a parameter to the output variance, a sensitivity index is calculated, often
analytically when the model function is known and relatively simple. However,
some models may be complex with a high number of parameters so that an-
alytical calculations of the sensitivity indices become time consuming or even
impossible. It is therefore necessary to estimate them [3, 13, 14, 15, 7]. Very of-
ten, they are computed using Monte Carlo simulations, but for computationally
demanding models, this can become intractable. To overcome this drawback,
the model of interest is replaced by an analytical approximation, called meta-
model, for example, by polynomials which are less expensive. The sensitivity
indices are then obtained straightforwardly from the algebraic expression of the
coefficients of the polynomial expansion. The polynomial chaos (PC) decompo-
sition is an example of such metamodelling. The PC expansion appeared in the
1930’s as an effective means to represent stochastic processes in mechanics [16].
It is based on a probabilistic framework and represents amounts from stochastic
spectral expansions of orthogonal polynomials [17, 18]. It has recently been used
in an original manner for sensitivity analysis purposes in [1, 19, 20, 21, 22, 23].
The great advantage of PC-based sensitivity approaches is that the full random-
ness of the response is contained in the set of the expansion coefficients.
On the other hand, the analysis of influential parameters is also important for
dynamic models since most physical systems (biological, mechanical, electrical
and so on) can be described by differential equations. Very few approaches have
been proposed in the literature for the sensitivity analysis of dynamic mod-
els and the proposed ones are based on local derivatives or on one-at-a-time
approaches [24, 25]. However, for some applications, mechanical or biological

2



ones for instance, it can be of great importance to consider the entire uncer-
tainty range of parameters since they can vary within large intervals depending
on their meaning. Another advantage of global sensitivity analysis is that the
sensitivity estimates of individual parameters are evaluated while all the other
parameters are varied. In this way, the relative variability of each parameter is
taken into account, thus revealing any existing interactions.
The global sensitivity analysis for dynamic models is addressed in this paper.
In [26, 27], the PC expansion for stochastic differential equations has been stud-
ied to represent the model output and to get its statistic properties, but the
parameter sensitivity has not been dealt with. Based on these studies, an origi-
nal approach using the PC decomposition of the output is investigated here, to
calculate the parameter sensitivity for dynamic models. At each time instant,
the PC coefficients of the decomposition convey the parameter sensitivity and
then a sensitivity function of each parameter can be obtained from the alge-
braic expression of the coefficients. The PC coefficients are determined either
by regression or projection techniques which have the advantage of being non-
intrusive methods. The proposed approach is illustrated with the well-known
mass-spring-damper and DC motor systems.
The outline of this paper is as follows. The sensitivity functions for dynamic
systems are presented in Section 2 and the PC expansion for the output of a
differential equation in Section 3. Section 4 is focused on the determination of
the PC coefficients. Section 5 proposes a PC-based approach to the estimation
of the sensitivity functions, which approach is summed up in Section 6. Finally,
Section 7 presents an analytical test case to show the convergence of the numer-
ical results. Moreover, the provided approach is applied on some representative
dynamic physical systems.

2. Global sensitivity analysis

Consider the following stochastic differential equation:

L (t, ω,p(ω); y) = f (t, ω,p(ω)) (1)

where L is a linear or non-linear differential operator and p(ω) = (p1(ω), . . . , pn(ω))
with pi(ω), i = 1, . . . , n, the n unknown parameters, considered as uniformly
random and independent variables, defined on the unit cube K. The stochastic
variable ω is used to indicate the randomness of the input variable p. For the
sake of simplicity, ω will be omitted in the following and p stands for p(ω).
The solution y = y(t,p), corresponding to the output of the model, can be
decomposed into summands of increasing dimension [7], at each time instant:

y(t,p) = f0(t) +

n∑
i=1

fi(t, pi) +

n−1∑
i=1

n∑
i<j

fij(t, pi, pj)

+ . . .+ f1...n(t, p1, . . . , pn)

(2)

where y(t,p) ∈ R the model output is assumed continuous, derivative and
square-integrable. The term f0(t) is the mean value of the output at each
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time instant:

f0(t) =

∫
Kn

y(t,p)dp (3)

The summands of equation (2) are given by:

fi(t, pi) = E[y(t,p)|pi]− f0(t)
fij(t, pi, pj) = E[y(t,p)|pi, pj ]− fi(t)− fj(t)− f0(t)
. . .

(4)

where E[y(t,p)|pi] (resp. E[y(t,p)|pi, pj ]) is the conditional expectation of
y(t,p) when pi is set (resp. pi and pj are set).
The integral of each summand fi1...is(t, pi1 , . . . , pis) is zero:∫ 1

0

fi1...is(t, pi1 , . . . , pis)dpik = 0, (5)

with k ∈ {i1, . . . , is} and 1 ≤ i1 ≤ . . . ≤ is ≤ n. Due to equation (5), the
summands are orthogonal to each other:∫

Kn

fi1...is(t, pi1 , . . . , pis)fj1...jr (t, pj1 , . . . , pjr )dp = 0 (6)

for {i1, . . . , is} 6= {j1 . . . , jr}.
There are infinite possible decompositions but only one is satisfying Sobol’ or-
thonormality condition (5).
Moreover, the variance of the output, denoted V (t), is given by:

V (t) =

∫
Kn

(
y2(t,p)− f20 (t)

)
dp (7)

The decomposition (2) leads to the following decomposition of the variance V (t):

V (t) =

n∑
i=1

Vi(t) +

n−1∑
i=1

n∑
i<j

Vij(t) + . . .+ V1...n(t) (8)

with:

Vi(t) = V [E[y(t,p)|pi]]
Vij(t) = V [E[y(t,p)|pi, pj ]]− Vi(t)− Vj(t)
...

V1...n(t) = V (t)−
n∑

i=1

Vi(t)−
∑

1≤i<j≤n

Vij(t)− · · · −
∑

1≤i1<...<in−1≤n

Vi1...in−1
(t)

(9)
where V [E[y(t,p)|pi]] (resp. V [E[y(t,p)|pi, pj ]]) is the variance of the condi-
tional expectation of y(t,p) when pi is set (resp. pi and pj are set).

Since the output y(t,p) varies with time, there is one value for the classic Sobol
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sensitivity indices at each time instant, thus leading to sensitivity functions. In
the same manner as for static models, the sensitivity functions of parameter pi
are obtained by renormalising (9) with the total variance V (t). Thus, the first
order sensitivity function, denoted Si(t), is defined as follows:

Si(t) =
Vi(t)

V (t)
(10)

The first order sensitivity function Si(t) represents the main effect of the pa-
rameter pi which corresponds to its contribution alone. The value of Si(t), at
each time instant, lies between 0 and 1. The closer to 1 its value is, the more
parameter pi contributes to the total variance of the output. The sensitivity
functions of higher orders, denoted Si1...is(t), are defined as:

Si1...is(t) =
Vi1...is(t)

V (t)
, 1 ≤ i1 ≤ . . . ≤ is ≤ n (11)

The sensitivity functions Si1...is(t) represent the collective contribution of the
parameters pi1 , . . . , pis , which corresponds to the influence of the interactions
of these parameters. By normalising equation (8) with the total variance V (t),
the following expression is obtained:

1 =

n∑
i=1

Si(t) +

n−1∑
i=1

n∑
i<j

Sij(t) + . . .+ S1...n(t) (12)

The total sensitivity function of parameter pi, denoted STi(t), represents the
contribution of pi alone in addition to the contribution due to its interaction
with the other parameters [9]. This total sensitivity function is defined by:

STi(t) = Si(t) +

n∑
j=1
j 6=i

Sij(t) +

n∑
j=1
j 6=i

n∑
k=j+1
k 6=i
j 6=i

Sijk(t) + . . .+ Sijk...n(t)
(13)

The previous sensitivity functions can be calculated using Monte Carlo simula-
tions. However, the number of model evaluations can become very large and the
calculations intractable, especially as they have to be performed at each time
instant. To overcome this problem, the model response is substituted by its PC
expansion, which is an analytical representation in an orthonormal polynomial
basis. Therefore, evaluating the PC expansion of the output is less expensive
compared to direct simulations. Furthermore, the sensitivity functions can be
evaluated as analytical expressions of the PC coefficients. In the next section,
the PC expansion of the model output is detailed.

3. PC expansion of the model output

The beginnings of the polynomial chaos can be traced back to Wiener [16].
He suggested that the spectral expansion of Hermite polynomials in terms of
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Gaussian random variables could be used to represent certain stochastic pro-
cesses. It was then shown that the homogeneous chaos expansion could be used
to approximate any function in the Hilbert space of square-integrable functions.
As a result, any second-order random variable with finite variance can be repre-
sented by a spectral expansion standing on a basis of Hermite polynomials. In
[26, 27], this is extended to differential equations. In this case, any second-order
random variable X(t, ω) can be expanded as:

X (t, ω) =

∞∑
j=0

xj (t) Φj (ξ (ω)) (14)

where xj(t) are unknown deterministic coefficients, ξ(ω) = (ξ1(ω), . . . , ξn(ω))
the n standard normal independent random variables (zero mean and unit stan-
dard deviation) and Φj the multivariate Hermite polynomials. The basis is
orthogonal with respect to the Gaussian measurement. As previously, for the
sake of simplicity, ω will be omitted and ξ stands for ξ(ω).
In practice, the PC expansion (14) is truncated to a finite number M + 1 of
terms, i.e. the coefficients to be calculated. The degree d of the polynomials is
related to M and to the number n of random variables ξ by:

M + 1 =
(n+ d)!

n!d!
(15)

It is worth noting that the required degree for the polynomials is not known a
priori and must be tested to obtain the best accuracy. The multivariate poly-
nomial Φj is given by the tensor product of the corresponding one-dimensional
Hermite polynomials φaj

k
:

Φj(ξ) =

n∏
k=1

φaj
k
(ξk) (16)

with ajk the degree of the one-dimensional Hermite polynomials, such that

|aj | =
n∑

k=1

ajk ≤ d, j = 0, . . . ,M .

The Hermite expansion above has been used effectively for equations with Gaus-
sian inputs. But, according to the theorem of Cameron and Martin [28], this
function converges for arbitrary random processes. For example, normalised
Legendre polynomials can be associated with a uniform distribution. Table 1
sums up the type of distribution and the associated polynomials.

Assuming that the model output y(t,p) is square-integrable and the parameters
independent, y(t,p) can also be decomposed in PC:

y(t,p) ≈
M∑
j=0

αj(t)Φj(p), Φj(p) =

n∏
k=1

φaj
k
(pk) (17)
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Distribution Polynomials Support

Continuous Gaussian Hermite R
Uniform Legendre [−1; 1]
Gamma Laguerre [0; +∞[

Beta Jacobi [−1; 1]
Discrete Poission Charlier {0, 1, . . . , }

Negative binomial Miexner {0, 1, . . . , }
Binomial Krawtchouk {0, 1, . . . , N}

Hypogeometric Hahn {0, 1, . . . , N}

Table 1: Wiener-Askey polynomials

As stated in Section 2, the model parameters p are uniformly independent
random variables. Therefore, the one-dimensional polynomials φaj

k
in (17) are

Legendre polynomials, defined by the following recurrence equation:{
φ0(pk) = 1

φi+1(pk) =
(2i+ 1

i+ 1

)
pkφi(pk)−

( i

i+ 1

)
φi−1(pk), for i > 1

(18)

Moreover, Table 1 emphasizes that the Legendre polynomials are orthogonal
with respect to a uniform probability measurement over [−1; 1], while the pa-
rameters pk, k = 1, . . . , n, lies in [0; 1]. Consequently, the parameters are first
mapped onto the interval [−1; 1], before completing the PC expansion.
The deterministic coefficients αj(t), j = 1, . . . ,M , are unknown. The next
section is focused on their determination.

4. Determination of the PC coefficients

Once the structure of the PC expansion is obtained for the model output,
as explained in the previous section, the deterministic coefficients αj(t) must
be computed. There exist two types of methods for this, the intrusive and the
non-intrusive ones. Historically, the intrusive Stochastic Galerkin (SG) method
was used [29, 27, 28]. A Galerkin projection helps to minimize the error of
the truncated expansion, and all the resulting coupled equations are solved for
the coefficients of the expansion equations. SG method is well suited for the
treatment of ordinary and partial differential equations as it has the ability to
cope with a large nonlinear dependence of the solution on data from random
patterns. However, SG method is intrusive in the sense that it must solve a
system of coupled equations which require robust and efficient algorithms and
the modification of an existing deterministic code. Often, the form of equations
or code used to solve the deterministic equations is complex and it makes the
implementation of the PC difficult, if not impossible. Therefore, non-intrusive
methods have been proposed based on regression technique [30, 31] or on projec-
tion method [19, 20]. Instead of building prior expansions of uncertainty sources
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and of finding the coefficients by solving the corresponding equations, these ap-
proaches use interpolation methods and project a set of deterministic simula-
tions, which are defined using samples of parameters chosen carefully, with a
polynomial basis. These approaches are very useful when trying to quantify
uncertainty in complex deterministic models which cannot easily be modified.
Similarly to SG methods, non-intrusive methods reach a fast convergence when
the solutions are sufficiently smooth in the random space.

4.1. Regression method

The PC coefficients are obtained through the regression of the mean-square
optimization problem. In the following, consider a sample of size N for the
output y and the parameters p, at each time instant. The k-th realisation of
p and of y, at time t, is denoted, respectively, by p(k) and y(k)(t,p(k)). The
mean-square minimization helps to solve the following problem:

α̂(t) = arg min
1

N

N∑
k=1

y(k)(t,p(k))−
M∑
j=0

αj(t)Φj

(
p(k)

)2

(19)

where α̂(t) = (α̂0(t), . . . , α̂M (t)) is the vector of PC coefficients. The no-
tation α̂(t) is employed to distinguish the estimated value of α(t) from its
true one. Denoting by Φ the matrix whose elements are given by Φkj =
Φj(p

(k)), k = 1, . . . , N and j = 0, . . . ,M , by ΦT its transpose and by y(t) =
(y(1)(t,p(1)), . . . , y(N)(t,p(N)) the vector containing the N realisations of y, at
time t, the solution of (19) is:

α̂(t) =
(
ΦTΦ

)−1
ΦTy(t) (20)

It is generally advisable to use an over-sampling to determine N , resulting in a
least squares solution for the over-determined system. It can be calculated by
N = 2 (M + 1) [32], or N = (n− 1) (M + 1) [20]. As stated in [20, 33], taking
more points does not improve the accuracy of the results.

4.2. Projection method

The projection method takes advantage of the orthogonality properties of the
PC representation computing the expansion coefficients from some evaluations
of the model. Multiplying both sides of equation (17) by Φl(p) and taking the
inner product, it reads:

〈y(t,p),Φl (p)〉 ≈
M∑
j=0

αj(t) 〈Φj (p) ,Φl (p)〉 (21)

where 〈·, ·〉 is the inner product in the Hilbert space. Orthogonality property is
now used. Indeed, polynomials Φj(p) form an orthogonal basis so that:

〈Φj(p),Φl(p)〉 = δjl (22)
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where δjl is the Delta Kronecker symbol, δjl = 1 if j = l and 0 otherwise. Thus,
from (21), the coefficients α̂j(t) can be obtained:

α̂j(t) =
〈y(t,p),Φj (p)〉
〈Φj (p) ,Φj (p)〉

, ∀j (23)

In the latter expression the denominator is already known and the numerator
can be computed with the multidimensional integral:

〈y(t,p),Φj (p)〉 =

∫
Kn

y(t,p)Φj (p)h(p) dp (24)

where h(p) is the joint probability density function of p. In order to obtain the
j-th coefficients, it can be shown that M + 1 multidimensional integrals must
be solved. There exist different methods to numerically compute (24), random
sampling, quadrature product and Smolyak sparse grids.

4.2.1. Random sampling

The Random sampling is the Monte Carlo approach. Here the integral evalu-
ation is equivalent to compute the mean of the function product (left member of
equation (24)) for each term in the expansion. To have appropriate estimates a
total-order chaos expansion must be used and the samples must have the density
of the weighting function. In practice, this method can be intractable because
the number of samples required for acceptable convergence can be large.

4.2.2. Quadrature

Consider the use of a numerical integration technique to estimate the co-
efficients of the expansion. The integral of (24) can be computed as a finite
weighted summation evaluated at special points (the integration points). The
theory of quadrature approaches is based on the use of orthogonal polynomials
of the PC basis. This numerical integration method can be expressed in the
form: ∫

Dn

y(t,p)Φj (p)h(p) dp ≈
N∑

k=1

y
(
t,p(k)

)
Φj

(
p(k)

)
W (k) (25)

with p(k) being the integration points, W (k) the weights and N the number of
integration points. These methods require the smoothness of the function.
The Gauss-Hermite integration of this equation requires Nn computations,
where n is the number of random variables. As for the number of the inte-
gration points, a minimal Gaussian quadrature order of N = d + 1 will be
required to obtain a good accuracy in the coefficients, where d is the degree of
the polynomials [19, 32, 29, 20].
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4.2.3. Smolyak sparse grids

When the number of parameters is very large and the number of evalua-
tions of the integral (25) becomes impractical, a solution is to use Smolyak
cubature [19, 32]. Smolyak formulas are linear combinations of the products ex-
pressed in equation (25), which only takes into account products with relatively
few integration points. These methods are based on the differences between
quadratures of successive levels. The one-dimensional quadrature formula of
level l, with points p and weights W , respectively, writes:∫

Dn

y(t,p)Φj (p)h(p) dp ≈
N∑

k=1

y
(
t,p(k)

)
Φj

(
p(k,l)

)
W (k,l) ≈ U1

l (26)

Setting U1
0 = 0 and with i ≥ 1 an increasing sequence of integration formulas,

the difference quadrature formula is defined as:

∆1
i≥1 = U1

i − U1
i−1 (27)

With a set of multi-indices i = (i1, . . . , in), the n-dimensional difference formula
is the tensor product of one-dimensional difference quadrature. Then, the n-
dimensional Smolyak’s cubature formula of level l is constructed by the sum of
tensor products of difference quadratures, over a set of multi-indices i:∫

Dn

y(t,p)Φj (p)h(p) dp ≈
∑

|i|≤l+n−1

(
∆i1 ⊗ · · · ⊗∆in

)
(28)

5. PC-based sensitivity functions

Consider the PC expansion of the model output (17) with the coefficients
computed with (19) or (23). Due to the orthogonality of the basis, it can be
shown that the mean ˆ̄y(t) and the variance V̂ (t) of the output are, respectively,
given by:

ˆ̄y(t) = α̂0(t) (29)

V̂ (t) =

M∑
j=1

α̂2
j (t) 〈Φj(p),Φj(p)〉 (30)

As explained in [34], to compute the sensitivity function Si(t) (10) of parameter
pi, it is necessary to reorder the expansion (17) in order to separate the different
contributions - single and collective - of each parameter, as (2). To do so,
Ik1,...,ks

must define the set of multi-indices j such that :

Ik1,...,ks
= {0 ≤ ajk ≤ d, a

j
k = 0 ∀k ∈ {1, . . . , n}\{k1, . . . , ks}} (31)
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where ajk is the one-dimensional polynomial degree. The set Ii corresponds to
the polynomials depending on parameter pi only, with the exception of all the
others. Using this notation, the expansion (17) can be written as:

y (t,p) ≈ α0(t)Φ0(p) +

n∑
i=1

∑
j∈Ii

αj(t)Φj (pi)

+
∑

1≤i1≤i2≤n

∑
j∈Ii1,i2

αj(t)Φj (pi1 , pi2) + · · ·

+
∑

1≤i1≤...≤i2≤n

∑
j∈Ii1,...,is

αj(t)Φj (pi1 , . . . , pis)

+ · · ·

(32)

The first-order sensitivity function can be obtained straightforwardly from (32)
with the estimated coefficients α̂i(t) (equation (19) or (23)). Thus, the estimated
first-order sensitivity function Ŝi(t) of parameter pi is given by:

Ŝi(t) =

∑
j∈Ii

α̂2
j (t) 〈Φj(pi),Φj(pi)〉

M∑
j=1

α̂2
j (t) 〈Φj(p),Φj(p)〉

(33)

The estimated sensitivity functions of a higher order, Ŝi1,...,is(t), reflecting the
interactions effect, can be obtained in the same manner:

Ŝi1,...,is(t) =

∑
j∈Ii1,...,is

α̂2
j (t) 〈Φj(pi1 , . . . , pis),Φj(pi1 , . . . , pis)〉

M∑
j=1

α̂2
j (t) 〈Φj(p),Φj(p)〉

(34)

Finally, the estimated total sensitivity function, ŜTi(t) is given by:

ŜTi(t) =

∑
j∈Ii+

α̂2
j (t) 〈Φj(pi),Φj(pi)〉

M∑
j=1

α̂2
j (t) 〈Φj(p),Φj(p)〉

(35)

with Ii+ the set of multi-indices j defined by:

Ii+ = {0 ≤ aj ≤ p, aji 6= 0, ∀k = i} (36)

The set Ii+ corresponds to polynomials Φi depending on parameter pi and pos-
sibly on the other parameters.

The great advantage of using the PC-based approach to the computation of
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the sensitivity functions is that the calculation is straightforward once the PC
expansion is obtained. Then, this approach will be efficient if the PC expansion
is accurate and inexpensive.
The next section gives a summary of the proposed approach.

6. Summary of the proposed approach

The computation of the sensivity functions of the parameters for the dy-
namic model (2), requires the following steps:

a) PC decomposition

1. Polynomial type
Choose the polynomial type associated to the parameter distribution, see
Table 1.
If necessary, map the parameters onto the required interval given in Table
1, in order to get an orthogonal basis for the chosen polynomials.

2. PC degree
Set the required degree d for the PC.

3. PC truncation
Compute the number M + 1 of terms in the expansion (17), according to
(15).

4. PC coefficients
Compute the PC coefficients according to (19) or (23).

b) Sensitivity functions
Once the PC decomposition of the output is completed, compute the sensi-

tivity functions according to (33), (34) and (35), for each parameter.

7. Application examples

A simple test case is provided in order to compute analytically the sensitivity
indices and to show the convergence of the numerical results obtained using
the PC decomposition. Then, two examples of dynamic system are given to
illustrate the contribution of this work.

7.1. Analytical test case

Consider the solution y(t) of a simple first-order differential equation of the
form ẏ(t) = p1:

y(t) = p1t+ p2 (37)

The parameters p1 and p2 are assumed to be independent uniformly distributed
over [c1; d1] and [c2; d2], respectively.
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7.1.1. Analytical sensitivity indices

The mean value ȳ(t) of the output is given by (3) and can be calculated
analytically:

ȳ(t) =
c2 + d2

2
+

(c1 + d1)t

2
(38)

The output variance V (t) is given by (7) and its analytical expression is:

V (t) =
(c2 − d2)2

12
+

(c1 − d1)2t2

12
(39)

The first-order sensitivity functions Sp1
(t) and Sp2

(t) of the parameters p1 and
p2 are given by (10) and their analytical expressions are, respectively:

Sp1
(t) =

(c1 − d1)2t2

(c2 − d2)2 + (c1 − d1)2t2
(40)

Sp2
(t) =

(c2 − d2)2

(c2 − d2)2 + (c1 − d1)2t2
(41)

It can be worth noting that model (37) is additive. Thus, the second-order
index Sp1p2

(t) is zero and the total indices, STp1
(t) and STp2

(t), are equal to
the first-order indices, Sp1

(t) and Sp2
(t), respectively.

7.2. PC-based sensitivity indices

Here, the number of parameters is n = 2 and the degree used for the poly-
nomials is d = 1 as the output is linear in the parameters. Thus, the number of
coefficients to compute in the decomposition is M+1 = 3 (15). The multivariate
polynomials Φj are given by (16):

Φj(p1, p2) =

2∏
k=1

φaj
k
(pk) (42)

where |aj | =
2∑

k=1

ajk ≤ 1, j = 0, . . . , 2, and φaj
k

are one-dimensional Legendre

polynomials. The mean value ˆ̄y(t), the variance V̂ (t) and the sensitivity func-
tions Ŝp1(t) and Ŝp2(t) are given, respectively, by (29), (30), (33), (34) and (35).
In the following, the numerical values are c1 = 0.76, d1 = 0.84, c2 = 0.9 and
d2 = 1.1. The figure 1 represents the evolution of the output variance computed
analytically vs using PC decomposition (top figure). The relative error, shown

in figure 1 (down), is given, in percentage, by
100|V (t)− V̂ (t)|

V (t)
. This error does

not exceed 6%, showing good accuracy of the results.
The figures 2 and 3 represent, respectively, the sensitivity functions of p1 and p2,
computed analytically vs using PC decomposition (top) and the relative error
of the sensitivity functions (down). These figures show that the relative errors,
computed as previously, do not exceed 3% for p1 and 7.5% for p2, showing
satisfactory accuracy of the PC decomposition.
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Figure 1: Evolution of the output variance (top) - Relative error for the output variance V (t)
(down)

7.3. Mass-spring-damper system

Also to illustrate the contribution of this paper, an ideal mass-spring-damper
system is considered, with a mass m, a spring constant b and a viscous damping
coefficient k, subject to a constant force F , as represented in figure 4.
This system is described by the following differential equation:

mÿ(t) + bẏ(t) + ky(t) = F (43)

where y(t), the output of the system, represents the mass position. This
equation can be represented by a state space system. Defining the states as
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Figure 2: Sensitivity function Sp1 (t) (top) - Relative error for Sp1 (t) (down)

x1(t) = y(t) and x2(t) = ẏ(t), it reads:[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

− k
m
− b

m

][
x1(t)
x2(t)

]
+

[
0
1

m

]
F (44)

Figure 5 is the simulation when a step signal is applied on F , for the fixed values
m = 1, b = 1 and k = 4.5.
The sensitivity of the parameters m, b and k on the mass position y(t) is con-
sidered. The proposed approach is applied in order to obtain the sensitivity
functions.
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Figure 3: Sensitivity function Sp2 (t) (top) - Relative error for Sp2 (t) (down)

7.3.1. PC decomposition

1. Polynomial type
The parameters p1 = m, p2 = b and p3 = k are considered as independent
random variables with a uniform distribution in the following intervals,
p1 ∈ [0.9; 1.1], p2 ∈ [0.8; 1.2] and p3 ∈ [3; 6]. The first step is to decompose
the output y(t) in PC (equation (17)). As the parameters are uniformly
distributed, φaj

k
are Legendre polynomials.

Before starting the decomposition, the parameters must be mapped onto
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Figure 4: Mass-spring damper system

Figure 5: Mass position simulation
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the interval [−1; 1] with the following transformation:

pi − E[pi]

(bi − ai)/2
, ∀i ∈ {1, 2, 3} (45)

where bi and ai are, respectively, the maximum and minimum values of
the parameter interval and E[pi] the expectation of pi.

2. PC degree
Here, the number of parameters is n = 3 and the degree used for the
polynomials is d = 4. This degree of expansion was sufficient due to the
smoothness of the function, as shown in figure 6.

3. PC truncation
Consequently, the number of terms in the decomposition (the number of
coefficients to be calculated) is M + 1 = 35, according to (15).

4. PC coefficients
After substituting (45) for pi, the multivariate polynomials Φj are given
by (16):

Φj(p1, p2, p3) =

3∏
k=1

φaj
k
(pk) (46)

where |aj | =
3∑

k=1

ajk ≤ 4, j = 0, . . . , 34, and φaj
k

are one-dimensional Leg-

endre polynomials. The 35 coefficients αj(t) are determined with the pro-
jection method because the given dynamic system is relatively smooth.
Therefore, the coefficients are given by (23). The software Scilab toolbox

NISP [35] helps to compute them. The error y(t)−
34∑
j=0

αj(t)Φj(p), repre-

sented in figure 6, is low in the transient and stabilizes in the steady state,
showing a good approximation of the output with the PC decomposition.
Moreover, figures 7 and 8 show the PDF of the output, at different time
instants.

7.3.2. Sensitivity functions

The next step is to compute the sensitivity functions for the three parameters
according to (33), (34) and (35). Figures 9, 10 and 11 represent, respectively,
the first-order, the higher order and the total sensitivity functions.
Several instants of time were chosen to cover the transient and the steady-state
of the system: the functions were calculated every 0.2 seconds. For the first
seconds of the transient, the most influential parameters on the mass position
are obviously the mass and the damper, because they depend on the acceleration
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Figure 6: Error between the output and its PC-based approximation

Figure 7: PDF of the output at time 0.1s
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Figure 8: PDF of the output at time 20s

Figure 9: 1st-order sensitivity functions
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Figure 10: Sensitivity functions of higher order

Figure 11: Total sensitivity functions
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Figure 12: DC motor diagram

and the speed (see figure 9). When the speed reaches its maximum value and
the acceleration is zero, approximately at 0.6 seconds, the mass and the spring
become equally influent. From second 2 up to the steady state, the spring is
clearly the most relevant parameter because the velocity and the acceleration
tend to zero. The second order indices S13 (mass-spring) and S23 (damper-
spring) appear more clearly in the middle of the simulation (figure 10), when
the position is already significant and the velocity and acceleration are still not
zero.

7.4. DC motor system

Another example of a known dynamic system is the permanent magnet DC
motor (figure 12). The parameters of this system are the internal resistance R,
the inductance L, the motor constant km, the counter electromotive constant
ka, the mechanical inertia J and the mechanical damping b. The input is the
voltage V applied to the motor and the output is the shaft speed ω(t).
The torque is given by Γ = kmi(t) and the counter electromotive voltage by
Vb = kaω(t). We assume that the motor is unloaded, so the equations of this
system are:

V = Ri(t) + L
di(t)

dt
+ kaω(t)

Jω̇(t) = kmi(t)− bω(t)

Defining the states as x1(t) = i(t) and x2(t) = ω(t), the state space representa-
tion of this system is:[

ẋ1(t)
ẋ2(t)

]
=

[
−R

L −ka

L
km
J

− b
J

] [
x1(t)
x2(t)

]
+

[
1

L
0

]
V (47)

Figure 13 represents the evolution of ω(t), when the step signal V = 9 is applied
for the fixed values L = 0.3, R = 15, J = 0.2, b = 0.2, km = 7.5 and ka = 3.
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Figure 13: Response of a step signal
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Figure 14: Error between the output and its PC-based approximation

7.4.1. PC decomposition

1. Polynomial type
The parameters are considered as independent random variables with a
uniform distribution in the intervals L ∈ [0.2; 0.4], R ∈ [10; 20], J ∈
[0.2; 0.4], b ∈ [0.1; 0.3], km ∈ [5; 10] and ka ∈ [1; 5]. Thus, as previously,
φaj

k
are Legendre polynomials. Note that the parameters are mapped onto

the interval [−1; 1], before the PC decomposition.

2. PC degree
Here, the number of parameters is n = 6 and the degree used for the
polynomials is d = 5. This degree is sufficient due to the smoothness of
the function, as shown in figure 13. The error between the original system
and the PC approximation is obtained to verify the accuracy of the PC
expansion, as shown in figure 14.

3. PC truncation
The number of terms in the decomposition is M + 1 = 462.

4. PC coefficients
The multivariate polynomials Φj are given by (16), with n = 6 and where

|aj | =

6∑
k=1

ajk ≤ 5, j = 0, . . . , 461, and φaj
k

are one-dimensional Legendre

polynomials. The error y(t)−
461∑
j=0

αj(t)Φj(p), represented in figure 14, is

less than 0.15%, showing a good approximation of the output with the PC
decomposition.
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Figure 15: 1st-order sensitivity functions

Figure 16: Total sensitivity functions

7.4.2. Sensitivity functions

Finally, the sensitivity functions are computed. Figure 15 presents the first
order sensitivity functions with u1 = L, u2 = R, u3 = J , u4 = b, u5 = km,
u6 = ka and figure 16 presents the total sensitivity functions with T1 = L,
T2 = R, T3 = J , T4 = b, T5 = km, T6 = ka. The inductance L and the
damping b have little importance throughout the simulation. This is because
the pole generated by these constants is much faster than the dominant pole.
In practice, these parameters can be neglected or settled to their nominal value.
The inertia J , the resistance R and the motor constant km are important during
the transient. Then, their influence disappears when reaching the steady state.
The parameter ka is the most influential parameter in the steady state, since it
is a constant which is multiplied by the speed of the shaft.

8. Conclusion

This paper has presented the problem of the global sensitivity of dynamic
systems which proves important when parametric uncertainty falls within a wide

25



range for several parameters and when the sensitivity changes significantly from
one operation point to another.
The polynomial chaos expansion is used to calculate the sensitivity indices of the
system. The expansion coefficients are calculated either through the technique
of regression or projection, which are non-intrusive methods. As the sensitivity
of a dynamic system changes over time, the sensitivity indices are calculated
at different time instants. In this way, the global sensitivity functions of the
dynamic system are obtained.
A major advantage of this approach is that, if the function to be represented
with the PC is smooth, the number of coefficients that must be calculated is
small. So, computation time is small too, compared with the Monte Carlo sim-
ulation.
The approach presents good results for relative simple dynamic models, as pre-
sented in this work. Further work will be carried out on more complex models
(partial differential equations, for instance) to attest its efficiency and test its
accuracy of PC decomposition in long term.
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Mécanique 336 (6) (2008) 518–523.

[2] E. Borgonovo, A new uncertainty importance measure, Reliability Engi-
neering & System Safety 92 (2007) 771–784.

[3] R. I. Cukier, R. I. Levine, K. E. Shuler, Nonlinear sensitivity analysis
of multiparameter model systems, Journal of Computational Physics 26
(1978) 1–42.

[4] H. Frey, S. R. Patil, Identification and review of sensitivity analysis meth-
ods, Risk Analysis 22 (3) (2002) 553–578.

[5] A. Saltelli, Sensitivity analysis for importance assessment, Risk Analysis
22 (3) (2002) 579–590.

[6] A. Saltelli, S. Tarantola, F. Campolongo, N. Ratto, Sensitivity Analysis in
Practice. A Guide to Assessing Scientific Models, Wiley, 2004.

[7] I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Math-
ematical Modelling and Computing Experiments 1 (1993) 407–414.

26



[8] T. Turyani, H. Rabitz, Local methods in sensitivity analysis, A. Saltelli, K.
Chan, E. M. Scott, John Wiley and Sons, Chichester, 2000.

[9] T. Homma, A. Saltelli, Importance measures in global sensitivity analysis
of model output, Reliability Engineering & System Safety 52 (1) (1996)
1–17.

[10] A. Saltelli, S. Tarantola, K. Chan, A quantitative model independent
method for global sensitivity analysis of model output, Technometrics 41
(1999) 39–56.

[11] E. Borgonovo, W. Castaings, S. Tarantola, Model emulation and
moment-independent sensitivity analysis: An application to environ-
mental modelling, Environmental Modelling & Software (0) (2011) –.
doi:10.1016/j.envsoft.2011.06.006.

[12] M. Ratto, A. Pagano, Using recursive algorithms for the efficient identi-
fication of smoothing spline anova models, AStA Advances in Statistical
Analysis 94 (4) (2010) 367–388.

[13] J. Jacques, C. Lavergne, N. Devictor, Sensitivity analysis in presence of
model uncertainty and correlated inputs, Reliability Engineering & System
Safety 91 (2006) 1126–1134.

[14] T. A. Mara, S. Tarantola, Application of global sensitivity analysis of model
output to building thermal simulations, Journal of Building Simulation 1
(2008) 290–302.

[15] M. D. McKay, J. D. Morrison, S. C. Upton, Evaluating prediction uncer-
tainty in simulation models, Computer Physics Communications 117 (1-2)
(1999) 44–51.

[16] N. Wiener, The homogeneous chaos, American Journal of Mathematics
60 (4) (1938) 897–936.

[17] R. Ghanem, J. Red-Horse, Propagation of probabilistic uncertainty in com-
plex physical systems using a stochastic finite element approach, Physica
D 133 (1999) 137–144.

[18] R. Ghanem, P. Spanos, Stochastic finite elements - A spectral approach,
Springer Verlag, 1991.

[19] T. Crestaux, O. L. Maitre, J. Martinez, Polynomial chaos expansion for sen-
sitivity analysis, Reliability Engineering & System Safety 94 (2009) 1161–
1172.

[20] B. Sudret, Global sensitivity analysis using polynomial chaos expansion,
Reliability Engineering & System Safety 93 (2008) 964–979.

27



[21] G. Blatman, B. Sudret, Efficient computation of global sensitivity indices
using sparse polynomial chaos expansions, Reliability Engineering & Sys-
tem Safety 95 (11) (2010) 1216 – 1229.

[22] G. T. Buzzard, Global sensitivity analysis using sparse grid interpolation
and polynomial chaos, Reliability Engineering & System Safety (0) (2011)
–. doi:10.1016/j.ress.2011.07.011.

[23] S. Rahman, Global sensitivity analysis by polynomial dimensional decom-
position, Reliability Engineering & System Safety 96 (7) (2011) 825 – 837.

[24] D. J. W. D. Pauw, P. A. Vanrolleghem, Practical aspects of sensitivity
function approximation for dynamic models, Mathematical and Computer
Modelling of Dynamical Systems 12 (2006) 395–414.

[25] M. Perry, H. P. Wynn, R. A. Bates, Principal components analysis in sen-
sitivity studies of dynamic systems, Probabilistic engineering mechanics
21 (4) (2006) 454–460.

[26] J. Witteveen, H. Bijl, Modeling arbitrary uncertainties using Gram-
Schmidt polynomial chaos, in: 44th AIAA Aerospace Sciences Meeting
and Exhibit, 2006.

[27] D. Xiu, G. Karniadakis, The Wiener-Askey polynomials chaos for stochastic
differential equations, Journal of Scientific Computing 26.

[28] D. Xiu, G. Karniadakis, Modeling uncertainty in flow simulations via gen-
eralized polynomial chaos, Journal of Computational Physics 187 (1) (2002)
137–167.

[29] R. Field, Numerical methods to estimate the coefficients of the polynomial
chaos expansion, in: 15th ASCE Engineering Mechanics Conference, 2002.

[30] M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non
intrusive approach by regression, European Journal of Computational Me-
chanics 15 (2006) 81–92.

[31] B. Sudret, M. Berveiller, M. Lemaire, Application of a stochastic finite ele-
ment procedure to reliability analysis, European Journal of Computational
Mechanics 15 (7-8) (2006) 825–866.

[32] M. Eldred, Recent advances in non-intrusive polynomial chaos and stochas-
tic collocation methods for uncertainty analysis and design, Tech. rep.,
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference (2009).

[33] G. Agusti, G. I. Schueller, M. Ciampoli (Eds.), Non linear non intrusive
stochastic finite element method - application to a fracture mechanics prob-
lem, 9th International Conference on Structure, Safety and Reliability, Mill-
press, Roma, Italy, 2005.

28



[34] B. Sudret, Uncertainty propagation and sensitivity analysis in mechani-
cal models – Contributions to structural reliability and stochastic spectral
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