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ABSTRACT

Sparse signal approximation can be used to design efficient low bit-

rate coding schemes. It heavily relies on the ability to design ap-

propriate dictionaries and corresponding decomposition algorithms.

The size of the dictionary, and therefore its resolution, is a key pa-

rameter that handles the tradeoff between sparsity and tractability.

This work proposes the use of a non adaptive random sequence of

subdictionaries in a greedy decomposition process, thus browsing a

larger dictionary space in a probabilistic fashion with no additional

projection cost nor parameter estimation. This technique leads to

very sparse decompositions, at a controlled computational complex-

ity. Experimental evaluation is provided as proof of concept for low

bit rate compression of audio signals.

Index Terms— Matching Pursuits, Random Subdictionaries,

Sparse Audio Coding

1. INTRODUCTION

Randomness has proven surprisingly useful in a wide variety of com-

putational and statistical fields. In communications, spread spec-

trum techniques, where a signal is modulated by a random binomial

sequence before transmission allows for better bandwidth manage-

ment. Quantization has long taken advantage of the dithering tech-

nique that uses randomness to avoid perceptually disturbing artefacts

linked to the quantization noise. More generally, stochastic reso-

nance theory has shown how a moderate amount of added noise can

increase the average behavior of many non-linear systems. More re-

cently, tremendous work has been achieved on the compressive sam-

pling scheme, making use of random measurement matrices. Behind

all these examples lies a common intuition: controlling the random

part of a system is better than having to deal with colored measure-

ment noise or transmission errors, or signal-dependent deviations.

The key point is to spread the information where it can be efficiently

found. Having to guess where discriminant low-level features are

hidden in huge-dimensional spaces is too costly or simply not feasi-

ble. In such cases, randomness can be used as a powerful sieve by

information miners.

At the opposite of uniform random distributions is the concept

of sparsity. Sparse coding of digital signals has been the subject of

many works in the past few years for audio [9], images [4] or video

streams. Low bitrate coders have been designed and proved to be

competitive with state of the art industrial solutions. The core idea

is to decompose an original signal f as a combination of (a few)

objects from a dictionary Φ of indexed elementary waveforms. In a

coding framework, the coder has to transmit the set of indexes of the
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non-zero coefficients, together with their quantized values. Here, a

crucial yet often underestimated issue is the choice of the size of Φ,
that always resorts to a tradeoff. If the dictionary is small (slight or

no overcompleteness), computations are fast, the index coding cost

per coefficient is low, but many coefficients may be needed. If it

is large (i.e., dense in the parameter space), we have a fast decay

of the approximation error as a function of the approximation or-

der, but the cost of encoding the indexes is higher, and computations

get cumbersome. Indeed, the computational complexity associated

with these sparse techniques, as opposed to suboptimal but much

simpler transform-based coders, is probably the main limitation to

their widespread use in practical applications. Strategies have been

proposed to lower the computational cost of using large dictionaries,

based on local adaptation of the selected atoms [5] or probabilis-

tic approaches [3] where successive runs with random sub-optimal

atom selection are performed, then averaging yields a robust sparse

approximation. Yet, these approaches are still associated with high

index coding costs, if the atoms parameter space is large.

In this work, we propose a different paradigm that mitigates the

drawbacks of using a large dictionary while keeping most of the ben-

efits. Based on the algorithm described in [8], a single run is per-

formed using varying subdictionaries. These subdictionaries have

limited size, but are designed so as to evenly span a much larger

dictionary space. In this work, we use a simplistic audio coding

example as a proof of concept to demonstrate the usefulness of ran-

domization for sparse representation problems. The key point in our

technique is that the choice of subdictionary is not adaptive, but is

parameterized by a fixed pseudo-random sequence, also known by

the decoder. In other words, we have the (theoretical) complex-

ity of working with a small dictionary, and the small coding costs,

but the whole large dictionary is spanned. It should be emphasized

that, unlike a compressive sensing framework, we our goal is to de-

sign a ’standard’ coding scheme with maximal efficiency at the cost

of computational complexity at the encoder, and minimal decoding

complexity at the decoder.

The rest of this paper is organized as follows. Section 2 recalls

the Matching Pursuit framework for compression. In Section 3, the

novel approach is presented along with considerations on the random

sequence design, and in Section 4 trivial audio compression serves

as a proof of concept for the suitability of the proposed method.

2. SIGNAL COMPRESSION WITH GREEDY

ALGORITHMS

Let f be a discrete signal living inRN . Greedy algorithms iteratively

decompose f using m elements from a dictionary Φ = {φγ} of

elementary objects called atoms by alternating two steps 1: Select

an atom in the dictionary and 2: Update approximant and residual.
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Fig. 1. Projection of a glockenspiel signal quantized with 3 different

time frequency lattices ♯s for s ∈ [128, 1024, 8192].

The resulting representation fm = α.ΦΓm is a (usually suboptimal)

solution to the NP-hard problem (1), using the subset Γm of columns

of Φ
minm w.r.t. δ(f, fm) ≤ ǫ (1)

where δ(f, fm) is a distorsion measure, usually in the form of a

quadratic reconstruction error. Ideally, the dictionary is chosen to

be related to the signal’s characteristics. Speech can be efficiently

compressed using carefully designed codebooks, 2D wavelets bases

are useful for image compression. Music representation is better

achieved using dictionaries of windowed cosines (MDCT) or gabor

functions. The algorithm selects at iteration i the atom that maxi-

mizes a correlation function, usually an energy criterion:

φ⋆
γi = arg max

φγ∈Φ

|
〈

Rif, φγ

〉

| (2)

where Rif = f − fi is the residual signal. The approximant up-

date depends on the nature of the algorithm but can generally be

seen as a descent in a direction defined by the newly selected atom

(plain Matching Pursuit (MP) [7]), the subspace spanned by all pre-

viously selected atoms (Orthogonal MP) or a gradient estimate ([1]).

This criterion can also be modified to take perceptual models into ac-

count or dealing with pre-echo artefacts. However, there is always,

as mentioned in the introduction, the central problem of choosing

the size of Φ. From a continuous parameter space, choosing a dic-

tionary Φ for practical use amounts to discretizing the parameters.

In the compressive sensing framework, this leads to the so-called

basis mismatch problem [2]: the chosen representation space is not

exactly the one where f has the sparsest representation.

2.1. Pursuits in time-frequency dictionaries

Time frequency dictionaries such as Gabor Dictionaries and MDCT-

based dictionaries are well suited for audio signals. Time and fre-

quency resolutions are constrained by the scale of the chosen trans-

form that defines the analysis window size and the overlap intervals

between consecutive analysis windows. The finer this analysis grid,

the better the chances of choosing well-localized atoms that remove

a lot of perceptually relevant energy. However, the complexity gets

higher. Both for tractability and compression purposes, the time-

frequency grid that serves for inner product computations need to be

quantized. LetΦ = {φs,u,ξ} be a dictionary of localized waveforms

of scale s ∈ S, time position u ∈ U and frequency index ξ ∈ Ξ.
The set of available atom indexes is denoted Γ = S × U × Ξ.

2.2. Quantization of the time frequency plane

A convenient way to model Φ that coincides with practical imple-

mentations is to see it as a union of monoscale dictionaries: Φ =
⋃

s∈S Φ♯s each of which defines a quantization of the time frequency

plane with resolution defined by the set of indexes ♯s = Us ×Ξs. If

the quantization is uniform, the size of Φ♯s is

Ts =
N

∆su
×

Fs

2∆sξ
(3)

where ∆su is the time interval between frames for the scale s, Fs

is the sampling frequency and ∆sξ is the frequency resolution. The

subdictionary Φ♯s can be an orthonormal base (e.g an MDCT with

50 % overlap [9]), in this case ∆su = s/2 and ∆sξ = Fs/s and

then Ts = N . It can also be overcomplete (Gabor dictionaries with

more than 50% overlap: ∆su < s/2, Ts > N ) or span only a

limited subspace (∆su > s/2, Ts < N ). ♯s defines a two di-

mensional lattice in the time-frequency plane that can be seen as

a quantization of the underlying continuous time-frequency param-

eters. Indeed, the choice of a suboptimal atom can be understood

as a quantization error artefact. Figure 1 shows how different lat-

tices can fit different components of a signals, here transients and

harmonics of a glockenspiel signal. The quantization error is greatly

lowered by the concatenation of all the bases in the dictionary [9].

Nonetheless, traditional Matching Pursuit-based strategies are using

the same dictionary during the whole decomposition process. By

doing so, the a priori choice of lattices introduces a bias in the de-

composition as explained in Durka’s work [3]. While their solution

would be to run multiple decompositions with different lattices and

averaging the results in a Monte Carlo fashion, we propose an novel

approach inspired by the dithered quantization technique.

3. PURSUITS WITH A RANDOM SEQUENCE OF

SUBDICTIONARIES

Instead of choosing an analysis grid once and for all, the lattices are

chosen so as to span the largest possible space in an ergodic fash-

ion during the decomposition. For each scale, a sequence of lattices

∆s♯ =
[

♯0s, ♯
1

s, ..♯
k
s

]

is used and at iteration i an atom is selected

in Φi =
⋃

s∈S Φ♯is
. By doing so, we expect the equivalent of the

quantization error to be evenly spread among the selected atoms,

thus removing the bias. This technique is conceptually equivalent to

adding a uniform noise in the time-frequency domain before quan-

tizing it. In the overall, we hope to promote the selection of more

salient features than with a fixed lattice. This technique is completely

non-adaptive. The sequences ∆s♯ are known in advance and inde-

pendant from the signal. They are also known by the decoder and

therefore there is no need to encode them. The virtual cost of the

index of atom i is then down to O(log
2
(
∑

s∈S T i
s)).

3.1. Learning the sequence

Since we want the subset sequence to be independant of the signal,

we can try to estimate its desirable properties. When a signal model

is available (e.g sinusoidal+transient modelling of audio, edges and

textures modelling of images), one can try to manually design a se-

quence that will minimize the quantization error (i.e the suboptimal-

ity factor) under a dictionary size constraint. In this work however,

we have no signal model and we are interested in designing a univer-

sal sequence for audio signals. Figure 2 shows a decomposition of

a short glockenspiel signal with MP over a full temporal-resolution

multiscale discrete Gabor dictionary. Frequency resolution is con-

strained in each scale, the full temporal resolution is achieved by

performing Short Time Fourier Transforms with high overlapping

between consecutive analysis frames (i.e ∆su = 1 sample). Atoms

are clearly not uniformly distributed in the time-frequency plane,

which would be the case for white noise. Most real life signals are



0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)
0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
e
q
u
e
n
cy

 (
H

z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 2. Time-frequency joint and marginal distribution of atoms in

the decomposition of a glockenspiel signal with MP on a multiscale

Gabor dictionary with full time resolution.

structured, a complete randomness in the choice of an analysis lattice

would not give optimal performance.

3.2. Time resolution subsampling

In particular, for audio signals, the frequency resolution problem

seems to be efficiently adressed by the use of multiple scales. The

time resolution, however, presents a more interesting challenge. Let

us consider a reference coarse lattice ♯s with overlap of ∆su = s/2
between consecutive frames and define the local time shift τ of an

atom relative to this coarse grid. Then the distribution of τ in the in-

terval [− s
4
, s
4
] ressembles a uniform distribution. To verify this state-

ment, we decomposed short audio signals from the MPEG SQAM

test database up to the first 1000 atoms in a full resolution multiscale

Gabor dictionary and calculated the Gini index of τ . This index

quantifies how far from the uniform distribution a candidate distri-

bution stands and has been demonstrated [6] to be a suitable sparsity

measure.

Figure 3 shows that distribution for the decomposition of the

orchestra signal ressembles the one for the decomposition of white

noise: atoms become more and more uniformly spread. The glock-

enspiel signal’s atoms are less uniformly distributed, but their distri-

bution can not be considered sparse after a few hundreds iterations.

From this observation, we state that an efficient and simple way to

simulate a pursuit in a large dictionary is to use orthonormal basis

randomly shifted at each iteration by a random variable τ .

4. SCALABLE SPARSE CODING OF AUDIO SIGNALS

4.1. Performances with a simple encoding model

In order to demonstrate the potential benefits of this technique, we

compared traditional approaches to the new one in a simplified audio

coding task. We considered 3 cases:

MP with a union of 8 MDCT: ∀s,∆su = s/2, Ts = N and

T = SN .

MP with a union of 8 MDCT with full temporal resolution (for

computational reasons, an approximate based on local optimization

after a coarse grid search is used as in [8]) Ts = Ns/2, T =
∑

s∈S Ns/2.
MP with Random Sequence of Subdictionaries that are 8 MDCT

randomly shifted in time. The subdictionary size is constant T i
s =
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Fig. 3. Gini index for the time localization of the first 1000 atoms

in a full resolution multiscale MDCT dictionary for glockenspiel,

orchestra and white noise signals.
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Fig. 5. SNR achieved at different rates for 5 signals (6 seconds) from

MPEG - SQAM database. Results averaged over 20 runs.

N .

The distorsion measure that we used was the Signal to Noise

Ratio (SNR), and bitrates are estimated using the upper bound

C(fm) = m (log
2
(T ) +Q), where we assume a simple uniform

mid-tread quantizer with Q bits per coefficient. Note that using

an entropy coder instead has also been tested, with similar results.

Figure 4 summarizes the coding scheme. Figure 5 shows that the

novel algorithm gives better performances in all cases but at very

low bit-rates. This can be explained by the fact that, as exposed in

3.2, in the first iterations, the full resolution dictionary succesfully

locates the most prominent features and it actually compensates the

additional costs. At bigger rates, however, atoms are more evenly

spread and the lower index cost favors the randomized method. To

summerize our results, this randomized greedy pursuit allows to

have the costs of the small dictionary with a decay rate close to the

one on the large dictionary.

4.2. Controlling computational complexity

Although the theoretical complexity of the novel algorithm is equiv-

alent to the one of the fixed small dictionary case, in practice it can

get much higher. Inner products computation, actually, are usually

performed using Fast transforms, and in the fixed dictionary case,

most of these products remains unchanged from one iteration to the

next, thus greatly reducing the cost of all but the first iteration. In

our case, however, this trick cannot be applied anymore since the

central point is to change all the projections at every iteration. There
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is nonetheless one parameter that allows us to control the complex-

ity of the algorithm and it is the size of the subdictionaries. So far,

we have considered Φi to be overcomplete, by decreasing the time

resolution of each lattices ♯is, less inner products need to be com-

puted at each iteration and the algorithm is much faster. By doing

so, however, we can severely damage the convergence rate of the

algorithm.

To evaluate the performances, we used different time resolution

parameters ∀s,∆su ∈ [s/2, s, 2 × s, .., 12 × s]. We used the same

simple encoding scheme and compared execution times and bitrates

between the randomized method and a reference MP with fixed dic-

tionary of 8 MDCT with the same optimizations than in [9]. All

algorithms were given the same approximation quality target of 5

dB of SNR.

Figure 6 shows that the time resolution parameter can serve as a

control parameter for limiting complexity while still improving the

rate. A time resolution of ∆su = 5 × s which is equivalent to sub-

dictionaries of size T i
s = N/10 yields a bitstream 20% smaller than

MP with the fixed grid, with a slightly faster computation time. With

a speech signal, all cases took slightly longer than the reference but

the bitrate was always smaller. Finally, the glockenspiel signal gave

the less competitive results: its components are so well localized that

the subsampling quickly penalizes the achieved bitrate. However

in this case, the randomized MP with overcomplete subdictionaries

took less than 3 times longer than the reference MP. This can be ex-

plained by the fact that our algorithm selects better atoms than the

reference and thus, much less iterations are needed to achieve the

same approximation level.

5. CONCLUSION

The proposed algorithm appears to be suitable for sparse approxi-

mation of complex signals. The potential benefits are in low bitrate

compression, and we exhibit several sound examples were these ad-

vantages show off. The unsupervised nature of the algorithm and the

randomness introduced in the atom selection makes it very easy to

design worst-case scenarii for which the algorithm would converge

slower than a pursuit over a fixed dictionary. However, on average,

and with a small empirical variance, the proposed scheme appears to

have the coding costs of the small dictionary with a decay rate close

to the one on the large dictionary.

In conclusion, adding randomness to the parameter space

within a greedy sparse decomposition process can be highly ben-

eficial. Although on different paradigms, this is reminiscent of

both dithered quantization techniques and compressive sampling

strategies. Whether such random sub-dictionary techniques can be

combined with other sparse decomposition schemes (e.g. iterated

thresholding) is still an open issue.
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