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Informed Source Separation
of Linear Instantaneous Under-Determined

Audio Mixtures by Source Index Embedding
Mathieu Parvaix,Student Member, IEEE,and Laurent Girin

Abstract—In this paper, we address the issue of underdeter-
mined source separation ofI non-stationary audio sources from
a J -channel linear instantaneous mixture (J < I). This problem
is addressed with a specific coder-decoder configuration. At the
coder, source signals are assumed to be available before the
mixing is processed. A time-frequency (TF) joint analysis of each
source signal and mixture signal enables to select the subset of
sources (amongI) leading to the best separation results in each
TF region. A corresponding source(s) index code is imperceptibly
embedded into the mix signal using a watermarking technique.
At the decoder, where the original source signals are unknown,
the extraction of the watermark enables to invert the mixture
in each TF region to recover the source signals. With such
informed approach, it is shown that 5 instruments and singing
voice signals can be efficiently separated from 2-channel stereo
mixtures, with a quality that significantly overcomes the quality
obtained by a semi-blind reference method and enables separate
manipulation of the source signals during stereo music restitution
(i.e. remixing).

Index Terms—under-determined source separation, water-
marking, audio processing, remixing.

I. I NTRODUCTION

SOURCE separation aims at recovering an unobserved
vector of I source signalss = [s1, . . . , sI ]

T, from J
observations of their mixturex = [x1, . . . , xJ ]T ( [.]T denotes
the transpose operator). This problem has a variety of configu-
rations. When both the source signals and the mixing process
are unknown, it is referred to as Blind Source Separation
(BSS). If at any time indexn the mixture signal can be
expressed as

x[n] = A · s[n] (1)

where theJ × I mixing matrix A is composed of constant
gains, the mixture islinear instantaneousandstationary(LIS).
This models the case where all the sources reach the sensors
at the same time but potentially with different intensities. If
the direct-path delays (resp. multiple propagation delaysand

Manuscript received XXX; revised XXX. Date of current version November
15, 2010. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. James Johnston.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

M. Parvaix and L. Girin are with the Grenoble Laboratory of Image, Speech,
Signal and Automation (GIPSA-lab), Grenoble Institute of Technology, 38402
Grenoble Cedex, France (e-mail: Mathieu.Parvaix@gipsa-lab.grenoble-inp.fr,
Laurent.Girin@gipsa-lab.grenoble-inp.fr).

This work is supported by the French National Research Agency (ANR)
as a part of the DReaM project (ANR CONTINT program – 09 CORD 006).

attenuations) from sources to sensors are taken into account,
the mixture is calledanechoic(resp.convolutive).

The number of source signals and observations also con-
dition the problem. WhenJ ≥ I, the mixture is said to be
(over)determined, and the source signals can be estimated by
searching for the inverse (or pseudo-inverse) unmixing matrix
W = A−1 up to a scaling and permutation of the rows. Major
contributions to Blind Source Separation (BSS) and related
field of Independent Components Analysis (ICA) developed
for (over)determined mixtures can be found in [1] [2] [3].
The underdeterminedcaseJ < I is more delicate to solve,
since the mixing matrix cannot be directly inverted. However,
this case is of particular interest in music processing since
most music mixtures are composed of more than two sources,
while the number of observationsJ is often limited to one
or two (respectively for the mono and stereo configurations).
Separating source signals from such music mixtures is a major
challenge since it would enable to separately manipulate the
different elements of the audio scene, e.g., modifying the
volume, the color or the spatialization of an instrument, a
process referred to asactive listeningor remixing. In the
present paper, we will focus on the underdetermined source
separation (USS) of music signals from LIS stereo mixtures.

No BSS/ICA algorithm is truly blind, in the sense that a
minimal number of assumptions (generally involving some
form of prior knowledge) on the sources and/or on the mixture
process must be integrated in the algorithms to derive solutions
to the separation problem [4].1 In the underdetermined case,
many relevant techniques take advantage of thesparsenature
of audio source signals. These methods make the (realistic)
assumption that, in a given basis, source signals have a parsi-
monious representation,i.e. most of the source coefficients
are close to zero. A direct consequence of sparsity is the
limitation of sources overlapping in the appropriate basissince
the probability that several sources are simultaneously active
is low. For most music signals, the time-frequency domain isa
natural appropriate domain for exploiting sparsity (much more
than the time domain where source signals generally strongly
overlap) [5] [6]. As a consequence, many USS techniques
are based on sparse time-frequency (TF) representations of
signals. For example, in [7] the authors make the assumption
that the non-stationary source signals to be separated are
disjoint in the TF domain. Specific points of the TF plane

1As a major example underlined in [4], the Bayesian approach to BSS
requires to model the PDF of the sources with priors [4].
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corresponding to a single source are isolated and used to
estimate the TF distribution of this source, from which sources
waveforms are reconstructed. In [8], LIS stereo mixtures of
speech and music signals are decomposed using Short-Time
Fourier Transform (STFT). The mixing matrix is estimated
using a clustering algorithm, then a shortest path procedure is
used to select the two predominant sources for2× 2 mixture
inversion in each TF bin. An extension to the anechoic case
is proposed in [9]. Stereo anechoic mixtures are also studied
in [10] where a large number of speech signals are separated
using only two observations. In each TF bin, the mixture is
here assumed to be composed of a single predominant source.
The relative attenuation and delay histograms are used to
determine the mixing parameters, before the source signalsare
estimated by TF binary masking. This approach is extended
to more than 2 microphones in [11] [12].

Beyond the "minimal" assumptions / prior knowledge on the
sources and mixture process exploited in usual blind (or rather
"semi-blind") separation methods, it can be very interesting to
exploit additional prior information that can be availablein a
specific target application. This provides a new perimeter for
the concept ofInformedSource Separation (ISS) discussed in
[4]. Music processing offers a particularly interesting frame-
work for such informed approach, since separation methods
can exploit pitch and note onset/offset information as provided
by score or MIDI information [13] [14], or even by melody
humming [15].

In [16] [17] we introduced an extreme configuration of
ISS, in the sense that the source signals are assumed to be
perfectly known, but the separation does not exploit those
source signals directly: We proposed a system with a specific
coder-decoder configuration corresponding to the distinctsteps
of signal production (e.g. music recording/mixing in studio)
and signal restitution (e.g. audio-CD at home). In addition
to the mixture signals at the separation level (so-called here
the decoder), source signals are available at the mixing level
(so-called here the coder). Parameters are extracted from the
source signals at the coder, and are imperceptibly embedded
into the mixture signals using a watermarking technique. This
latter exploits the defaults of the human hearing system to
insert a high-capacity message into TF coefficients of the mix
signal. Extracting and exploiting the watermark at the decoder
enables an end-user who has no direct access to the original
source signals (but only to the watermarked mixture signals),
to separate these source signals from the mixture signals, and
thus to manipulate them individually for remixing / active
listening2.

As for BSS, different approaches exist for such "source-
informed" ISS, depending on the assumptions made on the
source signals (mutual independence, sparsity) and on the mix-

2From some point of view, the spirit is close to the one of the MPEG Spatial
Audio Coding (SAC) system [18] [19], but our goal is here to completely
separate the source signals (from uncompressed mixture signals), and not
only to resynthesize/respatialize the audio scene (from compressed downmix
signals) as is the case for MPEG-SAC. As a result, the nature of transmitted
side-information, the way it is transmitted, and the way it is exploited (for
separation and not spatialization) are completely different from SAC. Note
that, so far, the proposed ISS methods are not robust to compression, they are
dedicated to audio-CD/wav music signals (see Section III-D).

ture (linear, instantaneous, anechoic, convolutive, over/under-
determined). As a result, the side-information embedded into
the mixture, and the way it is used for the separation process
may differ for the different configurations. In [16] [17], a
single-channelLIS mixture of (speech/music) source signals
was processed. A joint "source(s)-channel" coding approach
was followed: codebooks of molecular prototypes (i.e. ma-
trices of neighboring TF coefficients) were generated and
used to represent the source signals. The codes resulting
from encoding the source signals with those prototypes were
embedded into the mixture signals. Hence, source separation
directly rested upon source encoding/decoding, and we can
refer to this method as Source-Coding ISS (SC-ISS). In [20],
we first addressed the problem for underdetermined LISstereo
2-channelmixtures of music signals. The ISS system proposed
in [20] jointly exploits the sparsity of source signals in the TF
domain and the spatial information provided by the multi-
channel dimension of the mixture. The watermarked side-
information is here reduced to theindexes of the locally(i.e.
in each TF region)predominant sources, as provided by an
analysis of the source signals at the coder. Hence, we call such
approach Index-based ISS (I-ISS). At the decoder, extracting
the watermarked indexes enables to compute estimates of the
source signals bylocal inversion of the mixing system.

The present paper is clearly built on [20]. Its first objective
is to present the I-ISS framework and method in more details.
Its second objective is to present a series of improvements and
additional material that were not considered in [20]. First, the
core of the method, i.e. the source signals selection-indexation
and estimation, is refined. In [20], a sub-optimal (a priori)
source selection criterion based on source signals energy
was used. It is now replaced with an optimal (a posteriori)
criterion, which is directly inspired by the Oracle estimators
developed in [21] [22] for the evaluation of source separation
techniques. The improved I-ISS system can thus be seen as
a source separation technique performing optimal estimation
of source signals (under the LIS and sparse assumptions)
using the parameters of the Oracle estimators, encoded and
transmitted within the mixture signal. Secondly, a refined
"high-capacity" watermarking technique is used to embed the
side-information used for source separation. It is based onthe
same basic principle as in our previous works (Quantization
Index Modulation of TF coefficients) but it has been improved
independently of the ISS application by using a psycho-
acoustic model. This new version enables higher maximum
capacity (up to 250kbits/s depending on the musical content)
and automatic adjustment of this capacity to the need. The
watermarking system has been presented in [23] [24], thus it
will not be presented in details in the present paper. We rather
focus on the exploitation of the adjustable capacity in relation
with the side-information coding and the consequences of
watermarking on source separation quality. Finally, we provide
in this paper extended results obtained with an extended setof
music signals and 5-source mixture configurations that were
not considered in [20].

This paper is organized as follows. Section II is a general
overview of the proposed method. In Section III a detailed
description of the technical implementation is given, focusing
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on the sources selection at the coder and the separation process
at the decoder. The relationship between side-informationcod-
ing, watermarking and separation performances is discussed.
Separation results for music signals are given in Section IV.
Finally, some perspectives are presented in Section V.

II. GENERAL OVERVIEW OF THEI-ISS SYSTEM

Fig. 1 presents the diagram of the proposed stereo Index-
based Informed Source Separation (I-ISS) technique. In this
section, we first present a general overview of the entire system
before presenting the functional blocks in more details in the
next section.

The general principle of a coder-decoder configuration
introduced in the mono configuration of [16] [17] is retained
in the present work. However the mixing process at Block 1
of Fig. 1 is here a LIS 2-channel stereo mixture3 of I non-
stationary source signals, as given by (1) forJ = 2.

Since the I-ISS technique strongly relies on the sparsity
of source signals, the overall process is carried out in the TF
domain where audio sources are much sparser than in the time
domain. Therefore the Modified Discrete Cosine Transform
(MDCT) is used at the input of the coder, at Blocks 2 for
the mixture stereo signal, and at Blocks 2’ for the individual
source signals (see Section III-A). Within the TF domain, the
process can be carried out either for each TF bin, or at a larger
scale, referred to asmolecular level, depending on the rate of
the side-information to be embedded and the settings of the
watermarking process (see Section III-E). A molecule is a sub-
matrix of a few neighboring TF coefficients. If the process is
made at the molecular level, a molecular grouping of MDCT
coefficients is required (Blocks 3 and 3’). Since this step is
optional, Blocks 3 and 3’ are drawn with dotted lines. The
core of the method is the analysis carried out at Block 4 of the
coder which consists in selecting the most relevant sourcesin
each TF region for further separation by local inversion of the
mixture (see Section III-B). The combination ofindex of the
selected sources constitutes the side-information to be coded
(Block 5) and then embedded (Blocks 6) into the mixture
signal by a quantization-based watermarking technique (see
Section III-D). The dual operation of Block 2, time-domain
signal synthesis by inverse MDCT (IMDCT), is done at the
output of the coder (Blocks 7) to provide the time samples
of the watermarked mix signal (Section III-A). These samples
are finally converted to 16-bit PCM (uniform quantization) at
Blocks 8, since audio-CD / wav format application is targeted.

At the decoder, only the (watermarked) mix signal is avail-
able. MDCT decomposition and optional molecular grouping
are processed (Blocks 9 and 10) the same way as was done at
the coder. Then the watermark is extracted from watermarked
MDCT coefficients using quantization (Blocks 11) (Section
III-D) and then decoded (Block 12). The resulting combina-
tion of source indexes is used to locally invert the mixture
(Block 13). This is the core of the I-ISS decoder that will

3In this paper we focus on 2-channel mixture since it is of particular interest
in music processing. However, the main principles of the process remain valid
for 2 < J < I, and we use the general notationJ for preserving this
generality when possible.

be described in Section III-C. A time-domain synthesis by
IMDCT is finally carried out at Blocks 14 to reconstruct the
estimated source signals from the separated TF coefficients.

III. D ETAILED DESCRIPTION OF THEI-ISS SYSTEM

In this section, we describe in details the functional blocks
of the proposed I-ISS system. When the role of a block is
similar at the coder and at the decoder, it is only described
once for concision. The articulation between blocks has been
given in the previous section.

A. Time-frequency decomposition using MDCT

The source signals of interest are voice/instrument signals
playing a same piece of music (but recorded separately for
the sake of the proposedinformed technique). They are non-
stationary, with possibly large temporal and spectral variabil-
ity, and they generally strongly overlap in the time domain.
Using a time-frequency (TF) representation of audio signals
has been shown to exhibit natural sparsity, i.e. much lower
overlapping of signals in the TF domain, thus leading to
sparsity-based separation methods [7]– [17]. As in [16] [17],
the Modified Discrete Cosine Transform (MDCT) [25] is used
as the TF decomposition since it presents several properties
very suitable for the present problem: good energy concen-
tration (hence emphasizing audio signals sparsity), very good
robustness to quantization (hence robustness to quantization-
based watermarking), orthogonality and perfect reconstruction
(property exploited in the selection process of Section III-B).

The MDCT is applied at Blocks 2, 2’ and 9 on signal time
frames ofW=2048 samples (46.5ms for a sampling frequency
fs = 44.1kHz), with a 50%-overlap between consecutive
frames. This results in matrices of MDCT coefficients of
dimension 1024 frequency bins (denoted byf ) by L/1024
time bins (denoted byt; L is the total length of each signal).
The frame lengthW is chosen to follow the dynamics of
music signals while providing a frequency resolution suitable
for the separation, in accordance with the results established
in [21] [22]. The time-domain signals are recovered from
processed MDCT matrices at Blocks 7 and 14 by frame-wise
inverse transformation followed by overlap-add. Appropriate
windowing is applied at both analysis and synthesis to ensure
the "perfect reconstruction" property [25].

Detailed description of the MDCT/IMDCT equations will
not be given in the present paper, since it can be found in
many papers, e.g. [25], including our previous work [17] for
its use in ISS. Let us rather focus on the following key point of
interest: Since the MDCT is a linear transform, the LIS source
separation problem remains LIS in the transformed domain for
each TF bin, i.e. (1) can be rewritten:

X(f, t) = A · S(f, t) (2)

where X(f, t) = [X1(f, t), · · · , XJ (f, t)]T and S(f, t) =
[S1(f, t), · · · , SI(f, t)]T denote the mixture and source vectors
of MDCT coefficients located at frequency binf and time bin
t. Therefore, the index-based separation process can be carried
out in the MDCT domain, as well as the watermarking process.
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Fig. 1: Detailed structure of both coder and decoder for I-ISS.

B. Local inversion of the mixture and sources selection

In I-ISS as in the semi-blind method of [8], the estimation
of source signals is processed by a local inversion of the
mixture signal. "Local" means that the process is considered
for each TF region, and at this level, only at mostJ sources are
assumed to be relevant, i.e. of significant energy (see below).
Therefore, the mixture is locally given by:

X(f, t) ≈ AIft
SIft

(f, t) (3)

whereIft denotes the set ofIft = J most active sources at
TF bin (f, t), i.e. the set of source signals locally predominant
within the mixture.AIft

represents theJ × J mixing sub-
matrix made with theAi columns ofA, i ∈ Ift. If Ift denotes
the complementary set of non-active (or at least poorly active)
sources at TF bin(f, t), the source signals at bin(f, t) are
estimated by.4

{

ŜIft
(f, t) = A†

Ift
X(f, t)

Ŝ
Ift

(f, t) = 0
(4)

where A†
Ift

denotes the inverse ofAIft
. Note that such a

separation technique enables to jointly exploit allJ mixture
channels, and to relax the restrictive assumption of a single
active source at each TF bin, as made in [10] [11] [12].

4An example with 5 source signals may enlighten the previous no-
tations: S(f, t) = [S1(f, t), S2(f, t), S3(f, t), S4(f, t), S5(f, t)]T. If
Ift = {1, 3}, i.e. if s1 and s3 are the predominant sources at TF bin
(f, t), then AIft

= [A1, A3], SIft
(f, t) = [S1(f, t), S3(f, t)]T, and

S
Ift

(f, t) = [S2(f, t), S4(f, t), S5(f, t)]T.

The side-information that is transmitted between ISS coder
and decoder (in addition to the mix signal) mainly consists
of i) the coefficients of the mixing matrixA, and ii) the
combination of indexesIft that characterizes the "identity" of
predominant sources in each local region of the TF plan. This
contrasts with blind and semi-blind separation methods where
those both types of information have to be estimated from the
mix signal only, generally in two steps which can both be a
very challenging task and source of significant errors.

As for the mixing matrix, the number of coefficients to be
transmitted is quite low in the present LIS stereo configuration
(for 5 source signals we have 10 fixed coefficients for each
piece of music; ifA is made of normalized column vectors de-
pending on source azimuths, then we have only 5 coefficients).
Therefore, the transmission cost ofA is negligible compared to
the transmission cost ofIft, and in the following we consider
for simplicity thatA is perfectly known at the ISS decoder.

As for the source indexes, in the specific ISS framework,Ift

is estimated using the source signals: this is done at Block 4
of Fig. 1. The key point is here to define a criterion and the as-
sociated optimization process to determine which combination
of selected source signals leads to the best global estimation
of all source signals using (4). In [20], we considered a raw
a priori criterion that simply selected the (at most)J most
energetic source signals, i.e. the source signals with higher
MDCT absolute values (for each TF region). This former
criterion was sub-optimal since it did not exploit the mixture
signal and the knowledge ofA. In the present work, the chosen
criterion is an a posteriori criterion using the knowledge
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of the source signals, the mixture signal, and the mixture
matrix A (at the coder) to optimize the estimation of source
signals (further carried out at the decoder). This problem is
actually similar to the determination of Oracle estimators, as
introduced in [21] for the general purpose of evaluating the
performances of source separation algorithms, especiallyin
the case of underdetermined mixtures and sparse separation
techniques. Depending on the type of separation algorithm,
appropriate Oracle estimators provide an upper bound for sep-
aration performances, computed by using the available target
source signals. In the TF/sparse framework, the authors of
[21] established that, since the MDCT is orthogonal, obtaining
the best separation results in the time domain according to
the mean squared error (MSE) criterion,i.e. minimizing the
total distortion

∑

n ‖ ŝ[n] − s[n] ‖2 between the original and
estimated source vectors, is equivalent in the MDCT domain
to optimizing the combination of source signals at each TF
bin separately (according to the same MSE criterion). The
selection of the optimal source combination is thus processed
separately at each TF bin by finding

Ĩft = arg min
Ift∈P

I
∑

i=1

(

Ŝi(f, t) − Si(f, t)
)2

(5)

whereP represents the set of all possible combinationsIft

and theI estimated source signalŝSi(f, t) are provided by
(4). In the caseI is limited to a small number of sources
(typically about 5 for a standard western popular music song),
Ĩft can be found by exhaustive search, and coded with a very
limited number of bits before being embedded into the mixture
signal (see Section III-E). We found out that using this new a
posteriori optimal criterion led to an average separation gain of
about 1dB w.r.t. the a priori sub-optimal criterion used in [20].
This is because the most relevant sources can here be seen as
the ones that better "explain" the mixture signal, and if they
generally correspond to the most predominant sources in terms
of individual energy, this is not always the case because the
mixing matrix coefficients weight the energy of the individual
sources in the mixture.

The above source selection and local inversion problem has
been presented forIft = J = 2. However, in the present
study, we have also considered the option to select a number
of locally active sources either lower thanJ (i.e. Ift = 1 for 2-
channel stereo mixtures) or greater thanJ , as a complement
to the caseIft = J = 2. In caseIft > J , the inversion
is made in the MSE sense, i.e.A†

Ift
in (4) is the Moore-

Penrose pseudo-inverse ofAIft
[26]. This case, which was

not considered in [20], can be useful when more thanJ
sources have simultaneously significant energy. In such case,
theIft×J pseudo-inversion of the mixture can provide a lower
MSE thanJ × J inversion. In caseIft = 1, Ift is reduced
to the singleton{ift}, A†

Ift
is equal toAT

ift
/ ‖ Aift

‖2
2,

and the estimate of the source signalSift
(f, t) is obtained

by Ŝift
(f, t) = AT

ift
X(f, t)/ ‖ Aift

‖2
2. This case can be

of interest when the inverse mixing matrices forIft > 1
are ill-conditioned and one of the sources has high energy
in comparison to others. Anyhow, when different numbers of
active sources are allowed, the selected combination is always

the one that provides the lowest MSE in (5),i.e. the best
local separation results. Note that tests carried out on 5-source
western popular music songs provided the average following
distribution: Ift = 2 for about 60% of all TF bins,Ift > 2
for about 35%, andIft = 1 for less than 5%. However, when
weighting such distribution with the source signals energy, it
appears that the huge majority of signals energy is processed
within the Ift = 2 configuration (see Section IV-B)5.

C. Separation process

The separation is processed at the decoder at Block 13
of Fig. 1. It basically consists of applying (4) using the
MDCT coefficients X̃

W
(f, t) of the transmitted mix signal

x̃W , calculated at Block 9, instead of the coefficients of the
original mix signalX(f, t):

{

ŜIft
(f, t) = A†

Ift
X̃

W
(f, t)

Ŝ
Ift

(f, t) = 0
(6)

For this, the watermark is previously extracted at Block 11,and
decoded at Block 12 (see Sections III-D and III-E) to provide
the combinationIft controlling the inversion/separation pro-
cess. While for blind and semi-blind separation, the determina-
tion of the optimal combination of sources is very challenging
and may be corrupted with many errors, the knowledge of
source signals at the coder in the I-ISS system enables to select
and transmit the optimal combinationIft. The estimation of
source signals at the decoder is thus ensured to be optimal,
excepted that the transmitted version of the mixture signalis
used as the input of the inversion. Yet, the transmitted mix
signal has been watermarked (to embedIft) and its time
waveform has been quantized to 16-bit PCM at Block 8. Both
watermarking and 16-bit PCM quantization induce a pertur-
bation of the mixture signal MDCT coefficients, and are thus
likely to influence the separation performances (in addition
to the degradation induced by the sparsity assumption, i.e.
the fact that "residual" non-predominant, but non-null, sources
may interfere as noise in the local inversion process). The
influence of time-domain 16-bit quantization on MDCT values
is assumed to be negligible, especially w.r.t. the influenceof
the watermarking, since the watermarking is itself configured
to be robust to the 16-bit quantization (see Section III-D).The
influence of the watermarking on the separation performances
is discussed in Section III-E and experimentally evaluatedin
Section IV-D. We will see that the impact is generally very
low with appropriate settings of the whole system.

D. Watermarking process

The watermarking technique used at Blocks 6 and 11 of
Fig. 1 is derived from the Quantization Index Modulation
(QIM) technique of [27], applied to the MDCT coefficients.
A first basic watermarking scheme based on this technique
has been used in our previous works [16] [17] [20]. A refined

5Note that Vincent et al. reported in [21] that Oracle local mixing inversion
with a free number of active sourcesIft ≤ I provided a maximum separation
improvement of about 1.5dB compared to the case whereIft = 2, and we
confirm those results in Section IV-D3.
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and more efficient version has been recently proposed in [23]
[24]. We use this last version in the present study. Therefore,
we focus on the points that concern the specific use of this
technique in the present I-ISS framework. Concerning the
watermarking technique in itself, we just present in this section
the basic principles and we refer the reader to [23] [24] for
technical details.

For each TF bin, a set of2R uniform quantizers is de-
fined, which quantization levels are intertwined, and each
quantizer represents aR-bit binary code. Watermarking aR-
bit binary code on a given MDCT coefficient is done by
quantizing this coefficient with the corresponding quantizer
(i.e. the quantizer indexed by the code to transmit; see Fig.2).
At the decoder, recovering the code is done by comparing
the transmitted MDCT coefficient (potentially corrupted by
transmission noise) with the2R quantizers (which are assumed
to be available at both coder and decoder) and selecting the
quantizer with the quantization level closest to the transmitted
MDCT coefficient. The complete binary message to transmit
(here the set of codes encoding the combinationsIft for
all TF bins) is split and spread across the different MDCT
coefficients, so that each coefficient carries a small part of
the complete message (see Section III-E). The performance
of the watermarking process is determined by two related
constraints: it must be robust to the 16-bit PCM conversion
of the mixture signal (in other words, the quantization of
the original MDCT coefficients at Block 6 of the coder
and the quantization of the transmitted MDCT coefficients
at Block 11 of the decoder must provide the same result),
and it must be inaudible. The first constraint induces a lower
bound for the quantization step of the quantizers, since PCM
quantization in the time-domain leads to additive Gaussian
noise on MDCT coefficients. And given that lower bound,
the inaudibility constraint induces an upper bound on the
number of quantizers, hence a corresponding upper bound on
the individual (MDCT coefficient-wise) capacityR [23] [24].

In [16] [17] [20], R was determined empirically from lis-
tening tests, with a substantial margin that clearly meant sub-
optimal choice6. Watermarking bit-rates of about 150kbits/s
(depending on the musical content) were obtained. In contrast,
in [23] [24] a psycho-acoustic model (PAM) is introduced in
the watermarking scheme. This PAM is calculated for each
MDCT frame to control the inaudibility of theR-bit quan-
tization, and therefore leads to an optimal choice forR (for
each frame and each frequency binf ) according to a Signal-to-
Mask Ratio (SMR) criterion. Because the values ofR depend
on (f, t), those values must be transmitted to the decoder.
For this, a fixed-capacity watermarking "reservoir" is allocated
in the higher frequency region of the spectrum. The PAM is
inspired from the MPEG-AAC model [28] and adapted to the
watermarking problem: the total capacity can be adjusted by
shifting the average level of the global masking curve. With
this improved version of the watermarking technique, maxi-

6Actually, the watermarking technique was implemented in [16] [17] [20]
by gathering all the watermarking quantizers into a single quantizer of
resolutionR2. A reference quantizer of resolutionR1 was defined, such that
for each TF bin,R = R2 − R1, andR1 was fixed to 8 bits for all TF bins;
see [17] for details.

mum watermarking bit-rates of about 250kbits/s (depending
on the musical content) are obtained. Such rates correspond
to the higher level of the masking curve allowed by the
PAM, thus the limit of masking power can be reached. More
"comfortable" rates can be set between 150 and 200kbits/s
to guarantee transparent quality for the watermarked signal.
This flexibility is used in the present I-ISS system to fit
the watermarking capacity to the bit-rate of theIft side-
information (see Section III-E).

Fig. 2: Example of a set of (here 4) quantizers used for
QIM. On the right, the individual quantizers corresponding
to 4 different codes, and on the left, the resulting intertwined
quantizer.

E. Coding and allocation of the side-information

In this sub-section, we examine how the side-information
Ift is coded/decoded (Blocks 5 and 12) and how the resulting
binary stream is allocated among the different MDCT coeffi-
cients in the watermarking process of Block 6. On the way,
we propose different possible settings (with different possible
consequences on the quality of the source separation). This
latter point will be tested experimentally in Section IV-D on
the basis of the present discussion.

Let us remind that in the proposed method, the watermark
aims at identifying, amongI source signals, which ones are
selected in each TF region to take part to the local inversion
process (see Section III-B and III-C). In the present study,we
consider mixtures ofI = 4 or I = 5 source signals, since it
is a reasonable number of simultaneous main musical sources
(or coherent groups of musical sources) for many different
styles of popular music such as rock, pop, jazz, funk, metal,
electro, bossa, fusion, etc. For example, we can consider one
singing voice, two or three rhythmic instruments (e.g. piano,
bass, drums), and one soloist instrument (e.g. guitar or horn)
or choirs, all of them possibly playing at the same time7.

The number of possible combinationsIft, card(P), depends
on Ift, the number of sources considered as active in TF

7More than 5 instruments can be separated with the present system while
keepingI = 5 if several instruments that do not play at the same time are
on the same audio track, and are thus considered by the algorithm as a single
source.
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bin (f, t). If one single source is assumed to be active, i.e.
if Ift = 1, card(P) = I. If two sources are assumed to
be active, i.e. ifIft = J = 2, card(P) = I(I−1)

2 . If at
most two sources are assumed to be active, i.e. ifIft ≤ 2,
card(P) = I(I+1)

2 . And finally, if the number of active sources
is let free, i.e.Ift ≤ I, then card(P) = 2I . In the latter
case, a fixed-size code ofI bits can be used to encodeIft.
If Ift ≤ 2, there are respectively 10 and 15 possible source
combinations forI = 4 and I = 5 respectively, hence a
fixed-size 4-bit code is appropriate (although non optimal)for
encodingIft. Therefore, in the following we always consider
4-bit codes in every setting for simplicity, except for the
caseIft ≤ I with I = 5 where a 5-bit code is used (we
will see that watermarking at the corresponding bit-rates has
poor influence on the separation results). Since the mixture
is stereo, half of the side-information can be embedded into
each channel. Therefore, ifIft is provided for each(f, t) bin,
the average necessary watermarking capacity for each channel
is 2 bits per MDCT coefficient (or 2.5 bits/coefficient when
Ift ≤ 5). In practice, the source separation process can be
limited to the [0 16kHz] bandwidth, because energy of audio
signal is generally negligible beyond 16kHz. Since the MDCT
decomposition provides as many coefficients as time samples,
the side-information bit-rate is2 × Fs × 16, 000/(Fs/2) =
64kbits/s/channel (or 80kbits/s/channel whenIft ≤ 5; Fs =
44, 100kHz is the sampling frequency). This is about 1/4 of the
maximum capacity of the watermarking process. Therefore,
the PAM is automatically tuned so that only the total necessary
(fixed) capacity is provided8.

In the following, the above settings are referred to as
"basic" configuration. Since an important question raised in
Section III-C is the influence on separation performance of
the watermarking of the side-information in the transmitted
mix signal, we define two additional settings for the process:

• A "light-watermark" configuration, where the watermark-
ing bit-rate is intentionaly set to half of the value of the
basic case, i.e. 32kbits/s/channel, to limit the influence
of the watermarking in the separation process. This is
obtained by lowering the level of the masking curve. To
compensate for the loss of side-information rate, MDCT
coefficients are gathered in1 × 2 molecules (optional
Block 3) and one single value ofIft is used for the two
consecutive bins(f, t) and (f, t + 1) of each molecule.
In this configuration, the higher fidelity of transmitted
MDCT is balanced by a loss of separation resolution, and
we will experiment in Section IV-D3, which parameter
is more important for preserving the separation perfor-
mances.

• An opposite "full-watermark" configuration, where the
watermarking bit-rate is intentionaly maximized (by set-
ting the masking threshold at its maximum level). There-
fore the bit-rate is here significantly higher than what
is needed for the transmission ofIft (which is anew
provided here for each(f, t) bin). The aim is to test if
the separation method is robust to high-capacity water-

8or a little more, since in the system of [24], the capacity is defined within
subbands, and not for each individual MDCT coefficient.

marking, in case users would like to embed additional
information9 for further audio applications, or in future
improvements of the present separation application (see
Section V). The difference between the "basic" and "full-
watermark" configurations is illustrated on Fig. 3 which
shows an example of embedding capacity per TF bin of
a given MDCT frame for the two configurations.

The characteristics of the three different settings are sum-
marized in Table II. The size of the side-informationIft

code is fixed. However, whatever the PAM adjustment, the
available capacity is variable for the different MDCT coef-
ficients of a given frame (see Fig. 3). It is generally larger
in the low frequency region and lower at high frequency.
As a consequence, theIft codes for the whole frequency
bins are concatenated and the resulting bitstream is sliced
to fill the non-uniform allocation of the embedding resource.
As mentioned before, the bitstream is equally shared by the
two channels of the stereo, i.e. half of the total bitstream is
allocated to one channel, and the other half is allocated to
the other channel, in an arbitrary manner. Similarly, when the
1 × 2 molecular grouping is used (in the "light-watermark"
configuration), half of the per-channel bitstream (i.e. a quarter
of the total bitstream) is allocated to the MDCT coefficientsat
(f, t), and the other half (or other quarter of the total bitstream)
is allocated to the neighboring coefficients at(f, t+1), also in
an arbitrary manner. Because of this arbitrary aspect of side-
information allocation (and because it is a rather trivial task),
it will not be presented in further details. Note that Block 12
at the decoder performs inverse concatenation from extracted
watermarks, and inverse slicing to recover theIft codes for
each TF bin.
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Fig. 3: Example of embedding capacity per TF bin for a given
MDCT frame (up to 16kHz). Continuous line: the PAM is set
to enable the maximum embedding capacity under inaudibility
constraint; dash-dotted: the PAM is adapted to the required
capacity (2 bits/coefficient on the average).

F. Comparison with ISS based on source coding

In this section we briefly discuss the differences between
the I-ISS configuration presented in this paper, and the SC-ISS
(Source-Coding ISS) system of our previous work [16] [17].
Although both approaches are characterized by the assumption

9In the experiments of Section IV, an extra random message (withno
interest in the separation process) is added to the useful side-information
to fill the watermark channel.
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of known sources before the mixture, and a coder-decoder
structure, there are many fundamental differences. First,the 2-
dimension of the mixture signal in I-ISS, as opposed to mono
mixture for SC-ISS, enables to estimate the source signals
by local inversion while taking advantage of the sparsity
of MDCT decomposition. Then, the difference of separation
process, and thus the different nature of side-information,
directly impacts the embedding resource: the necessary em-
bedding capacity is much lower in I-ISS than in SC-ISS.
Indeed, in [16] [17] a high embedding capacity was expected,
to accurately encode the source signals. Consequently, large
molecular grouping was necessary (typically2×4 molecules),
and the mixture signal was allowed to be deteriorated (to some
extent, and under the constraint of inaudibility): Typically, 8
bits per MDCT coefficient were embedded (i.e. 64 bits per
molecule) for accurate source coding. However, the separation
process was poorly affected since the mixture signal was
not directly used for the source signals estimation. Instead,
prototypes issued from codebooks were used. In the present I-
ISS method, the modification of the mixture signal induced by
the watermark is expected to be significantly lower, because
the mixture signal is used in the inversion process. Fortunately,
this constraint fits well with the small size of the embedded
side-information. As seen in the previous section, this small
size enables to reduce molecular grouping to1×2 molecules,
or even to1 × 1 molecule,i.e. the whole process is carried
out at a single TF bin scale. Therefore, if a trade-off has
to be found in I-ISS between the size of molecules and the
deterioration of the mixture induced by the watermark (the
bigger a molecule, the lower the deterioration of each TF bin
of the mixture, but the higher the risk of source overlapping,
and vice-versa), fortunately, this trade-off is in line with much
softer constraints on both the watermarking process and the
molecular grouping, as compared to SC-ISS.

IV. EXPERIMENTS

In this section, we present a series of experiments that we
conducted to evaluate the performances of the proposed I-
ISS system. We first present the data, then we provide some
measure of music signals overlapping/sparsity, and then we
provide the results for the source separation itself.

A. Data

Tests have been processed with 44.1kHz-music signals, with
4-source and 5-source singing voice + instruments mixtures.
The separation results of Section IV-D have been averaged
over five 10-seconds excerpts of different musical styles (rock,
pop, funk, new-wave and jazz), representing a total amount of
50s of music. Sources are:s1 = guitar or piano,s2 = drums
(one track for the overall drum set),s3 = singing voice (from
a male or female singer),s4 = bass guitar,s5 = horns or choirs
or keyboards.

Different LIS mixing matrices with constant power stereo
panning10 were used to create the stereo test mixtures. One
typical example is (for 5-source mixture):

10i.e. each column is equal to[cos(θ) sin(θ)]T, with the source azimuth
θ between 0◦(azimuth of the right loudspeaker) and 90◦(azimuth of the left
loudspeaker).

A =

[

0.95 0.82 0.71 0.57 0.31

0.31 0.57 0.71 0.82 0.95

]

(7)

corresponding to the azimuths (in degrees)θ =
{18, 35, 45, 55, 72}. For 4-source mixtures, the mixing
matrix A is a sub-matrix formed by the first 4 columns
of (7), and only sourcess1 to s4 are used. The minimum
difference between two azimuths of two different sources is
set to 10◦ in the present experiments, so that the maximum
condition number of the2 × 2 sub-matrices ofA remains
limited (to approx. 11.5). Therefore the impact of the noise
due to the watermarking and the sparse assumption on the
inversion process (see Section III-C) also remains limited11.

B. Source signals overlapping

The overlapping of source signals in the TF domain remains
a critical issue for sparsity-based source separation techniques,
even for informed techniques. In order to assess the relevance
of the sparse assumption on music signals, a measurement of
source signals overlapping in the TF domain has been carried
out, taking into account the energy distribution of the sources.
For this, the following energy ratio is calculated for each TF
bin of each source signalsi:

Ri(f, t) =
|Si(f, t)|2

∑

j 6=i |Sj(f, t)|2
(8)

At each TF bin, we then compute the energy distribution
of each source with respect to the rank of its power ratio
(8), i.e. the percentage of energy for which a given source is
ranked first, second, third and so on. Results are presented in
Table Ia for a 4-source jazz mixture, and in Table Ib for a
5-source pop-rock mixture.

Those tables obviously show that considering only one
active source at each TF bin is a too coarse approximation.
Indeed, this would preserve about 96% of the voice energy
(in both cases), or about 98% of the bass energy in the pop-
rock mixture, but it would also preserve only about 72%
of the drums energy and only about 37% of the keyboards
energy in the pop-rock mixture (remind that in the source
separation process of (6), the energy of sources considered
as non-active is set to zero). Therefore, those sources may be
severely degraded. Even percentages within the range 85%–
90%, as for the bass, drums and piano for the jazz mixture,
may not be sufficient to ensure good reconstruction quality.
In contrast, even for the 5-sources mixture, the assumptionof
only 2 active sources can reasonably be made. Indeed, for both
examples and for all sources, most of the energy of a source
is located at TF bins where this source is within the two most
energetic sources of the mixture (according to the ratio (8)).
89.1% for the keyboards to 99.7% for the bass (in the 5-source
mixture) of the overall energy of source signals is concentrated
in TF regions where sources are either the most energetic or

11Let us just mention that we have not observed "unreasonable" estimated
values for the MDCT source coefficients in our experiments; a deep investi-
gation of the effects of sub-matrix conditioning on separation performance is
out of the scope of the present study.
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the second most energetic of all the sources compounding the
mixture. This implies that the third (and fourth and, if any,
fifth) source is generally of very poor energy compared to the
two most predominant sources12. Therefore, those remaining
sources, not belonging to the two most energetic ones, can
reasonably be considered as a noise, and, if the2× 2 inverse
matrix A−1

Ift
is not ill-conditioned, the separation process (6)

with Ift = 2 generally provides (very) good separation results.

TABLE I: Percentage or the overall energy of source signals
depending on their rank within the mixture, for a 4-sourcejazz
mixture and a 5-sourcepop-rockmixture (40s of signal).

(a) Jazz

Rank piano drums singer bass

1 89,1 87,3 95,8 84,2

2 9,2 10,0 3,6 13,9

3 1,5 2,2 0,5 1,8

4 0,3 0,4 0,1 0,1

(b) Pop-Rock

Rank guitar drums singer bass keyboards

1 85,7 71,7 95,6 97,9 37,2

2 12,5 22,4 3,4 1,8 51,9

3 1,6 4,9 0,6 0,3 10,4

4 0,2 0,9 0,1 5.10−2 0,5

5 6.10−3 6.10−2 2.10−2 2.10−3 1.10−2

C. Quality of mix signals

Before we provide separation results, we confirm in this
subsection that the watermarking process has no influence on
the perceived quality of the mixture signals. This was assessed
by extensive informal listening tests, confirming the subjective
and objective tests reported in [23] [24].13 In fact, for the
test signals used in the present study, the watermarking is
inaudible in the "full-watermarking" configuration definedin
Section III-E, revealing the efficiency of the psycho-acoustic
model and associated watermarking process. Therefore, it is
guaranteed to be "highly inaudible" for the "basic" and "light-
watermark" configurations, since in those cases the masking
curve is significantly lowered to fit the required capacity which
is much lower than in the "full-watermarking" configuration
(see Fig. 3).

12At first sight this may seem contradictory with the distribution of optimal
Ift mentioned in Section III-B, but deeper investigation reveals that the
approximate 35% of TF bins whereIft > 2 generally contain sources of
quite poor energy, hence modestly contributing to the mixtureand to the
separation process. An additional test will be presented inSection IV-D3 to
assess the improvement in separation obtained by consideringa free number
of active sources (i.e. up toI), in compliance with the results reported in
[21].

13For example, in [24], Objective Difference Grade (ODG) scores [29] were
calculated for a large range of embedding rates and differentmusical styles.
ODG remained very close to zero (hence imperceptibility of thewatermark)
for rates up to about 260kbps for musical styles such as pop, rock, jazz, funk,
etc. (and "only" up to about 175kbps for classical music).

D. Separation results

1) Test configurations:The different settings presented in
Section III-E and summarized in Table II have been tested
to evaluate the separation performances of the proposed I-
ISS system, including the evaluation of the (cross-)influence
of TF resolution (single TF bin or1 × 2 molecule) and wa-
termarking bit-rate. In addition, the following three reference
configurations were tested. The configuration named OracleO

refers to the ideal configuration of the oracle estimator, as
introduced in [21] (see Section III-B): the optimal combination
Ĩft is used for separation using (4) instead of (6), i.e. there
is no watermarking (hence no separation of the whole process
between coder and decoder). As in [21], this configuration
is used as an optimal ideal reference that provides the upper
bound for the performances of the present (sparse) separation
technique. It is thus also used to measure the influence of
watermarking in the proposed I-ISS system. The OracleM

configuration is similar to OracleO except that the1 × 2
molecular grouping is activated (i.e. one single value ofĨft

is used to separate the coefficients of two consecutive TF
bins (f, t) and (f, t + 1), as for the "light-watermarking"
configuration of I-ISS). This configuration is used to measure
the influence of molecular grouping alone on the separation
process, and also to measure the influence of watermarking
in the molecular configuration. Finally, we also implemented
the underdetermined blind source separation process of [8],
which is also based on local inversion of the mixture, to
measure the contribution of theinformedaspect to the separa-
tion performances w.r.t. non-informed separation, in a similar
framework of sparse separation techniques14. In this reference
configuration, further referred to as BZ, the two relevant source
signals (out of 4 or 5 here) are selected for each TF bin by
finding the linear combination of the two basis vectors that
provides the shortest path from the origin to the observed data
x. For example, in Fig. 4, the mixture vectorx is assumed to
be generated by sources 1 and 2. It can be noticed that such
a geometrical method does not provide all the possible source
combinations. For instance, ifx is actually a combination of
sources 1 and 3, this method will always return the spurious
couples of sources(1, 2) or (2, 3). The watermark embedded
in the proposed I-ISS method fixes this issue.

Fig. 4: Geometrical method of theshortest pathfrom the origin
to the data pointx introduced in [8].

14The comparison with [8] is here made for the sources estimation step only,
i.e. the mixing matrixA is assumed to be known at the decoder, although in [8]
A is claimed to be accurately estimated by a clustering technique. Therefore
this reference technique is actually a semi-blind techniquein the present study.
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TABLE II: Configuration of tested algorithms

Algorithm Scale Ift

Waterm.

bitrate (kb/s)

OracleO single TF bin ≤ 2 -

OracleM molecule ≤ 2 -

BZ single TF bin 2 -

basic I-ISS single TF bin ≤ 2 64

light-watermark I-ISS molecule ≤ 2 32

full-watermark I-ISS single TF bin ≤ 2 250

free I-ISS single TF bin ≤ I
64 (I = 4)
80 (I = 5)

2) Performance measures:The quality of separated sources
has been assessed by both informal listening tests with high-
quality headphones, and performance measures (log power ra-
tios), as defined in [30]. Basically, the source-to-interferences
ratio (SIR) measures the level of interferences from the other
sources in a source estimate, the source-to-artefacts ratio
(SAR) measures the level of artefacts in a source estimate
(i.e. the level of “self”-degradation in a given source such as
musical noise, due to the processing and not to the interfering
sources), and the source-to-distortion ratio (SDR) provides
an overall separation performance criterion (that gathersthe
influence of interfering sources and artefacts) [30]. We also
provide the input SIR (denoted SIRin), defined as the (dB) ratio
between the power of the considered source and the power of
all other sources in the mix to be separated, because all musical
sources do not contribute with the same power in a well
musically balanced mix (as we tried to generate). Therefore,
this input SIR must be taken into account when measuring
the rejection power of the method since it characterizes the
difficulty of the task: a source with low SIRin is more difficult
to extract than a source with high SIRin. For the 4-source
mixtures, the input SIRs for sourcess1 to s4, averaged over
all tested mixtures, are respectively -8.4, -7.1, -4.1, and-2.4dB.
For the 5-source mixtures, the input SIRs for sourcess1 to s5

are respectively -9.4, -8.3, -5.3, -3.7 and -7.8dB.
3) Separation performances:Separation results are pre-

sented in Fig. 5 for 4-source mixtures and in Fig. 6 for 5-
source mixtures. Let us first consider the results of the "basic"
I-ISS configuration. A first observation is that, for both 4-
source and 5-source mixtures, high separation performances
are obtained, in terms of competing sources rejection, as
demonstrated by high output SIR values. SIRs between 35
and 42.5dB for 4-source mixtures (Fig. 5a), and between 29.5
and 34dB for 5-source mixtures (Fig. 6a), show a very good
rejection of the interferences for all sources. The source signals
are clearly isolated, as confirmed by listening tests (see below).
This comforts the validity of the assumption of 2 predominant
sources at each TF bin: since most of the energy of source
signals is concentrated in TF bins where the source is within
the two predominant sources, the local2 × 2 inversion of the
mixture enables a very good separation of all source signals.

The results are also very satisfactory in terms of SDR and
SAR. Actually, because of high output SIRs, the measured
SDRs and SARs are almost identical (pair-wise) for all settings
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Fig. 5: Separation results of I-ISS for all 7 settings of Table II.
Average performances over 50 seconds of five 4-source stereo
mixtures of different music styles. Sources s1 to s4 are
guitar/piano, drums, singing voice, bass guitar.

[30]. Therefore, we only provide SDR measures (in Fig. 5b
and Fig. 6b), and it can be noted that the overall quality
of separated source signals mostly depends on artefacts, i.e.
musical noise. SDRs ranging from 12.5dB to 18dB for 4-
source mixtures, and ranging from 10 to 13.5dB for 5-
source mixtures are obtained15. Although those values indicate

15Obviously, separation performances decrease from 4-sourcemixture to
5-source mixture because the presence of an additional source increases
the probability of source overlapping. In our experiments, separation perfor-
mances decrease by about 6.5dB-SIR and 3.5dB-SDR (on the average across
all sources), whereas input SIRs only decrease by about 1.2dB. This may be
explained by the fact that, for some of our mixtures, about 10% of the energy
of the fifth source signal is located in TF bins where this source is the third
most energetic source of the mixture (see Table IIb), thus possibly impairing
the local2 × 2 mixture inversion.
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Fig. 6: Separation results for all 7 algorithms. Average per-
formances over 50 seconds of five 5-source stereo mixtures
of different music styles. Sources s1 to s5 are guitar/piano,
drums, singing voice, bass guitar, horns/choirs/keyboards.

that the estimated source signals remain noticeably different
from the original source signals, they nonetheless confirm the
efficiency of the separation in terms of individual source signal
reconstruction, given the difficulty of such underdetermined
mixtures. As for the differences between sources, we remind
that input SIRs must be taken into account: for example, SDRs
are higher for the bass guitar (s4) and lower for the drums
(s2), but at the same time the input SIRs are also higher
for the bass than for the drums. Therefore, looking at the
difference between SDR and SIRin (i.e. a measure of signal
enhancement from input to output) in Fig. 5c and Fig. 6c

reveal a more balanced picture across sources16. Obviously,
ratio improvements of about 20dB and above for 4-source
mixtures, and of about 17dB and above for 5-source mixture
confirm the efficiency of the separation.

Altogether, the SIR, SDR and SDR−SIRin values
demonstrate the possibility for individual manipulation of
separated signals. This is confirmed by listening tests: as
mentioned above each instrument is clearly isolated, and
artefacts are quite limited. Most importantly, the qualityof
the isolated source signals makes them usable to clearly
enhance or on the contrary turn down a source in the
mixture (by simple time-domain or MDCT-domain addition
or subtraction), possibly until complete suppression. Although
this should be confirmed by dedicated formal listening tests,
when remixing a given estimated source within the mix
signal, the artefacts coming from this estimated source (either
boosted or subtracted) appear to be efficiently masked by
the other sources. This clearly opens the way for generalized
remix/karaoke "real-world" applications. Sound samples for
the different configurations of Table II can be downloaded at
http://www.gipsa-lab.inpg.fr/∼mathieu.parvaix/

IISS-demo.zip. The package includes original and
watermarked mixtures, and original and separated source
signals. All signals are correctly scaled and mixing matrix
values are given in an accompanying file so that the interested
reader can directly process its own remix using the mixture
signal and separated sources.

Let us now consider the watermarking influence. Very inter-
estingly, the "basic" I-ISS system exhibits performances that
are almost identical to the OracleO configuration. Straightly
stated, this means that the watermarking at reasonable "basic"
bit-rates (i.e. 64kbits/s/channel here) has negligible influence
on the separation process. The watermarked MDCT coef-
ficients are very close to the unwatermarked coefficients,
hence (6) provides results that are almost identical to (4).
Those observations are confirmed by the similar separation
performances obtained for the OracleM and "light watermark"
configurations (remind that in those cases, the1×2 molecular
grouping is activated, and a 32kbits/s/channel watermark is
embedded into the mixture signal for the "light" configura-
tion). However, when the volume of the watermark strongly
increases, as for the "full-watermark" configuration (approx.
250kbits/s/channel), the effects on the separation performances
are significant: an average SDR decrease of about 5dB (resp.
3dB) is evidenced for the 4-source mixture (resp. 5-source
mixture), as compared to the "basic" configuration. This is
because in time-frequency regions where the masking thresh-
old is high, the modification of MDCT coefficients can be high
enough to significantly corrupt the inversion process, although
remaining inaudible in the mixture signal. Therefore, an end-
user of the proposed I-ISS system should be careful when
using large watermarking capacity to transmit substantialextra
side-information, in addition to the one required for index-
based source separation.

16with a slightly better performances for the first source (guitar/piano).
The study of the influence of source signal characteristics on separation
performance is beyond the scope of this paper. It may be considered with
attention in our future works on ISS.
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As for the influence of the molecular grouping, it is shown
by comparing the results of the OracleO and OracleM con-
figurations (i.e. without watermarking), and by comparing
the results of the basic and light configurations (i.e. with
watermarking). In both cases, a decrease of about 3dB-SIR
and less than 2dB-SDR can be observed when switching from
single TF-bin processing to (1× 2) molecular processing (for
both 4-source and 5-source mixtures). Therefore, comparing
the effects of molecular grouping and watermark size clearly
shows that maximizing the resolution of the processing (by
working at a single TF bin level) should be preferred to
limiting the amount of embedded data (at least from 64kbits/s
to 32kbits/s). Indeed, a limited watermark (here 64kbits/s) does
not impair the performances of the inversion/separation pro-
cess, while gathering TF bins does. The "basic" configuration
of the proposed I-ISS system eventually appears to be a very
good setting since it conjugates reasonable watermarking rate
(with almost no effects) and optimal separation resolution,
leading to separation performances almost identical to the
optimal oracle configuration.

Let us now briefly see the effect of the parameterIft on the
separation performances. A comparison of separation results
between the two basic I-ISS configurations withIft = 2 and
Ift ≤ I shows an average SDR improvement of 1.3dB for
the 4-source mixture and 1.6dB for the 5-source mixture,
confirming the results of [21]. So the performance gain is
noticeable, and it goes together a very reasonable increaseof
watermarking rate (from 64 to 80kbits/s/channel forI = 5; for
I = 4, the rate does not change because we use suboptimal 4-
bit codes forIft ≤ 2). Note that it also goes with an increase
of computational complexity, but this issue is out of the scope
of the present paper (however this issue should be considered
with attention for real-time implementations if the numberof
sources increases significantly).

Finally, the comparison of the proposed I-ISS system with
the semi-blind method BZ, shows the tremendous gain enabled
by the informedseparation process, for all performance mea-
sures, source signals, or mixture size. The SDR gain provided
by the transmission of side-information is within the range
10–13.5dB, and accordingly, the quality of separated signals
is much higher for the ISS system. For instance, source signals
separated by the BZ method cannot be used for high quality
remix/karaoke applications, whereas source signals separated
with the I-ISS system clearly can.

V. CONCLUSION

The Index-based Informed Source Separation system de-
scribed in this article is based on the sparsity of source signals
in the TF domain and the exploitation of stereophony. This
system is characterized by a quite simple separation process
and by the fact that the side-information that is embedded to
guide the separation process is particularly compact. There-
fore, with appropriate settings, the degradation of the mixture
signal by the watermark embedding at the coder has been
shown to have negligible effects on the inversion procedure. As
a result, the performances of the I-ISS system are comparable
to the performances of the optimal Oracle estimator proposed

in [21] (for similar LIS / sparse separation configuration).
Compared to blind and semi-blind approaches also based on
sparsity and local mixture inversion, the informed aspect of
separation guarantees optimal combination of sources, leading
to a remarkable increase of separation performances. Although
it was not much enlighten, another advantage of the I-ISS over
blind methods is the knowledge of the mixing matrixA at the
decoder.

The simplicity of the proposed I-ISS system, including the
use of a single MDCT transform exploited in both the separa-
tion routine and the watermarking routine, has already enabled
the realization of a first real-time software implementation of
the decoder running on PC/MAC [31]. This software is able
to separate 5-source (LIS) stereo mixtures (read from audio-
CD or 16-bit PCM wav files) in real-time and it enables the
user to remix the piece of music during restitution with basic
functions such as volume and spatialization control.

Although it enables basic but efficient left/right spatializa-
tion of the sources, the LIS mixture is generally an over-
simplistic process when professional/commercial music pro-
duction is at stake. Moreover, the corresponding sparseness-
based separation process has its own limitations: for example,
it cannot process two sources located at the same position,
since the corresponding submatrix is not invertible. Future
works will consider those limitations and deal with going
towards more realistic/professional mixtures, involvingcon-
volutive filtering (e.g. reverberation) and "true stereo" source
signals (e.g. 2-channel synthesizers). A future extensionof
this work will be the combination of the present 2-channel
sparse approach with the source coding ISS approach of [17].
For exemple, within a mixture of, say, 6 sources, 2 of them
could be extracted by the coding approach, and the 4 remaining
sources could be estimated by the present sparse method after
subtraction of the first 2 decoded sources to the mixture. A
reduction of remaining artifacts is expected. The separation of
convolutive and true stereo sources will be considered in such
extended framework.
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