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Abstract

This paper presents a novel method for non-rigid registration of transrectal

ultrasound and magnetic resonance prostate images based on a non-linear

regularized framework of point correspondences obtained from a statistical

measure of shape-contexts. The segmented prostate shapes are represented

by shape-contexts and the Bhattacharyya distance between the shape rep-

resentations is used to find the point correspondences between the 2D fixed

and moving images. The registration method involves parametric estimation

of the non-linear diffeomorphism between the multimodal images and has

its basis in solving a set of non-linear equations of thin-plate splines. The
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solution is obtained as the least-squares solution of an over-determined sys-

tem of non-linear equations constructed by integrating a set of non-linear

functions over the fixed and moving images. However, this may not result in

clinically acceptable transformations of the anatomical targets. Therefore,

the regularized bending energy of the thin-plate splines along with the local-

ization error of established correspondences should be included in the system

of equations. The registration accuracies of the proposed method are eval-

uated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance

images. The results obtained in terms of Dice similarity coefficient show an

average of 0.980 ± 0.004, average 95% Hausdorff distance of 1.63 ± 0.48 mm

and mean target registration and target localization errors of 1.60±1.17 mm

and 0.15 ± 0.12 mm respectively.

Keywords: Prostate biopsy, multimodal images, non-linear registration,

thin-plate splines, regularization, point correspondences, shape-context,

Bhattacharyya distance

1. Introduction

Countries in Europe and USA have been following prostate cancer screen-

ing programs since the last 15 years (Andriole et al. (2009); de Koning et al.

(2002); Roobol and Schroder (2003)). A patient with abnormal findings af-

ter a digital rectal examination, serum Prostate Specific Antigen (PSA) level

over 4.0ng/ml and PSA velocity more than 0.4 to 0.75ng/ml/yr is generally

advised for a prostate biopsy to diagnose the benign or malignant lesions

from the histopathological examination of the prostate tissues. During nee-

dle biopsy, the most common appearance of malignant lesions in Transrectal
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Ultrasound (TRUS) is hypoechoic. The accuracy of sonographic finding of

hypoechoic prostate cancer lesions is typically 43% (Carroll and Shinohara

(2010)) and the prevalence of isoechoic prostate cancer lesions on TRUS

ranges from 25% − 42%. The TRUS guided needle biopsy is performed us-

ing a multicore strategy where 10 − 12 samples are strategically extracted

dividing the prostate into several regions (Porter et al. (2010)). A hyper

or hypoechoic lesion detectable with gray-scale TRUS is not necessarily a

malignant lesion (Veltman et al. (2002)). For instance, the chances of a hy-

poechoic lesion evaluated in TRUS guided biopsy being malignant is between

7% − 57% (Bogers et al. (1999)). This results in multiple negative biopsies

and thereby increases the number of re-biopsies required. In contrast, Mag-

netic Resonance Imaging (MRI) has a negative predictive value of 80%−84%
for significant cancer and the accuracy of MRI to diagnose prostate cancer

is approximately 72% − 76% (Vilanova et al. (2011)). Therefore, MRI may

serve as a triage test for men deemed to be at risk of prostate cancer and

may reduce the number of re-biopsies while at the same time provide more

useful information for those who are sent for biopsy. Consequently, fusion of

pre-biopsy MR images onto interoperative TRUS images might increase the

overall biopsy accuracy (Hu et al. (2011); Kaplan et al. (2002); Singh et al.

(2008); Xu et al. (2008)). Figure 1 shows the TRUS and the corresponding

MR images of a prostate where the area within the circle marks a tumor that

is isoechoic and the area within the rectangle is hypoechoic in TRUS, but

can be seen with better contrast in the MR image.

The prostate of the same patient may undergo deformations under cer-

tain conditions. The inflation of the endorectal coil inside the rectum dur-
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Figure 1: TRUS and corresponding MR images of a prostate. (a) The area within the

circle shows a tumor isoechoic with the normal prostate tissue inside the gland while that

within the rectangle shows a hypoechoic tumor at the peripheral gland in the TRUS image,

(b) the marked areas show the respective isoechoic and hypoechoic tumors with a different

contrast than the normal prostate tissue in the MR image.

ing MRI procedure, full bladder or bowel or gas inside the rectum, altered

patient positions during the TRUS and MRI procedures may deform the

prostate. In order to cope with these deformations, non-rigid registration

methods (Alterovitz et al. (2004); Avants et al. (2008); Baumann et al. (2009);

du Bois d’Aische et al. (2004); Chen et al. (2009); Mizowaki et al. (2002);

Narayanan et al. (2009); Reynier et al. (2004); Xiao et al. (2010)) need to be

applied for prostate multimodal registration .

Spline-based deformations have been commonly used to register prostate

images or volumes. The interpolating Thin-plate Splines (TPS) was origi-

nally proposed by Bookstein (1991) and involves the establishment of a set

of point correspondences on a pair of images. However, these sets of corre-

spondences are prone to error in real applications and therefore Rohr et al.

(2001) extended the bending energy of TPS to approximation and regular-

ization by introducing the correspondence localization error. Nevertheless,

all these methods (Bookstein (1991); Rohr et al. (2001)) are dependant on a

set of point correspondences on the pair of images to be registered. On the
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contrary, Domokos et al. (2012); Nemeth et al. (2009a,b) proposed a class

of non-rigid registration that does not require explicit point correspondences

and instead registers binary images solving a set of non-linear equations.

In this work, we have improved the generic non-linear registration frame-

work of Domokos et al. (2012) by establishing prostate-specific point corre-

spondences and regularizing the overall deformation. The point correspon-

dences under the influence of which the thin-plate bends are established on

the prostate contours by a method based on matching the shape-context (Be-

longie et al. (2002)) representations of contour points using Bhattacharyya

distance (Mitra et al. (2012)). The approximation and regularization of the

bending energy of the thin-plate splines are added to the set of non-linear

TPS equations and are jointly minimized for a solution.

To evaluate the effects of the proposed extension to the existing frame-

work of Domokos et al. (2012) we have compared our method against two

variations; 1) the method of Domokos et al. (2012) where the TPS control

points are placed on a uniform grid over the prostate mask images, and 2) the

non-linear TPS deformation same as the previous, but with point correspon-

dences established by our proposed method and without the approximation

and regularization of bending energy. The proposed method is also evaluated

against two commonly used spline-based deformable registration methods of

TPS (Bookstein (1991); Rohr et al. (2001)) and B-splines (Rueckert et al.

(1999)).

The primary contributions of this paper may be summarized as follows:

1. The use of shape-context and Bhattacharyya distance (Mitra et al.

(2012)) to establish point correspondences on both fixed and moving
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images,

2. the use of a prostate-specific TPS transformation in the non-linear

framework of Domokos et al. (2012),

3. and constraining the non-linear diffeomorphism by adding the approx-

imation error and regularization of the TPS bending energy.

The remaining of the paper is organized as follows: section 2 discusses some

works related to the TRUS-MRI fusion and applications of spline-based regis-

tration methods for prostate images. Section 3 explains the proposed method

of generating point correspondences and the system of non-linear diffeomor-

phic equations with the regularization, Section 4 provides the results of the

experiments and comparisons with other methods. Section 5 presents a dis-

cussion related to the qualitative and quantitative registration results and

accuracy of the proposed method followed by conclusions and further appli-

cations of the current method in Section 6.

2. Related Work

Fusion of TRUS-MRI for guided needle biopsy of the prostate was re-

ported by Kaplan et al. (2002) where a set of axial pre-biopsy MRI slices were

rigidly registered with the axial ultrasound (US) images acquired during a

transrectal biopsy procedure. The registration was driven by the minimiza-

tion of the corresponding fiducials manually chosen in both the US and MR

images. The experiment was validated with two patient datasets with only

qualitative results provided as the results of the registration process.

An improved system was proposed by Reynier et al. (2004) for brachyther-

apy where manually segmented point clouds from MRI and TRUS were used
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to either rigidly or elastically align MRI with TRUS. The advantage of this

system was the ability to model potential nonlinear deformation between the

two modalities using octree splines (Szeliski and Lavalle (1996)). The elas-

tic registration results were validated using 11 patient cases with an average

residual distance of 1.11 ± 0.54 mm for surface points on TRUS and MRI.

Xu et al. (2008) presented a method for real-time registration of US and

MRI for guided prostate biopsies. Before the biopsy procedure, a 3D TRUS

volume (reconstructed from 2D axial sweep of the prostate with a US probe

attached to a electro-magnetic tracker) was manually registered with a 3D

MRI volume acquired previously using rigid body transformation. There-

after an image based registration was employed for motion correction be-

tween the intra-operative 2D US frames and the reference US volume. A

set of 2D frames within a short time frame were rigidly registered using a

sum-of-squared differences (SSD) based minimization with their respective

2D slices in the reference US volume. Finally, to further compensate for

in-plane prostate motion the current 2D US frame and its corresponding

reconstructed frame from the reference US volume was registered using an

image gradient and correlation coefficient based registration. In patient stud-

ies for a new target the average time taken for biopsy was 101±68 secs. The

registration method was validated on phantoms with a registration accuracy

of 2.4 ± 1.2 mm. A total of 20 patient studies showed an average overlap

between MRI and the US images as 90% ± 7% after motion compensation.

The authors further validated their method with 101 patient cases (Kadoury

et al. (2010)) and the clinical results showed significant improvement of tar-

get visualization and of positive cancer detection rates during TRUS-guided

7



biopsies.

Narayanan et al. (2009) proposed elastic registration between 3D TRUS

and 3D MRI surfaces using adaptive focus deformable model (Shen et al.

(2001)) and elastic warping (Davatzikos (1997)) for localization of prostate

biopsy targets. The average fiducial registration error was shown to be

3.06 ± 1.41 mm for 6 and 12 bead phantoms.

Hu et al. (2011) proposed a model-to-image registration method to fuse

a patient-specific biomechanically simulated finite element-based statistical

motion model of the pre-acquired MR volume with the TRUS volume during

biopsy procedure. The deformable registration involved maximizing the like-

lihood of a particular model shape given a voxel intensity-based feature that

provided an estimate of surface normal vectors at the boundary of the gland.

The registration was constrained by the statistical motion model subspace.

This statistical motion model subspace accommodated the random TRUS

probe induced deformations of the gland. The median Root Mean Square

(RMS) Target Registration Error (TRE) for 8 patients with 100 MR-TRUS

registration experiments for each patient was found to be 2.40 mm.

Natarajan et al. (2011) also proposed elastic warping of MR volume to

match the TRUS volume acquired for targeted prostate biopsy. The fusion

method involves rigid alignment of the two volumes using manually selected

anatomical landmarks and thereafter, the methods of Narayanan et al. (2009)

and Karnik et al. (2010) were used for surface deformation. The MR-fusion

based targeted biopsy was performed on 47 patients where a 33% biopsy-

positivity rate was found versus a 7% positivity rate for systematic biopsy.

The biopsy procedure took 15 minutes with an additional 5 minutes for the

8



TRUS-MR fusion.

A recent work by Cool et al. (2011) suggested a pre-biopsy 3D TRUS-MR

fusion with a landmark-based rigid registration and a subsequent deformable

registration using TPS (Bookstein (1991)). Thereafter an image-based regis-

tration using the methods of Chrisochoides et al. (2006) and Ourselin et al.

(2000) was performed to rigidly register the intra-biopsy 3D TRUS and pre-

biopsy 3D TRUS (already co-registered with the pre-biopsy MR). The TRUS-

TRUS rigid registration required 60 secs. The MRI-TRUS fusion study was

carried out on 19 patients with a retrospective study on 5 patients showing

a mean TRE of 4.3 ± 1.2 mm. Prostate cancer was identified in 42% (8/19)
of all patients having suspicious lesions.

TPS warping was also employed by Lu et al. (2000) to generate statistical

volumetric model of the prostate for localization of prostate cancer. The reg-

istration error reported was too high to be considered for clinical procedures.

The TRE for 7 cases was reported to be 295.66 pixels, but the physical di-

mensions were not provided. Similarly, prostate MR volumes were warped

using TPS by Fei et al. (2003) for brachytherapy and the registration was

driven by the maximization of Normalized Mutual Information (NMI). The

accuracy of the registration showed that the lowest prostate centroid dis-

placement for a volume pair out of 17 volume pairs was 0.6 mm.

Cheung and Krishnan (2009) registered prostate MR volumes with and

without the deformation of the endorectal coil using TPS with manually

placed correspondences. Although the qualitative results were shown in

terms of checkerboard overlap, the quantitative registration error was not

reported. Daanen et al. (2006) used octree splines elastic registration to fuse
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TRUS and MRI prostate volumes for dosimetric planning of brachytherapy.

The registration accuracy showed an average TRE of 2.07 ± 1.57 mm for 4

patients. Vishwanath et al. (2009) registered prostate histological slices and

MR slices to detect prostate cancer using B-splines. Since the aim was to

detect cancer, quantitative values related to registration accuracy were not

presented. A recent work by Xiao et al. (2010) proposed to build a spatial

disease atlas of the prostate using both B-splines and TPS. However, only

qualitative results were presented.

Oguro et al. (2009) registered pre- and intra-operative MR images for

prostate brachytherapy using B-splines based deformation. The Dice Simi-

larity Coefficient (DSC) value for the total gland was reported as 0.91 and

the fiducial registration error was 2.3 ± 1.8 mm for 16 cases. The accura-

cies of surface-based and image-based registration methods to register intra-

session 3D TRUS-TRUS volumes were evaluated by Karnik et al. (2010).

The surface-based registration involved a rigid registration using the iter-

ative closest point algorithm (Besl and McKay (1992)) and the non-rigid

registration was based on TPS. The image-based registration employed the

block-matching technique of Ourselin et al. (2000) for rigid registration and

the non-rigid deformation was defined by a 3D uniform grid of B-splines

control points. A total of 16 patient datasets were used in the evaluation

of the registration accuracies. The mean TRE for 60 fiducials for the TPS

based registration was reported to be 2.09 ± 0.77 mm and for the B-splines

based registration was found to be 1.50 ± 0.83 mm. TRUS and MR multi-

modal registration for TRUS interventional prostate biopsy was investigated

by Mitra et al. (2011, 2010). The method in Mitra et al. (2010) was based
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on TPS with automatic point correspondences and provided an average DSC

of 0.97 ± 0.01 for a limited cohort of 4 patient datasets. While, the method

in Mitra et al. (2011) used B-splines registration driven by maximization of

NMI of quadrature local energy of the multimodal images. The average DSC

obtained was 0.943 ± 0.039 for 20 patients axial mid-gland slices, with an

average TRE of 2.64 ± 1.37 mm obtained for 18 patients.

Analyzing the state-of-the art methods that exist for prostate TRUS-

MR image registration or are based on spline-based transformations, we

observe that many methods provided clinically significant registration ac-

curacies, while some methods provided target registration accuracies greater

than 3 mm. The methods that reported the gland overlap accuracies exhib-

ited significantly poor overlap (approx. 90%). Additionally, few methods also

required manual intervention at some stage to drive the registration proce-

dure. In contrast, our proposed deformable registration method is automatic

and capable of providing improved global and local registration accuracies

that seem to be necessary for TRUS-guided biopsy procedure.

3. Method and Materials

The aim of this work is to register a TRUS prostate image acquired during

biopsy with a pre-acquired MR image of the same patient. Since the current

proposition is to ascertain the feasibility and accuracy of the registration al-

gorithm for biopsy procedures, the method requires an initial step of finding

the MR slice corresponding to the axial TRUS slice under observation. This

is not discussed here and may be accomplished by using an electromagnetic

(EM) tracker attached to the TRUS biopsy probe (Xu et al. (2008)) or a 3D
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US-based tracking system (Baumann et al. (2011)). Slice correspondences

are therefore determined manually by an expert for the proposed research.

In this work, after the TRUS-MR slice correspondences are established,

the prostate is manually segmented from the respective modalities. Although,

our research team is investigating on automatic prostate segmentation meth-

ods from both TRUS and MRI (Ghose et al. (2011a, 2010, 2011b)), we use

manual segmentation to avoid incorporating the segmentation errors in the

evaluation of the registration algorithm. The choice of an automatic or semi-

automatic prostate segmentation method can be made from the review paper

published by Zhu et al. (2006). The point correspondences required for the

algorithm are established by the method explained in Section 3.1.1. The non-

linear registration as described in Section 3.1.2 involves TPS transformation

of the moving MR image non-linearized by a set of polynomial functions. The

registration process aims to minimize the difference between the fixed image

and the TPS transformed moving image both non-linearized by the same set

of polynomial functions. In addition, the TPS bending energy is minimized

with a regularization and considers the localization errors of the point cor-

respondences. The schema of the proposed registration method is shown in

Figure 2. The rectangles in dotted lines represent the point correspondences

method of Section 3.1.1 and the overdetermined system of equations for the

non-linear registration framework of Section 3.1.2 respectively.

3.1. Method

3.1.1. Shape-contexts and point correspondences

The segmented prostate contour points are uniformly sampled using fixed

Euclidean distance of ε i.e. if ci is a contour point, i = 1, . . . ,N , then find the
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Figure 2: Schema diagram of the proposed registration framework.

number of points Ns such that

argmax
j

∥ci − cj∥2 ≤ ε, i ≠ j. (1)

Figure 3 shows the uniformly sampled segmented contours on the TRUS and

MR images.

Let the number of uniformly sampled points now be represented as n,

then each sample point ci may be represented by a shape descriptor that is

a n − 1 length vector of log-polar relative distances to points cj, where i ≠ j.
The shape descriptor is binned into a histogram that is uniform in log-polar

space and this histogram is the shape-context representation of a contour

point (Belongie et al. (2002)) i.e. ci is represented by a histogram hi(k, θ)
13



(a) (b)

Figure 3: Uniformly sampled contours. (a) and (b) are the uniformly sampled segmented

prostate contours on the TRUS and MR images respectively.

such that

hi(k, θ) =#{cj, i ≠ j ∶ (ci − cj) ∈ bin(k, θ)} . (2)

k is the log r = log(√(xi1 − xj1)2 + (xi2 − xj2)2) and θ = tan−1
xj2−xi2

xj1−xi1
of the

relative distance (ci − cj), where, ci = (xi1, xi2) and cj = (xj1, xj2). As sug-

gested by Belongie et al. (2002), a total of 5 bins are considered for k and

12 bins for θ that ensures that the histogram is uniform in log-polar space.

This also means that more emphasis is given to the nearby sample points

than those that are far away.

In the original work of Belongie et al. (2002), the point correspondence

between two shapes is obtained by a bipartite graph matching method. How-

ever, in this work we choose to compute the Bhattacharyya distance (Bhat-

tacharyya (1943)) between the shape-context histograms of two shapes to find

the point correspondences. The bipartite graph matching using the Hun-

garian method (Papadimitriou and Stieglitz (1982), Jonker and Volgenant

(1987)) is robust with O(n3) time complexity in finding point correspon-

dences in shapes which are significantly different and belong to different
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shape categories (Belongie et al. (2002)) e.g. correspondences between bird

and elephant or bone and apple, etc. However, we considered the Bhat-

tacharyya distance since, it finds point correspondences with O(n2) time

complexity and is sufficient for shapes such as prostate contours in TRUS

and MRI which do not significantly differ from each other except for some

deformation. Thus, to match a point ci in a shape to a point c′j in another

shape, the Bhattacharyya coefficients between the shape-context histograms

of ci and all c′j are computed and the c′j that maximizes the relation in Equa-

tion (3) is chosen as the corresponding point.

argmax
c′
j

5∑
k=1

12∑
θ=1

√
hN
i (k, θ).h′Nj (k, θ), (3)

where, hN
i (k, θ) and h′Nj (k, θ) are the normalized shape-context histograms

of ci and c′j respectively.

Figure 4 shows the log-polar bins of a histogram, the histograms of a point

correspondence in two shapes and the contour correspondences overlaid on

the TRUS and MR prostate shapes. Figure 5 additionally shows some ex-

amples where the prostates are significantly deformed in the MR image than

the TRUS image. Nonetheless, Bhattacharyya distance could successfully

extract point correspondences on the prostate contours.

The first point correspondence established on both the TRUS and MR

prostate boundaries is marked with a ‘�’ in the posterior part of the axial

gland in Figure 4(b) and Figure 4(c) respectively. This point is obtained

in the TRUS image as the intersection point of the longitudinal principal

axis with the boundary. The first two principal axes are computed from the

principal component analysis of all the contour points of the prostate shape

in TRUS. The 8 point correspondences are chosen on the prostate boundary
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(a) (b) (c)

(d) (e) (f)

Figure 4: Point correspondences example. (a) Log-polar histogram bins; (b) contour points

in TRUS; (c) point correspondences of (b) in MR; (d) log-polar shape-context histogram

of ‘○’ in (b); (e) log-polar shape-context histogram of ‘○’ in (c)- both (d) and (e) show

visual correspondence; (f) histogram of ‘×’ in (c) does not show visual correspondence

with histogram in (d). The x-y axes in the log-polar shape-context histograms correspond

to θ and log r respectively.

with the rationale of capturing the inflexions of the prostate curve. There-

fore, once the first point at the posterior part of the gland is defined on the

TRUS boundary, the remaining 7 points are automatically placed dividing

the total number of uniformly sampled contour points by 8. Thereafter, the

8 point correspondences are searched for in the MR image using the afore-

mentioned method.

It is evident from the figures 4(b) and 4(c) respectively that the corre-

spondences are explicitly defined on the prostate contours. Therefore, the
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Figure 5: Point correspondences on TRUS and MR prostate contours using Bhattacharyya

distance. The left column shows the TRUS images and the right column shows the MR

images. The MR images show deformed prostates than those on the TRUS images. The

8 point correspondences are marked in ’red’.
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regularization of the correspondences will not take the correspondences in-

side the prostate gland into account and may cause deformations of the gland

that are not acceptable for clinical procedures. Hence, the prostate centroids

and 4 other points that are the midpoints of the straight lines between ‘�’
and ‘+’, ‘+’ and ‘×’, ‘×’ and ‘◇’ and ‘◇’ and ‘�’ respectively are considered

(see Figure 6). The manner in which the internal points are formed i.e. by

the mid-points of the lines joining the boundary control points in alternating

sequence starting from the first point (‘�’), is necessary to ensure that the

control points are placed inside the prostate gland and yet not too close to the

boundary control points. The 13 point correspondences finally established

may be termed as pi, where, i = 1, . . . ,13 for further references.

(a) (b)

Figure 6: Point-set of correspondences on TRUS and MR images. Correspondences inside

the prostate are shown by white ‘●’s. The dashed line signifies that the white ‘●’ falling

on the line is the mid-point of the same joining the correspondences established on the

contour.

3.1.2. Non-linear Diffeomorphism

To align a pair of binary shapes, let us consider the moving and the fixed

images be x = [x1, x2] ∈ R2 and y = [y1, y2] ∈ R2 respectively, such that there
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exists a bijective transformation ϕ(.) between the images as

y = ϕ(x) ⇔ x = ϕ−1(y). (4)

The deformation field ϕ(.) can be decomposed for the 2D coordinates re-

spectively as ϕ(x) = [ϕ1(x), ϕ2(x)], where ϕ1, ϕ2 ∶ R2
→ R. If explicit point

correspondences are not established then the diffeomorphism is obtained by

integrating over the foreground pixels of the fixed and moving image domains

If and Im respectively (Domokos et al. (2012)):

∫
If

ydy = ∫
Im

ϕ(x) ∣Jϕ(x)∣dx, (5)

where the integral transformation y = ϕ(x) and dy = ∣Jϕ(x)∣dx. ∣Jϕ∣ ∶ R2
→ R

is the Jacobian determinant of the transformation at each foreground pixel

of the moving image as

∣Jϕ(x)∣ = ∣ ∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ2

∂x2

∣ (6)

It is to be noted that the identity relation of Equation (4) is also valid

under the influence of a set of non-linear functions ωk(.) ∶ R2
→ R, k = 1, . . . , l

(Domokos et al. (2012)), acting on both sides of Equation (5) as

∫
If

ωk(y)dy = ∫
Im

ωk(ϕ(x)) ∣Jϕ(x)∣dx. (7)

Therefore to estimate the parameters of the transformation the number of

non-linear functions l, must be larger than the number of parameters to gen-

erate a set of linearly independent equations.

In this work, the underlying transformation is considered to be the radial-

basis function of TPS where the foreground pixels of the moving image de-

form under the influence of the control points pi ∈ R2 established by the
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method of Section 3.1.1. The TPS transformation may be written as

ϕv(x) = av1x1 + av2x2 + av3 + n∑
i=1

wivU(pi − x), (8)

where, i = 1, . . . n, v = 1,2, U ∶ R → R is the radial-basis function as U(r) =
r2 log r2, av1, av2 and av3 are the 6 affine parameters and wiv are the 2n TPS

weight parameters for the control points. The additional constraints for the

TPS interpolation are that the sum of the weights applied to the plate as

well as moments with respect to both axes should be 0 to ensure that the

plate will not deform under the action of the loads and are given as

n∑
i=1

wiv = 0 and
n∑
i=1

piuwiv = 0, u, v = 1,2. (9)

If, ϕ ∶ R2
→ R2, ϕ(x) = [ϕ1(x), ϕ2(x)]T represents a TPS map with 6 + 2n

parameters, then the Jacobian Jϕ(x) is composed of the partial derivatives

(Domokos et al. (2012)) given below (u, v = 1,2)
∂ϕv

∂xu

= avu − n∑
i=1

2wiv(piu − xu)(1 + log(∥pi − x∥2)) (10)

where, ∥.∥ is the Euclidean norm.

However, the transformation of Equation (8) when replaced in Equation

(7) will only consider the point set on the moving image under the influence

of which the image deforms to match the fixed image, therefore, the gray-

level deformations of the regions inside the prostate may not be meaningful

for clinical applications. The correspondences pi, established across the fixed

and moving image domains as pfi = [pfyi1 , pfyi2] and pmi = [pmxi1
, pmxi2
], i = 1, . . . , n

respectively, play an important role in constraining these deformations. We

introduce the bending energy of the TPS along with the correspondence
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localization errors (Rohr et al. (2001)) as an additional constraint to solve

the set of equations in Equation (7) as

ETPS = ∫
i
∫
i

⎡⎢⎢⎢⎢⎣
⎛⎝ ∂2ζ

∂pmxi1

2

⎞⎠
2

+ 2⎛⎝ ∂2ζ

∂pmxi1
∂pmxi2

⎞⎠
2

+ ⎛⎝ ∂2ζ

∂pmxi2

2

⎞⎠
2⎤⎥⎥⎥⎥⎦∂p

m
xi1

∂pmxi2
, (11)

where, ζ ∶ R2
→ R2, ζ = [ζ1(pmi ), ζ2(pmi )] is the transformation of the point

correspondences established on the moving image to match with those of the

fixed image.

ζ = ζv(pmi ) = av1pmxi1
+ av2pmxi2

+ av3 + n∑
j=1

wjvU(pmi − pmj ), v = 1,2. (12)

The 1st and 3rd terms in Equation (11) may be written analytically as

follows:

∂2ζv

∂pmxiu

2
= n∑

j=1

2wjv

⎡⎢⎢⎢⎢⎣1 + log(∥p
m
i − pmj ∥2) + 2(pmxiu

− pmxju
)

∥pmi − pmj ∥2
⎤⎥⎥⎥⎥⎦, u = 1,2 (13)

and the 2nd term in Equation (11) can be written as

∂2ζv

∂pmxi1
∂pmxi2

= n∑
j=1

4wjv

⎡⎢⎢⎢⎢⎣
(pmxi1

− pmxj1
)(pmxi2

− pmxj2
)

∥pmi − pmj ∥2
⎤⎥⎥⎥⎥⎦, v = 1,2. (14)

Finally, the equation acting as a constraint is the regularized TPS bending

energy with the quadratic approximation term that considers the correspon-

dence localization error is

1

n

n∑
i=1

∥pfi − ζ(pmi )∥2
σ2
i

+ λETPS = 0, (15)

where, σ2
i s are sum of the variances of the correspondences between the fixed

and moving images i.e. σ2
i = σf

i

2 + σm
i

2. The parameter λ is a regularization
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factor set with a small value 0.0001 that ensures that the thin-plate adapts

well to the deformation of the local structures (Rohr et al. (2001)). Finally,

ζ(pmi ) is obtained from Equation (12) and ETPS from Equation (11).

The adopted set of non-linear functions in Equation (7) are the power

functions as proposed in Domokos et al. (2012)

ωk(x) = xak
1 xbk

2 , (16)

with (ak, bk) ∈ ⟨(0,0), (1,0), (0,1), (1,1), (2,0), (0,2), (2,1), (1,2), (2,2), . . . ,
(6,6)⟩. The total number of parameters to be estimated is 32 that comprises

of 6 affine and 13×2 TPS weight parameters for 13 correspondences. There-

fore, 49 linearly independent equations are generated using the power set

of ωk(.) functions with additional 4 equations for Equation (9) and one for

Equation (15). The solution to the set of non-linear equations i.e. Equation

(7), Equation (9) and Equation (15) is obtained using Levenberg-Marquardt

(LM) algorithm (Marquardt (1963)). It is to be noted that depending on the

ωk functions in Equation (7), numerical instability may arise due to the sum-

mation of the polynomial functions, i.e. the power functions ωk(.) act on the

set of coordinate values of the images, therefore summing up the coordinate

values (raised by some factor) would result in very large values. In order

to solve this problem, the foreground pixels of the moving and fixed images

are normalized within a unit square [−0.5,0.5]× [−0.5,0.5] so that the shape

centers become the origins while the range of ωk functions are chosen within

the interval [−1,1]. A detailed explanation on the normalization of the image

coordinates and the interval of ωk(.) functions is provided by Domokos et al.

(2012).
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3.2. Materials

The TRUS images were acquired using a 6.5MHz side-firing probe with

SIEMENS Allegra and TOSHIBA Xario machines and the axial T2 fast re-

laxation fast spin echo MRI slices with slice thickness of 3 mm, repetition

time of 3460 − 3860 ms and echo time of 113.62 − 115.99 ms were acquired

with a 1.5 Tesla GE Signa HDxt. Prostate mid-gland images of 20 patients

with average prostate volume of 56.7 ± 22.0 cm3 are used for the evaluation

of our algorithm. The prostate images used for the experiment have an aver-

age size of 249 × 219 pixels with a pixel dimension being 0.2734 mm×0.2734
mm. The axial middle slices in TRUS are chosen for which the corresponding

axial MR slices are identified by one expert radiologist and one expert urolo-

gist. The axial TRUS slice may not always have the exact orientation of the

MR axial slices since the TRUS probe orientation is unknown. Therefore,

instead of quantifying the probe angle in our experiment, we validated the

algorithm on those axial TRUS slices that seem to be parallel with the axial

MR slices as identified by the experts. Axial sweeps of the prostate gland

from base to apex/mid-gland are only available for 2 patient cases in TRUS

whose corresponding MR slices could also be identified. Therefore, these two

cases are used to show the accuracy of the proposed registration method for

off-mid-gland TRUS-MR slices. The prostates are manually segmented from

both the moving MR and fixed TRUS images. The image backgrounds are

removed and only a region of interest i.e. the prostate is used for the evalu-

ation of the algorithm. The proposed point correspondence and registration

methods were implemented on MATLAB 2009(b) and were run on an Intel

Core2Duo 1.66 GHz processor with 2 GB RAM.
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4. Experiments and Results

The TRUS slice is the fixed image and the respective MR slice is the mov-

ing image for all the experiments. The registration accuracies that measure

overlap are evaluated in terms of Dice Similarity Coefficient (DSC) (Dice

(1945)) and 95% Hausdorff Distance (HD) (Huttenlocher et al. (1993)). Lo-

cal registration accuracies of anatomical structures inside the prostate gland

are measured by Target Registration Error (TRE) and Target Localization

Error (TLE) (Maurer et al. (1993), Maurer et al. (1997)).

DSC is a measure of overlap of the same foreground labels (E) between

the transformed moving image (M(E)) and the fixed image (F (E)) and is

given by

DSC = 2(M(E) ∩ F (E))
M(E) + F (E) . (17)

This means that a high DSC (> 90%) signifies a good overlap between the

prostate regions after registration.

Given a finite set of points A = {a1, . . . , ap} and B = {b1, . . . , bq}, the

Hausdorff distance between the point sets is defined by

HD(A,B) =max(h(A,B), h(B,A)) (18)

where

h(A,B) =max
a∈A
(min
b∈B
∥a − b∥) (19)

The HD measure plays a significant role in identifying the similarity between

the deformed moving image contour and the fixed image contour. A low

value of HD signifies good contour registration accuracy. Therefore, even if a

DSC measure signifies good region overlap, the HD measure may not signify

a good contour registration.
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A target is an anatomical landmark in the patient’s body and is normally

the centroid of a lesion, tumor, gland, etc. that is not used to compute the

transformation of the moving image to the fixed image. TRE is the root

mean square distance of such homologous targets tpi and tqi, i = 1,2,⋯,N
on the moving and the fixed images respectively and is given by

TRE = 1

N

¿ÁÁÀ N∑
i=1

(T(tpi) − tqi)2 (20)

where, T(.) is the transformation of the moving image. The targets used

in our experiments are primarily the centroids of lesions and tumors in the

central gland, the prostatic urethra, sometimes the centroids of tumors in the

peripheral region and the centroid of the central gland in few cases where

lesions or other homologous structures are not visible in TRUS as in the

corresponding MRI. One target for each pair of TRUS and MR image is used

for the experiments. The repeatability error in the localization of the targets

is given as the TLE computed from the centroids of manually selected regions

from 5 independent trials by an experienced radiologist and an experienced

urologist. A low TRE and a low TLE values signify good local registration

accuracy. The clinical significance of TRE is the accuracy in identifying the

anatomical targets in the deformed moving image. Actual TRE values may

also incorporate TLE values, which is useful for clinical purposes to avoid

under-estimation of the true TRE values.

Various experiments are performed owing to the selection criteria of the

number of boundary and internal control points for a smooth and accurate

deformation of the prostate gland and its internal structures. The validations

of such experiments with varying number of control points are shown in
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Section 4.1. The experimental results with different registration methods are

shown in Section 4.2. The validation of registration accuracies on a subset

of patients when automatic segmentation is used is shown in Section 4.3 and

experimental results for the validation of the proposed registration method

for off mid-gland slices are shown in Section 4.4. A comprehensive statistical

analysis of the results is presented in Section 4.5.

4.1. Control Points

As mentioned in Section 3.1.1 that a total of 8 point correspondences

are required on the boundary and 4 internal points along with 1 point on

the prostate centroid for a smooth deformation. Therefore, to validate the

number of boundary and internal points, several experiments are performed

with less and more than 8 boundary points along with the internal points

generated in an alternating manner as mentioned in Section 3.1.1.

The first experiment is done with only 6 points on the boundary and

the internal points are generated accordingly as the mid-points of the lines

joining the alternate boundary points starting from the first point ‘�’ as
shown in Figure 7. It can be seen clearly from Figure 7(a) and Figure 7(b)

respectively that the inflexion points at the posterior parts of the prostate

axial slices are not captured properly.

The following experiment is done increasing the number of boundary

points from 8 (proposed) to 10. Accordingly the internal points are also gen-

erated. Figure 8(a) and Figure 8(b) show the 10 boundary and 5 internal

points along with 1 prostate centroid. Although the boundary has several

points to capture the inflexions of the prostate curve, the internal points

generated are placed near the boundaries. This may result in distorted de-
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(a) (b)

Figure 7: 6 point correspondences on the boundary with 3 internal points and 1 point on

prostate centroid. The ‘�’s mark the first set of point correspondences on the boundary.

(a) Point sets on the TRUS image, (b) corresponding points of TRUS image on the MR

prostate image.

formations of the prostate internal structures.

Finally an experiment is performed using 8 boundary points without any

internal points or centroid. Figure 9(a) and Figure 9(b) show the point cor-

respondences placed on the boundary for the TRUS and the MR prostate

images respectively. Table 1 shows the registration accuracies in terms of

DSC, TRE and TLE for the experiments performed with varied number of

control points for all 20 patient cases. M1 is defined for 6 boundary points

and 4 internal points, M2 is defined for 10 boundary points and 6 inter-

nal points and M3 is defined for 8 boundary points and no internal points.

These abbreviations are being consistently used in the remaining document.

As shown by the DSC values of Table 1 that with varying point correspon-

dences on the boundary, the global registration accuracies do not change

significantly by the virtue of the diffeomorphic function. However, the local

registration accuracies measured in terms of TRE have a lot of variation be-
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(a) (b)

Figure 8: 10 point correspondences on the boundary with 5 internal points and 1 point on

prostate centroid. The ‘�’s mark the first set of point correspondences on the boundary.

(a) Point sets on the TRUS image, (b) corresponding points of TRUS image on the MR

prostate image.

tween the different methods M1, M2 and M3 respectively. Figure 10 shows

the qualitative registration results using the proposed method with different

sets of control points for patient 6. Although the qualitative results with M1

and M2 (rows 2 and 3) do not show significant differences with the proposed

8 boundary and 5 internal points (last row), the unconstrained deformation

in the absence of the internal points is seen for the method M3 (row 4), i.e.

the prostatic urethra in the deformed image is away from that on the fixed

image.

4.2. Registration Methods

The proposed method and its two variants as mentioned in Section 1

are replaced by acronyms for further references as NLTPS-REGCORR (pro-

posed), NLTPS-UNI (non-linear TPS with control points placed on a uniform

grid) and NLTPS-CORR (non-linear TPS with proposed point correspon-
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(a) (b)

Figure 9: 8 point correspondences on the boundary with no internal points or centroid.

The ‘�’s mark the first set of point correspondences on the boundary. (a) Point sets on

the TRUS image, (b) corresponding points of TRUS image on the MR prostate image.

dences without regularization of bending energy) respectively. The method

in NLTPS-REGCORR and NLTPS-CORR use 13 point correspondences es-

tablished by the method in Section 3.1.1. A total of 16 uniform grid-points

are used for NLTPS-UNI. We have quantitatively compared the registration

results of NLTPS-REGCORR against NLTPS-UNI, NLTPS-CORR, tradi-

tional TPS (Rohr et al. (2001)) and B-splines (Rueckert et al. (1999)) method

with their global registration accuracies in terms of DSC, 95% HD, local reg-

istration accuracies in terms of TRE, TLE and timing requirements in Table

2 and Table 3 respectively. The traditional TPS (Rohr et al. (2001)) reg-

istration method is used with a total of 32 point correspondences on the

boundary with 5 internal points as discussed in Mitra et al. (2010). The

B-splines registration follows a multiresolution framework in 3 spatial reso-

lutions and uses uniform control grids with 16 × 16 pixel spacing in the final

resolution (Kroon (2008)). Table 3 also shows the number of uniform control

grids used for the B-splines (Rueckert et al. (1999)) registration. It is to be
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noted that the traditional TPS requires a total of 37 point correspondences

to provide a smooth transformation, while our proposed method can per-

form well with only 13 point correspondences. The traditional TPS finds the

transformation as a solution to a least-squares problem. Any least-squares

solution requires an over-determined system of equations to provide numer-

ically stable solutions. Therefore, the traditional TPS uses more number

of control points than our proposed method since only one equation is as-

sociated with each control point. On the contrary, a set of power function

polynomials are involved with each control point for our method; thereby

providing an over-determined system of equations with less number of con-

trol points. Since the B-splines of Rueckert et al. (1999) uses uniform control

grid; therefore a consistent number of control points similar to the tradi-

tional TPS or the proposed method could not be used. Figure 11 shows

some results of the transformation using the methods NLTPS-UNI, NLTPS-

CORR and NLTPS-REGCORR respectively. The results for patients 7,8,11

and 12 are shown in each column. Figure 12 shows some of the results of

TRUS-MR fusion with traditional TPS and B-splines and the corresponding

results using our proposed method. The TPS uses point correspondences as

described in Mitra et al. (2010) and the B-splines used uniform grids. The

results for patients 1,5,15 and 17 are shown in columns. The choice of a dif-

ferent set of patient cases for Figure 12 ensures that more qualitative results

obtained from the proposed algorithm are shown. Moreover, the results that

are unbiased towards the proposed method and have acceptable registration

accuracies when traditional spline-based methods are used are also presented.
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4.3. Automatic Segmentation

The registration methods as discussed in Section 4.2 are performed using

manually segmented prostate contours for both the TRUS and MR images

in order to avoid the automatic segmentation errors in the process of evalu-

ating the registration accuracies. However, we have used 10 patient cases i.e.

patients 5 − 14 among the 20 patients to evaluate the sensitivity of the reg-

istration accuracies when an automatic segmentation method is employed.

The method of Ghose et al. (2011a) is used to segment the prostate from both

the TRUS and MR images. Figure 13 shows the final segmented contours

in red lines for the TRUS and the MR images, the point correspondences

placed accordingly and the qualitative registration results for the same pa-

tient case. It is observed from the figure that the automatic segmentation

of the prostate contour in the MR image has the maximum overlap with the

manual segmentation while a satisfactory overlap is obtained for the prostate

contour in the TRUS image.

Table 4 shows the DSC, HD, TRE and TLE values for the 10 patients

(patient 5−14). It is to be noted that despite some segmentation inaccuracies

induced by the automatic segmentation process; the registration accuracies

do not change significantly when compared to the registration with manually

segmented contours.

4.4. Registration of Non Mid-Gland Slices

The proposed registration method has been evaluated with one axial mid-

gland slice for each of the 20 patients. However, 2D sweeps of the prostate

from base to apex/mid-gland in TRUS are available for two patients 6 and

7 respectively. Therefore, to validate the proposed registration method for
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non mid-gland slices the afore-mentioned patient datasets are used. Since a

tracking system is not used with the TRUS probe, the probe angle cannot

be retrieved; that obviates an assumption in the validation process that the

TRUS slices are parallel to the corresponding MR slices. A total of 9 axial

slices are taken for patient 6 and 7 axial slices for patient 7 respectively.

Table 5 shows the slice-by-slice registration accuracies for the patients 6 and

7 in terms of DSC, TRE and TLE. Figure 14 shows the TRUS-MR slices

from base to apex for patient 6 and their qualitative registration results.

Table 6 summarizes the different experiments performed for mid-gland/non

mid-gland registrations with manual/automatic segmentation on different pa-

tient cohorts.

4.5. Statistical Analysis

4.5.1. Control Points

It is observed from Table 7 for a varied number of control points (M1, M2

& M3) and for the proposed with 13 control points (NLTPS-REGCORR)

that the average DSC values are almost similar. Therefore, to measure the

statistical significance of the null hypothesis that the mean values of all the

methods are similar we need to verify the normality and homogeneity of

the variances (homoscedasticity) of the data (Sokal and Rohlf (1995); Zar

(1999)). Common data transformations such as log, square-root and arcsine

transformations could not suitably scale the data to a normal distribution.

Hence, Lilliefors test (Lilliefors (1967)) was used on the raw data to verify

the normality of the distribution. The test rejected the null hypothesis of

normal distribution. Consequently, Levene’s test (Levene (1960)) is used

to verify the homogeneity of the variances for the three methods which ac-
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cepted the null hypothesis (Levene’s test is used to measure the homogeneity

of variances if the data are non-normal, otherwise, Bartlett’s test could have

been used). Since the measurements of DSC are taken for the same samples

over the methods (M1, M2, M3 and NLTPS-REGCORR), we considered

Friedman’s test (Friedman (1939)) (similar to two-way ANOVA) for paired

data. The test accepted the null hypothesis that the mean ranks for the

DSC of the 4 methods with different sets of control points are similar with

χ2 = 3.45, d.f = 3, p < 0.03.
The TRE values in Table 1 and Table 2 respectively do not follow a nor-

mal distribution. However, the log transformation of the raw data accepted

the null hypothesis of normality of the data using Lilliefors test. The null

hypothesis of the homoscedasticity of variances for the log-transformed data

is also true when Bartlett’s test (Bartlett (1937)) is used. A one-way ANOVA

(Analysis of Variance) (Fisher (1932)) is used to test the null hypothesis of

similarity of means where the null hypothesis is accepted at 95% confidence

level with F = 5.08, d.f = 3, p = 0.0035. Although, the ANOVA test ac-

cepted the null hypothesis, a Dunn’s post test (Dunn (1964)) is additionally

performed to identify the dissimilarities in the TRE means of the methods

M1, M2, M3 and NLTPS-REGCORR. The pairwise comparison test revealed

that only M3 and NLTPS-REGCORR TRE means are siginificantly different

with p < 0.05. Figure 15 shows the mean estimates of the TRE with their

confidence intervals for the given methods. The figure depicts that the mean

TRE of the proposed NLTPS-REGCORR is significantly different than M3

method (proposed method with no internal points).
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4.5.2. Registration Methods

It is observed from Table 7 that the DSC and HD values for all the three

methods (NLTPS-UNI, NLTPS-CORR and NLTPS-REGCORR) are similar.

Therefore, a statistical analysis of the mean DSC and HD values is done sep-

arately for the afore-mentioned method leaving out TPS (Rohr et al. (2001))

and the B-splines (Rueckert et al. (1999)) registration methods. Common

data transformations could not scale the given DSC values of Table 2 into

a normal distribution and hence, Lilliefors test used to verify the normal-

ity of the distribution rejected the null hypothesis. Consequently, Levene’s

test is used to verify the homogeneity of the variances for the three methods

which accepted the null hypothesis. Since the measurements of DSC of Ta-

ble 2 and HD of Table 3 are taken for the same samples over the methods

(NLTPS-UNI, NLTPS-CORR and NLTPS-REGCORR), we used Friedman’s

test for paired data. The test rejected the null hypothesis that the mean

ranks for the DSC and HD and values of the 3 methods are similar with

χ2 = 25.27, d.f = 2, p < 0.0001 and χ2 = 17.29, d.f = 2, p < 0.0001 respectively.

This signifies that at least one of the three methods differs in mean rank from

the rest. Therefore, Dunn’s post test is used for pairwise comparison between

the methods to identify the dissimilarity. The test identified that the means

of the DSC values for NLTPS-UNI and NLTPS-CORR are not statistically

significantly different and those for NLTPS-UNI & NLTPS-REGCORR and

NLTPS-CORR & NLTPS-REGCORR are statistically significantly different

with p < 0.001 for both respectively. Similar statistical significances are ob-

served for the means of HD values for the first three methods of Table 3.

Analyzing the TRE columns of Table 2 it is observed that a log transfor-
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mation of the raw data could suitably scale the data into a normal distribu-

tion. Therefore, Bartlett’s test is used to analyze the homoscedasticity of the

variances that accepted the null hypothesis. The data sample sizes being dif-

ferent for the 5 methods (19 values for NLTPS-UNI & NLTPS-CORR and 20

values for the remaining methods), the Kruskal-Wallis test (non-parametric

one-way ANOVA)(Kruskal and Wallis (1952)) is used to compare the means

of the ranked log-transformed TRE values. The test rejected the hypothesis

of equality of ranked means with χ2 = 19.6, d.f = 4, p = 0.0006, which sig-

nifies that at least one of the method has statistically significantly different

mean TRE than the remaining. Consequently, the Dunn’s post test is per-

formed to find the dissimilarity in the mean ranks of the TRE values. The

test revealed that NLTPS-REGCORR (proposed method) has a statistically

significantly different mean TRE than NLTPS-CORR and the B-splines reg-

istration methods with p < 0.005, while not so significantly different than

NLTPS-UNI and TPS registration methods. Nevertheless, the analysis of

raw data for the TRE columns in Table 2 show a 2−3 times improvement in

mean TRE for the proposed method than NLTPS-UNI and TPS. The TLE

value of 0.15 ± 0.12 mm for NLTPS-REGCORR signifies a low repeatability

error in identification of the anatomical targets by clinical experts. Figure

16 shows the box-plot obtained from the Kruskal-Wallis test for the ranked

TRE values of the 5 registration methods. Figure 17 shows the pairwise

comparisons of log-transformed TRE values for the different methods. The

figure reveals that NLTPS-REGCORR has statistically significantly different

mean TRE than NLTPS-CORR and B-splines.

On analysis of the DSC data in Table 2 and HD data in Table 3 for
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NLTPS-REGCORR, TPS and B-Splines respectively, it is observed that the

data do not follow a normal distribution and the data are heteroscedastic.

Therefore, none of the classical statistical hypothesis testing method can be

applied to compare the means of the DSC and HD measures of the proposed

method to that of the TPS and B-splines. However, the mean DSC and

HD values of the proposed method are better than the TPS and B-splines

methods.

4.5.3. Automatic Segmentation

The DSC values of Table 4 and the DSC values for patients 5−14 related to

NLTPS-REGCORR in Table 2 follow a normal distribution with homogeneity

of variances. Therefore, a two-tailed Student’s t-test (Gosset (1908)) is used

to identify the similarity of the means of the DSC data for the proposed

method with manual segmentation and the proposed method with automatic

segmentation. The null hypothesis is accepted with p < 0.01 signifying that

the mean DSC value obtained when automatic segmentation is employed is

similar to that obtained with manual segmentation. However, for the HD

values of the same set of patients as shown in Table 4 and Table 3 (HD

column of NLTPS-REGCORR) need to be square-root transformed to be

scaled into a normal distribution. Thereafter, the homoscedasticity of the

data is determined and a two-tailed Student’s t-test revealed statistically

significant similar mean HD values with p < 0.01.
The log-transformed TRE data of Table 4 and those from TRE column of

NLTPS-REGCORR for patients 5−14 of Table 2 show a normal distribution

but heterogeneity of variances. Therefore, a two-tailed Welch’s t-test (Welch

(1947)) is performed that accepted the null hypothesis signifying that the
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means of the log-transformed TRE of the methods compared are statistically

significantly similar with p < 0.01.
5. Discussions

The statistical analysis in Section 4.5.1 of the DSC data in Table 1 for

the methods with different sets of control points reveal that the mean DSC

values for all the 3 methods and the proposed NLTPS-REGCORR in Ta-

ble 2 are similar. However, the mean TRE of M3 (8 boundary points with

no internal points) is significantly lower than the proposed method. This

suggests that internal points are necessary to maintain clinically acceptable

deformations of the prostate gland (as seen in Figure 10). Although methods

M1 (6 boundary and 4 internal points) and M2 (10 boundary and 6 inter-

nal points) do not show statistically significantly different mean TRE values

than NLTPS-REGCORR, the values are definitely higher than the proposed

method that signify inaccurate local deformations.

The analysis in Section 4.5.2 of the data in Table 2 and Table 3 allow us

to infer that the region overlap measures (DSC and HD) are slightly better

for the methods NLTPS-UNI and NLTPS-CORR and inferior for traditional

TPS and B-splines methods than those of NLTPS-REGCORR. However, the

TRE values are low for the proposed method with high statistical significance

when compared with NLTPS-CORR and B-splines registration methods. Al-

though, the TRE values of TPS and NLTPS-UNI are not statistically signif-

icantly different than the proposed method, they are definitely 2 − 3 times

higher than NLTPS-REGCPRR. This signifies that the local deformations of

the prostate gland anatomical structures (targets) are clinically acceptable
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as provided by the method NLTPS-REGCORR. The transformed MR im-

ages obtained as the results of the methods NLTPS-UNI and NLTPS-CORR

(rows 3 and 4 of Figure 11) clearly illustrate the fact that the transformation

of the gland anatomical structures are not acceptable for clinical procedures

and may be verified quantitatively from the TRE value columns of NLTPS-

UNI and NLTPS-CORR in Table 2 for the respective patients.

The possible reason for slightly improved region overlap measures with

NLTPS-UNI and NLTPS-CORR than the proposed NLTPS-REGCORR is

that the non-linear TPS equations aim at minimizing the image differences

of the TRUS and MR binary mask images. Therefore, the prostate bound-

aries are well aligned for NLTPS-UNI and NLTPS-CORR. On the contrary,

NLTPS-REGCORR constrains the non-linear transformations with the ad-

ditional term of regularized bending energy and correspondence localization

errors. This results in smooth and clinically meaningful gray-level deforma-

tions of the gland anatomical structures in addition to a satisfactory prostate

overlap of the transformed MR image with that of the TRUS. The global

overlap measures shown in Table 2 and Table 3 when compared to those of

the proposed method apparently indicate that our proposed method provides

better prostate gland overlap than B-splines, although not significantly bet-

ter than traditional TPS.

Considering the TRE measure to be more appropriate in evaluating reg-

istration accuracy, our method provides the least mean TRE with less than

3 mm (as suggested by the clinical experts) accuracy when compared to the

traditional spline-based methods or the variations of the proposed method.

Patient cases 1,5,15 and 17 of Figure 12 (columns 1 − 3 and 5 − 6) reveal
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that the B-spline transformation (rows 5 − 6) has significantly distorted the

prostate gland, which are also reflected in the TRE values of the respective

patient rows of Table 2. Although traditional TPS transformation (rows 3−4)
does not show any significant deformation of the prostate other than rugged

transformations around the prostate edges as shown in Figure 12, the TRE

values for the respective patients are higher than the proposed method as

seen from Table 2. Therefore, the proposed method seems to provide better

registration accuracies when compared with the other methods.

The analysis of the global and local registration accuracies in Table 4

and in Table 2 for patients 5 − 14 shows that automatic segmentation does

not significantly affect the registration accuracies compared to when manual

segmentation is used. The example shown in Figure 13 also shows that there

are significant overlaps between the manually and automatically segmented

contours both in TRUS and MR images. Finally, the validation of the pro-

posed registration method on the base and non mid-gland slices (Table 6)

have shown high registration accuracies with < 3 mm average TRE for pa-

tients 6 and 7 respectively.

The average times required for the methods NLTPS-CORR and NLTPS-

REGCORR are similar (see Table 3). However, the average time is slightly

higher for NLTPS-UNI considering 16 control points being used instead of 13

control points as in NLTPS-REGCORR. The complexity for the algorithms

NLTPS-REGCORR and its variations (NLTPS-UNI and NLTPS-CORR) is

O(N +M), where, N and M are the number of foreground pixels for the

fixed and the moving images respectively. The traditional TPS has the least

average computation time, since the complexity O(n) involves only the num-
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ber of correspondences (n) across the fixed and moving images. However, it

is to be noted that the implementation does not guarantee bijectivity of the

TPS transformation and therefore suffers from distorted transformations in

some cases e.g. patients 5 and 15 (columns 2 and 5, rows 3 and 4 respec-

tively). The B-splines method requires the maximum time for registration

owing to evaluation of the image similarity measure (NMI) and following a

multiresolution framework for 3 resolutions. Despite the use of a multireso-

lution framework, the traditional B-splines fail to provide good registration

accuracy in most cases. On the contrary, our proposed method does not fol-

low any multiresolution framework; however, by the virtue of the non-linear

polynomial functions, a smooth and bijective transformation is achieved. The

computation time of the proposed algorithm being highly dependent on the

number of image pixels can be parallelized and considering its unoptimized

implementation in MATLAB, a speed-up of computation time is possible by

C++/GPU programming.

6. Conclusions

A new non-linear diffeomorphic framework with TPS being the under-

lying transformation has been proposed to register prostate multimodal im-

ages. A method to establish point correspondences on a pair of TRUS and

MR images has also been proposed that is based on the computation of

Bhattacharyya distance for shape-context representations of contour points.

The bijectivity of the diffeomorphism is maintained by integrating over a

set of non-linear functions for both the fixed and transformed moving im-

ages. The regularized bending energy and the localization errors of the point
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correspondences established between the fixed and moving images have fur-

ther been added to the system of non-linear equations added to the TPS

constraints. This additional constraint ensured regularized deformations of

the local anatomical structures inside the prostate that are meaningful for

clinical interventions like prostate biopsy. The performance of the proposed

method has been compared against two variations of non-linear TPS trans-

formations where the control points had been uniformly placed on a grid for

the first and the control points were established using the proposed point

correspondence method for the latter. Both these methods did not involve

the regularization and only relied on the non-linear transformation functions.

The results obtained on real patient datasets concluded that the overall per-

formance of proposed method in terms of global and local registration accu-

racies are better compared to the two variations as well as traditional TPS

and B-splines based deformable registration methods, and therefore could

be feasibly applied for prostate biopsy procedures. The proposed method

has been validated against varied number of control points that inferred that

control points inside the prostate gland are necessary to maintain clinically

meaningful deformations and that 8 boundary points capturing the inflex-

ions of the prostate curve are optimally suitable than less or more boundary

control points. The proposed method has been shown to be not affected

by automatic segmentation inaccuracies owing to the robustness of the auto-

matic segmentation method employed. Validation of the registration method

on the base and non mid-gland slices have shown high global and local reg-

istration accuracies illustrating the robustness of the method.

The proposed non-linear TPS framework with regularization may be ap-
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plied to 3D prostate volume registration. However, a slice-by-slice point

correspondences may be established after resampling the prostate volumes.

The TRUS-MR slice correspondences chosen manually in our experiment can

also be chosen automatically with the use of an EM tracker attached to the

TRUS probe that will provide the spatial position of the TRUS slice in a

pre-acquired prostate TRUS/MR volume during the needle-biopsy. An au-

tomatic method based on information theory and statistical shape analysis to

find the MR slice that closely corresponds to the TRUS axial slice is currently

under investigation. The algorithm can be parallelized if programmed on

GPU and therefore may be useful for real-time multimodal fusion of prostate

images during biopsy.
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Ghose, S., Oliver, A., Mart́ı, R., Lladó, X., Freixenet, J., Vilanova, J., Meri-

audeau, F., 2010. Prostate segmentation with texture enhanced active ap-

pearance model, in: Proc. IEEE International Conference on Signal-Image

Technology & Internet-Based Systems, pp. 18–22.

Ghose, S., Oliver, A., Mart́ı, R., Lladó, X., Freixenet, J., Vilanova, J., Meri-
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Table 1: A comparison of global and local registration accuracies for the proposed method

with varying control points. M1 is the acronym for 6 boundary points and 4 internal

points, M2 is the acronym used for 10 boundary points and 6 internal points and M3 is

the acronym used for 8 boundary points and no internal points. P# represents the patient

number, µ is the mean and σ is the standard deviation of the measures. A high DSC value

signifies good global registration accuracy, while a low TRE and TLE signifies good local

registration accuracies around anatomical landmarks.

P#
Varying Point Correspondences

M1 M2 M3
DSC TRE TLE DSC TRE TLE DSC TRE TLE

(mm) (mm) (mm) (mm) (mm) (mm)
1 0.974 1.08 0.23 0.957 2.79 0.09 0.968 2.37 0.25
2 0.985 1.78 0.06 0.985 1.46 0.05 0.978 1.29 0.05
3 0.980 2.29 0.07 0.981 1.22 0.04 0.980 0.98 1.14
4 0.986 3.01 0.50 0.988 2.39 0.30 0.984 1.85 0.84
5 0.984 0.79 0.05 0.979 0.59 0.07 0.978 1.39 0.95
6 0.970 0.39 0.03 0.973 0.26 0.04 0.971 1.76 0.05
7 0.984 3.89 0.09 0.982 3.60 0.12 0.985 12.05 0.03
8 0.981 5.59 0.20 0.984 2.08 0.58 0.981 2.30 0.32
9 0.983 1.33 0.28 0.981 1.98 0.15 0.981 1.87 0.24
10 0.985 3.98 0.05 0.986 4.03 0.04 0.986 4.15 0.03
11 0.983 2.38 0.08 0.982 1.93 0.08 0.980 2.81 0.05
12 0.982 1.15 0.26 0.982 0.98 0.32 0.981 1.33 0.26
13 0.984 3.84 0.06 0.981 5.21 0.05 0.983 5.64 0.07
14 0.982 0.65 0.04 0.986 0.46 0.02 0.986 2.52 0.04
15 0.984 14.05 0.08 0.982 14.07 1.10 0.984 17.40 0.07
16 0.985 2.91 0.09 0.979 1.44 0.08 0.980 2.08 0.10
17 0.981 2.12 0.28 0.982 1.87 0.19 0.984 2.45 0.16
18 0.977 0.67 0.30 0.980 1.42 0.28 0.980 0.60 0.33
19 0.979 1.96 0.08 0.979 2.05 0.04 0.978 1.36 0.17
20 0.976 0.76 0.21 0.982 1.13 0.36 0.984 0.60 0.19

µ 0.981 2.73 0.15 0.981 2.55 0.20 0.981 3.34 0.27
σ 0.004 3.01 0.12 0.006 2.98 0.26 0.005 4.16 0.33

55



Figure 10: Deformation of the prostate gland with different sets of control points for

Patient 6. Row 1 shows the TRUS and the MR images, row 2,3 and 4 show the qualitative

results of methods M1, M2 and M3 respectively and row 5 shows the results with the

proposed optimum set of control points.

56



Figure 11: Qualitative registration results of NLTPS-UNI, NLTPS-CORR and NLTPS-

REGCORR for patients 7,8,11 and 12. Rows 1 and 2 are the fixed TRUS and the moving

MR images respectively. Rows 3 and 4 show the transformed MR images for the methods

NLTPS-UNI and NLTPS-CORR respectively. Rows 5 and 6 show the transformed MR

images and the checker-board of the fixed TRUS and the transformed MR images for the

method NLTPS-REGCORR (proposed). 57



Table 2: A comparison of registration accuracies of the non-linear TPS registration

NLTPS-UNI, NLTPS-CORR, NLTPS-REGCORR, traditional TPS and B-splines respec-

tively. µ is the mean and σ is the standard deviation of the measures. A high DSC and

low TRE and TLE values signify good registration accuracy.
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1 0.979 2.30 0.12 0.944 - - 0.968 1.28 0.28 0.971 9.36 0.22 0.902 5.07 0.10
2 0.987 2.59 0.09 0.989 5.00 0.21 0.981 1.34 0.07 0.957 3.98 0.10 0.980 0.37 0.09
3 0.987 2.63 0.03 0.984 5.80 0.09 0.980 1.12 0.09 0.974 7.92 0.13 0.973 9.93 0.11
4 0.989 1.42 0.07 0.989 2.76 0.02 0.982 0.93 0.54 0.982 5.21 0.49 0.985 1.91 0.28
5 0.990 1.63 0.03 0.989 3.97 0.06 0.979 0.50 0.08 0.972 2.11 0.07 0.889 9.08 0.04
6 0.989 7.03 0.78 0.990 3.24 0.04 0.971 0.29 0.03 0.979 1.17 0.05 0.869 6.11 0.04
7 0.989 14.29 0.26 0.987 13.99 0.50 0.984 3.86 0.10 0.977 4.43 0.12 0.959 0.90 0.12
8 0.992 - - 0.988 7.55 0.08 0.979 1.23 0.11 0.978 3.57 0.05 0.976 4.70 0.03
9 0.987 1.89 0.02 0.988 1.99 0.03 0.981 1.10 0.24 0.978 2.70 0.46 0.960 1.56 0.41
10 0.989 2.15 0.02 0.989 3.07 0.02 0.984 3.58 0.03 0.972 6.09 0.04 0.952 8.29 0.09
11 0.990 12.95 0.38 0.989 12.68 0.34 0.980 2.63 0.07 0.972 2.98 0.12 0.962 6.12 0.04
12 0.982 1.11 0.05 0.980 1.35 0.12 0.981 0.94 0.21 0.971 2.44 0.12 0.944 1.58 0.25
13 0.985 7.47 0.33 0.986 6.22 0.34 0.983 4.54 0.07 0.980 3.06 0.07 0.961 1.00 0.05
14 0.989 10.64 0.28 0.991 7.28 0.21 0.986 0.24 0.05 0.986 1.75 0.07 0.896 7.32 0.05
15 0.987 1.60 0.09 0.988 3.47 0.06 0.984 1.65 0.07 0.968 2.29 0.07 0.942 5.01 0.05
16 0.984 4.91 0.06 0.986 3.40 0.02 0.980 2.01 0.10 0.970 1.86 0.07 0.974 7.27 0.13
17 0.984 1.11 0.10 0.987 3.22 0.08 0.982 1.30 0.27 0.982 0.18 0.32 0.894 4.32 0.12
18 0.985 0.65 0.02 0.983 1.26 0.01 0.979 1.34 0.23 0.982 0.91 0.26 0.985 0.51 0.26
19 0.983 3.08 0.20 0.983 3.66 0.13 0.978 1.14 0.12 0.983 1.47 0.23 0.936 5.12 0.19
20 0.985 1.61 0.04 0.986 2.41 0.17 0.983 1.07 0.19 0.973 3.11 0.30 0.939 5.03 0.20

µ 0.987 4.27 0.16 0.985 4.86 0.13 0.9801.600.15 0.9753.330.17 0.9444.560.13
σ 0.003 4.20 0.19 0.010 3.49 0.13 0.0041.170.12 0.0072.330.14 0.0362.980.10
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Table 3: Comparison of registration accuracies in terms of 95% HD and timing require-

ments for NLTPS-UNI, NLTPS-CORR and NLTPS-REGCORR, TPS (Rohr et al. (2001))

and B-splines (Rueckert et al. (1999)) registration methods. µ signifies the mean values

and σ the standard deviation. A low HD value corresponds to good contour registration

accuracy.
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1 92.15 1.51 87.62 3.13 87.58 1.89 50.15 1.84 12×20 147.32 9.35
2 72.21 0.78 67.78 0.78 67.93 1.07 22.71 2.32 13×15 98.30 1.07
3 122.02 1.47 115.19 1.64 115.05 1.74 83.91 2.09 15×20 126.30 2.08
4 123.66 0.82 116.91 0.94 109.70 1.30 94.58 1.40 17×19 140.47 1.07
5 111.06 1.07 105.54 0.82 105.73 1.30 55.35 2.35 14×19 107.82 8.06
6 99.08 0.82 93.81 0.82 93.46 1.98 47.20 2.32 14×18 89.98 6.16
7 175.63 1.10 166.81 1.56 171.96 1.64 153.14 2.61 18×22 146.59 5.04
8 129.14 0.73 123.68 1.07 125.78 1.56 96.95 2.96 17×20 192.83 3.38
9 138.08 2.56 130.89 2.23 134.11 2.86 99.88 2.39 17×20 218.27 4.93
10 131.82 1.04 130.90 1.04 124.41 1.30 89.56 1.98 18×19 214.63 5.98
11 124.86 0.94 124.21 0.94 122.08 2.14 65.33 2.22 15×19 146.87 3.03
12 115.77 0.94 115.59 1.47 123.65 1.64 85.82 5.00 17×19 163.02 4.60
13 132.74 1.30 130.64 1.30 125.23 1.30 84.02 1.84 16×20 141.72 4.83
14 106.81 1.04 122.51 1.04 99.38 1.04 57.14 0.82 14×19 100.61 6.50
15 112.38 1.07 105.28 1.10 105.48 1.30 70.43 2.22 16×18 110.42 6.06
16 106.42 1.74 98.15 1.40 112.74 1.51 62.91 2.71 15×19 209.27 2.90
17 90.26 1.10 84.55 0.73 84.30 1.30 44.14 1.04 15×16 73.57 7.18
18 125.64 1.30 119.38 1.56 118.90 1.82 72.02 1.64 17×18 195.15 2.32
19 158.11 2.86 149.98 2.32 150.53 2.56 126.19 1.66 19×20 135.03 7.01
20 101.42 1.10 95.34 1.16 97.42 1.30 62.99 2.08 16×18 186.74 5.51

µ 118.461.31 114.241.35 113.771.63 76.22 2.17 - 147.254.85
σ 23.54 0.57 23.05 0.61 23.43 0.48 29.79 0.85 - 43.81 2.30
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Figure 12: Qualitative registration results for TPS, B-splines compared with the proposed

method (NLTPS-REGCORR). The columns signify patient cases 1,5,15 and 17 respec-

tively. Rows 1 and 2 show the fixed TRUS and moving MR images respectively. Rows 3

and 4 show the transformed MR and checkerboard using traditional TPS. Similarly, rows

5 and 6 show the results of B-splines and rows 7 and 8 show the results of the proposed

method.
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Figure 13: Qualitative registration results with point correspondences established accord-

ing to automatically segmented prostate contours. The first row shows the contours ob-

tained using automatic segmentation method (in red) and manual segmentation (in green)

on both TRUS and MR images. The second row shows the point correspondences on the

prostate for both the TRUS and MR images and the third row shows the resulting fused

TRUS-MR image and the TRUS-MR checker-board.
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Table 4: Quantitative global and local registration accuracies when automatic segmen-

tation (Ghose et al. (2011a)) method is used. µ denotes the mean and σ denotes the

standard deviation of the respective measures. A high DSC, low HD, low TRE and low

TLE represent good registration accuracy.
P# DSC HD (mm) TRE (mm) TLE (mm)
5 0.986 0.78 1.28 0.09
6 0.981 1.30 0.90 0.02
7 0.985 1.30 2.27 0.06
8 0.983 1.56 1.40 0.07
9 0.982 1.56 1.58 0.23
10 0.987 1.10 1.65 0.04
11 0.977 1.66 1.60 0.05
12 0.983 1.40 2.03 0.22
13 0.981 1.30 3.04 0.12
14 0.979 1.40 1.67 0.04

µ 0.982 1.34 1.74 0.09
σ 0.003 0.25 0.59 0.07

Table 5: Slice-by-slice registration accuracies for base to apex slices. µ denotes the mean

and σ denotes the standard deviation of the respective measures. S# denotes slice number

from base to apex. A high DSC, low TRE and low TLE represent good registration

accuracy.

S#
Patient 6 Patient 7

DSC TRE (mm) TLE (mm) DSC TRE (mm) TLE (mm)
1 0.961 1.39 0.12 0.978 1.73 0.06
2 0.974 1.26 0.09 0.985 2.69 0.03
3 0.981 0.70 0.02 0.981 0.95 0.02
4 0.977 1.66 0.21 0.980 2.20 0.08
5 0.974 0.73 0.03 0.974 2.80 0.56
6 0.973 0.29 0.01 0.976 3.21 0.23
7 0.972 1.09 0.54 0.984 3.57 0.19
8 0.980 0.95 0.25 - - -
9 0.982 1.08 0.08 - - -

µ 0.975 1.02 0.15 0.980 2.45 0.17
σ 0.006 0.41 0.17 0.004 0.90 0.19
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Figure 14: Qualitative results of the proposed method when applied to non mid-gland

slice. The rows show the base to apex slice registrations (rescaled) top-to-bottom for

Patient 6.
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Table 6: Quantitative registration results for mid-gland and off mid-gland registration

with manual or automatic segmentation on different patient cohorts.
Exp# 1 2 3
Method NLTPS-REGCORR NLTPS-REGCORR NLTPS-REGCORR

Segmentation manual manual automatic
Prostate mid-gland off mid-gland mid-gland
Patients 1 − 20 6,7 5 − 14
DSC 0.980 ± 0.004 0.977 ± 0.006 0.982 ± 0.003

TRE (mm) 1.60 ± 1.17 1.64 ± 0.97 1.74 ± 0.59

Figure 15: TRE means for different methods with significant difference between M3 (red

line) and NLTPS-REGCORR (blue line).
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Table 7: A comparison of the global and local registration accuracies for the different

methods and their statistical significance. The methods are abbreviated from A to H

for M1, M2, M3, NLTPS-UNI, NLTPS-CORR, NLTPS-REGCORR, TPS and B-splines

respectively. HD and TRE are in (mm) with µ denoting the mean and σ the standard

deviation. Statistical significance is computed for 95% confidence interval i.e a p < 0.05 is

considered as similarity of means with high statistical significance, while a very low p-value

denotes significantly different means. The letters within brackets in the p-value field (p)

denote the methods that are used for comparison. The empty p-value fields signify that

either the comparisons are irrelevant or could not be computed due to non-normal and

heteroscedastic data.
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µ 0.981 0.981 0.981 0.987 0.985 0.980 0.975 0.944
σ 0.004 0.006 0.005 0.003 0.010 0.004 0.007 0.036

p
< 0.03 - - < 0.01 < 0.01 < 0.0001 - -

(A,B,C,F) (D,F) (E,F) (D,E,F)

H
D

µ - - - 1.31 1.35 1.63 2.17 4.85
σ - - - 0.57 0.61 0.48 0.85 2.30

p
- - - < 0.01 < 0.01 < 0.0001 - -

(D,F) (E,F) (D,E,F)

T
R
E

µ 2.73 2.55 3.34 4.27 4.86 1.60 3.33 4.56
σ 3.01 2.98 4.16 4.20 3.49 1.17 2.33 2.98

p
=0.0035 - < 0.05 - - < 0.005 - < 0.0006
(A,B,C,F) (C,F) (E,F,H) (D-H)
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Figure 16: Kruskal-Wallis comparison of medians of ranked TRE values. Non-overlapping

notches signify that the median values for the given methods are significantly different at

95% confidence level.

Figure 17: TRE means for different methods with significant difference between NLTPS-

REGCORR (blue line) and NLTPS-CORR and B-splines (red lines).
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