Fast rates for noisy clustering

Abstract : The effect of errors in variables in empirical minimization is investigated. Given a loss $l$ and a set of decision rules $\mathcal{G}$, we prove a general upper bound for an empirical minimization based on a deconvolution kernel and a noisy sample $Z_i=X_i+\epsilon_i,i=1,\ldots,n$. We apply this general upper bound to give the rate of convergence for the expected excess risk in noisy clustering. A recent bound from \citet{levrard} proves that this rate is $\mathcal{O}(1/n)$ in the direct case, under Pollard's regularity assumptions. Here the effect of noisy measurements gives a rate of the form $\mathcal{O}(1/n^{\frac{\gamma}{\gamma+2\beta}})$, where $\gamma$ is the Hölder regularity of the density of $X$ whereas $\beta$ is the degree of illposedness.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00695258
Contributeur : Sébastien Loustau <>
Soumis le : lundi 7 mai 2012 - 16:05:51
Dernière modification le : lundi 5 février 2018 - 15:00:03
Document(s) archivé(s) le : mercredi 8 août 2012 - 02:35:33

Fichiers

noisyclustering.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00695258, version 1
  • ARXIV : 1205.1417

Collections

Citation

Sébastien Loustau. Fast rates for noisy clustering. 2012. 〈hal-00695258〉

Partager

Métriques

Consultations de la notice

401

Téléchargements de fichiers

93