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A mode matching method for modelling dissipative silencers lined with

poroelastic materials and containing mean flow

Benoit Nennig,a) Emmanuel Perrey-Debain, and Mabrouk Ben Tahar
Université de Technologie de Compiégne, Laboratoire Roberval UMR 6253,
BP 20529, 60205 Compiegne cedex, France.

(Dated: May 9, 2012)

A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative
silencer partially filled with a poroelastic foam is developed. The model takes into account the
solid phase elasticity of the sound absorbing material, the mounting conditions of the foam and the
presence of an uniform mean flow in the central airway. The novelty of the proposed approach lies
in the fact that guided modes of the silencer have a composite nature containing both compressional
and shear waves as opposed to classical mode matching methods in which only acoustic pressure
waves are present. Results presented demonstrate good agreement with finite element calculations
provided a sufficient number of modes are retained. In practice, it is found that the time for
computing the transmission loss over a large frequency range takes a few minutes on a personal
computer. This makes the present method a reliable tool for tackling dissipative silencers lined with

poroelastic materials.

PACS numbers: 43.20.Mv, 43.50.Gf, 43.28.Py

I. INTRODUCTION

Dissipative silencers are becoming indispensable ele-
ments of modern exhaust systems. In many cases of prac-
tical interest, they consist of an expansion chamber filled
with an absorbent material that dissipates the acoustic
energy into heat. Their frequent use in the automo-
tive industry, in heating, ventilation and air-conditioning
(HVAC) applications, or in the aircraft industry neces-
sitates the development of fast and accurate numerical
methods in order to analyze the effectiveness of these
devices under different operating conditions such as the
possible presence of mean flow and the frequency range
of interest. There are now numerous models for comput-
ing sound attenuation through dissipative silencers each
having advantages and drawbacks according to the con-
figuration in hand. Although this is not the place for a
complete survey, we can refer to a very recent paper of
Kirby! and the references therein. All these techniques
have in common that they have been developed with the
assumptions that the lining is either locally reacting, rep-
resented by its normal impedance, or bulk reacting. In
this latter, the absorbing material is assumed to have ei-
ther zero or infinite stiffness, only a compression wave
is allowed to propagate and the material is considered
to be an effective fluid characterized by a complex wave
number and density?3. Fibrous media such as glass fiber
or glass wool, for instance, are usually modelized as bulk
reacting materials.

However, if the solid structure of the absorbent ma-
terial has a finite stiffness which is the case for a wide
range of poroelastic materials such as foams, it is known
that three type of waves (two longitudinal and one trans-
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verse) are allowed to propagate through the medium?.
This makes the behavior of foams more complicated and
somewhat less predictable than that of glass fiber. One
major reason for this is that the acoustical behavior of
foam treatments having finite dimensions is known to be
very sensitive to the boundary conditions that exits at its
surfaces®®. A proper analysis of these foams is more de-
manding and the Biot theory of poroelasticity must then
be considered®?. In this context, there has been con-
siderable effort into devising finite element formulations
based on the Biot model and we can refer to Refs. 5, 8, 9
for the most recent advances in this matter. In a recent
communication, Nennig et al.'% have presented a full 3D
Finite Element (FE) model for solving the Biot’s equa-
tions using the mixed displacement-pressure formulation
of Atalla®. The model was coupled with the Galbrun
equations for the acoustic displacement in the airway in
order to take into account the presence of a sheared mean
flow in the central duct. Though the method is capable of
modeling arbitrary shaped silencers, the 3D FE model is
still limited by the computer resources and this can have
a negative impact when, for instance, some efficient opti-
mizations of the silencers (geometry, material properties
and mounting conditions) are needed.

When dissipative silencers contain an axially invariant
cross section with a uniform mean flow in the airway, it is
judicious to take advantage of the separability of the wave
equations. In this context, semi-analytical methods such
as the very popular Mode Matching Methods (MMM) are
usually considered as the ultimate tool. MMM have been
successfully applied in many fields when sudden transi-
tions are present in the waveguide. The discontinuity
may be of geometric-type, due to a change in the medium
properties or an abrupt change in boundary conditions.
The method first requires computing the eigenmode ba-
sis in each segment of the wave guide. By expanding the
wave field in this basis, a matching procedure must then
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be applied in order to respect the dynamic and kine-
matical continuity condition at the discontinuity inter-
face between two consecutive segments. This method is
attractive because it leads to an immediate reduction in
the dimension of the problem and can be much quicker
than a full FE model. This is why the method is now
widely used within the engineering community.

In this work we propose a new MMM for dealing
with expansion chambers partially filled with an poroe-
lastic material in which two longitudinal and one trans-
verse waves are present. One crucial step of the method
is to find with sufficient accuracy the eigenvalues and
the transverse eigenfunctions of the cylindrical chamber.
When the silencer contains an arbitrary cross-section,
the eigenmode basis is usually numerically computed
via finite element eigenvalue analysis over the cross-
section!'2, Besides the size of the associated FE matrix
which is expected to grow at least quadratically with re-
spect to a typical wavenumber; the advantage of such an
approach is that the approximated eigenvalues are ob-
tained via standard algebraic solvers. In the present pa-
per, we shall restrict ourselves to silencers with circular
cross-section. In this case, eigenmodes admit closed-form
solutions in terms of Bessel functions of integer orders
and the key issue is to then solve the resulting governing
eigenvalue equation. This is not a trivial task though
there are numerous available numerical techniques for
this purpose'3. It is remarkable that these techniques
largely employed in the field of duct acoustics have in
common the requirement of initial approximations for
the eigenvalues to start the algorithm. Generally the ap-
proach relies on finding asymptotic approximations that
are exact or at least known with sufficient accuracy and
then track the roots in the complex plane with respect to
some parameter which is either the frequency, the Mach
number of the gas flow or the admittance in the con-
text of a locally reacting liner. The method can be time
consuming and more importantly all these root finding
techniques suffer from the problem of missing roots'*.
The complicated frequency dependence of Biot’s coeffi-
cients renders asymptotic approximations in the low fre-
quency limit very tedious if not intractable. For this
reason, we favored another root-finding technique which
does not rely on any initial guess. The method based on
the Argument Principle has been previously employed in
a somewhat different context'®'7 and this is presented
in this paper.

This work begins by deriving the eigenequation for
the modal axial wavenumbers. Each root of the equa-
tion corresponds to a mode of the dissipative silencer.
This mode has a composite nature containing both pres-
sure and displacement type waves as opposed to modes
of bulk reacting lined duct where only acoustic pressure
waves are present. This will be commented on with re-
spect to their physical interpretation. In particular, we
show that different families can be clearly distinguished.
The matching procedure at the inlet and outlet planes
of the silencer is then explained in detail. We finish the
paper by presenting results showing the impact of elas-
tic resonances of the foam on the Transmission Loss for
silencers with typical dimensions encountered in the au-

tomotive industry.

Il. PROBLEM STATEMENT
A. Constitutive equations and continuity conditions

The silencer considered here consists of a cylindri-
cal chamber duct of length L surrounded by a sound-
absorbing poroelastic material (region 11 in Figure 1). In
the airway, a mean flow of speed Uy is present. The in-
let and outlet pipes (regions 1 and 11) are identical, each
having a circular cross section with rigid walls.

Ty T

Uo | 1 2 I Air

I

Porous

FIG. 1. Geometry of the silencer.

In the airflow domain (0 < r < ry) the acoustic pres-
sure p obeys the convected wave equation

1 D?p
Ap— ==L _g 1
P ¢ D2 ’ (1)
where £ = (% + UO%) stands for the material deriva-

tive along the mean flow. Here, ¢ is time, ¢y denotes the
sound speed and equations are written in the usual cylin-
drical coordinate system (r, 6, z). It is convenient for the
analysis to introduce the particle perturbation displace-
ment w within the fluid. Assuming an homogeneous flow
of density pg, this is given via the linearized momentum
equation as

D2w
POD—tQ = —Vp. (2)

Though these relations are commonly used within the
assumption of uniform flow!®, the displacement pertur-
bation formalism remains valid for more general flow
fields'?.

In the expansion chamber, the wave propagation in
the sound-absorbing media (r; < r < r3) is described
via Biot’s model*. This latter is grounded on the su-
perposition of a fluid phase and a solid phase which are
coupled together and respectively described by the fluid
phase displacement U and the solid phase displacement
u. For time-harmonic representation (e~*), we have the
following coupled system*

V.o +w?(pniu+ p12U) =0, (3)
AV O'f + wQ(plgu + pQQU) =0. (4)

Solid and fluid phase stress tensors are given by

0°=(AV-u+QV- -U)I+2N¢e’, (5)
o/ =(QV-u+RV-U)I, (6)
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where € = 1/2(Vu + (Vu)T) is the usual strain tensor
and I is the identity matrix. The total stress tensor o
is, by definition, the sum of o/ and ¢*. Biot’s coeffi-
cients A, N, @, R are related to the material properties
(given in Table IV) by the Allard-Johnson model. Their
expressions can be found in the literature or in the refer-
ence textbook” as well as the other quantities introduced
in this section. These quantities are all complex and
frequency-dependent, A and N correspond to the Lamé
coefficients, R is the effective bulk modulus of the fluid
phase and @ indicates the coupling of the two phases
volumic dilatation. The imaginary part of A and N in-
cludes the structural damping and, in @ and R this part
includes the thermal dissipation. The imaginary parts of
the effective density coefficients p11, p22 and p19 take into
account viscous damping.

At the air-porous interface (denoted by I in Figure 1),
the following compatibility conditions must be verified

o'n=—pn, (7a)
Pp=D, (7b)
pU-n+(l—¢gju-n=w-n. (7c)

Here ¢ is the porosity and the pore pressure p,, is obtained
from the fluid phase tensor as —3¢p, = tro/. These con-
ditions are classical in the non-flow case?’ 22 though the
last one is sometime expressed in terms of the normal
volume velocity. The advantage of keeping the displace-
ments as primitive variables is that (7c) remains valid
when flow is present in the airway. On the hard surface
(bold solid line T',.), the poroelastic layer is assumed to
be clamped, that is the solid phase displacement as well
as the normal fluid phase displacement are set to zero

u=0 and U-n=0. (8)

In conditions (7) and (8), it is understood that n denotes
the normal unit vector at the boundary of the porous
domain which can then be either along the axial or the
radial direction. For the sake of illustration, we restricted
our attention to the ‘clamped’ conditions (8) but other
mounting configurations where, for instance, the foam
is sliding may be treated by simply changing Eq. (8)
accordingly?*24. The presence of a perforated sheet at
the air-porous interface can also be taken into account.
In this case, the condition (7¢) remains unchanged but
(7b) and (7a) are modified with the addition of the pres-
sure jump between both sides of the perforate plate.

B. Helmholtz decomposition

Because the previous wave equations are written in
terms of the physical variables, these are not appropri-
ate for a modal analysis. Instead, we shall rewrite each
quantity in a potential form using the Helmholtz decom-
position. In the porous media, both displacement fields
are then written as

u=Ve+VAY and U=Vx+VAB. (9)

After equations decoupling, we have

e=@1+p2, X=p1p1+ p2p2, (10)
where
Pk? — w?p11
o a0 S PN 11
1223 w2p12 — kaga ? )4y ( )

are the waves amplitude ratios between the two phases
in the porous material. Similarly, the vector potential ®
is simply obtained as

© =z with uz = p12/pa2. (12)
Under this form, each potential 1, @9, @ fulfills the

Helmholtz equation with the associated complex wave
numbers

2

=Y _(p Rpii — 2 D), (13
1 2(PR*Q2)( p22+ P11 Qp12+\/_)5 ( )
2
= __(p Rpi1 — 2Qp1s — VD), (14
2 2(PR7Q2)( p22+ pll Qp12 \/_)) ( )
2 2
L2 — w= (Pllp22 - P12) . 15
R (15)

Here, P = A+ 2N, D stands for the discriminant of a
quadratic equation and D = (Ppas + Rp11 — 2Qp12)? —
4(PR— Q?)(p11p22 — p35). Physically, there are two com-
pressional waves associated with ¢1, @2 and one rota-
tional (shear) wave associated with 1. They all prop-
agate in the two phases and their relative contribution
are given by u,;. In elastodynamics, one compressional
and one rotational waves are already present, but for
poroelatic materials, the presence of two phases, adds
a fluid-born compressional wave.

Similarly, we can treat the displacement w in the fluid
domain using a similar decomposition. Now, since the
flow is uniform, we can look for purely acoustic modes
by putting

w = V. (16)

Thus the rotational terms which are known to be associ-
ated with the hydrodynamic modes are discarded in the
present analysis. Note that (16) is valid within the as-
sumption that the mean flow is uniform as acoustic and
hydrodynamic modes are found to be decoupled in this
particular case.

11l. MODE CALCULATION
A. Eigenvalue equation

In this section, the silencer chamber is assumed first to
be infinite in length. The eigenvalue analysis is performed

by assuming that all perturbative quantities (call it X)
have the same dependence in both z and ¢, so we write

X(r,0,z,t) = X(r,0) e!Fz=w0) (17)
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The vectorial nature of the Helmholtz equation for the
potential 1 renders the #-dependence a bit more tricky
as its three components in the cylindrical vector basis do
not behave with the same azimuthal parity. Following a
similar work on hollow elastic cylinders as in Ref. 25, we
find that the general form for the potentials splits into
two independent families of modal solutions. Symmetric
modes in the poroelastic media are given explicitely by

P1 = [A1Tm(aar) + B1Y, (a17)] cosmb, (18a)
P2 = [Ag T (aar) + BaY, (aar)] cosmb, (18b)
Gr = [AgJmi1(asr) + BsYinia (agr)]sinmf,  (18c¢)
o = — [A3Jmi1(asr) + BsYomya(asr)] cosmd, (18d)
V. = [Ay T (asr) + ByY,, (asr)] sinmé, (18e)

where J,, and Y,,, are respectively the first kind and the
second kind Bessel functions. Antisymmetric modes are
found by simply swapping the trigonometric functions
cosmf and sinmf and by removing the minus sign for
the azimuthal component 1py9. Note the radial and az-
imuthal components are dependent via their coefficients.
This is the gauge condition borrowed from Ref. 25 stem-
ming from the non-unicity of the Helmholtz decomposi-
tion. Radial wave numbers «; are obtained from the
dispersion relation as

a; =k — B2, i=1,2,3. (19)

where the choice of the branch cut for the square root
operator is irrelevant here as we are not dealing with ra-
diation conditions (which would then imply a careful ex-
amination of the behaviour of each physical quantity as r
goes to infinity). The different branch cuts may, at most,
alter the sign of the transverse wavenumber, which has
no physical significance as they are not associated with
other modes. If a precise definition of the square root
can sometimes be judicious for reasons of symmetry25,
this can not be followed in the present study due to the
presence of the mean flow.

Similarly, the acoustic displacement scalar potential is
given by

©o = Ao Jm (agr) cosmb (or sinmb) (20)

and from Eq. (16) the acoustic pressure is recovered as
P = pociQ%pg. Here, the tranverse wavenumber is ob-
tained from the associated dispersion relation and we
take

ap = /02 — (2, (21)

where Q = kg — M B, M = U/cq is the Mach number and
ko = w/co denotes the usual acoustic wavenumber.

The last step is to express the components of the total
stress tensor of, the displacements u, U,w as well as
the fluid pressures p and p, in terms of the displacement
potentials and their derivatives. After substitution in the
boundary conditions (7) and (8), we find that the modal
vector containing the wave potential amplitudes

V = (A, A1, B1, A2, B, Az, B3, Ay, B)"

must be a non-trivial solution of the 9x9 algebraic system
M(ao, a1, a2, a3, B)V = 0. (22)

In this work, we shall focus on purely axisymmetric
solutions (m = 0). In this particular case, both axial and
radial components of the vector potential are discarded
and the 7 x 7 matrix coefficients are given explicitly in
Appendix A. At this point, we shall observe that the
matrix M depends solely on the axial wavenumber [ once
the dispersion relations have been inverted via (19) and
(21). Thus, finding the modes amounts to finding the
zeros of the complex function f(5) = det M(8), i.e. we
have the following eigenvalue equation in [3,

f(B) =0. (23)

B. Root finding

The accurate computation of the roots of Eq. (23) rep-
resents a crucial stage as it provides the incident and re-
flected axial wavenumber as well as the associated eigen-
mode transverse profiles obtained from (22). There are
numerous available numerical techniques for this pur-
pose. Although this is not the place for a complete sur-
vey we can cite the Newton-Raphson method, Muller’s
method, the Secant method (see discussion on this topic
in Ref. 13) and the Nelder-Mead simplex method?”. All
these techniques have in common that they all require ini-
tial approximations for the zeros to start the algorithm.
To avoid any missing roots, application of the Argument
Principle is commonly favored®®. This fundamental re-
sult, based on the Cauchy’s Theorem, allows to compute
the number of zeros (including its multiplicity) of f from
the following integral relation

Ng

R
S0 =5 . () 4P = 2 29

where Ng is the number of zeros and nj, the correspond-
ing multiplicity of the k-th zero lying in the interior of the
closed curve C. Note f is chosen to be analytic for the re-
sult to hold but the presence of poles may be included by
modifying the formula accordingly. In the present work,
none of the root-finding techniques cited above will be
used. Instead, we shall employ an analytic method that
does not require knowledge of initial guesses. This is a
classical procedure based on the generalization on the
previous relation to any monomial 87, that is 2°

L[ B .
Sn = 5 - " = n,

where ). denote the position of the k-th zero. To simplify
further the analysis, function f is assumed to have only
simple zeros so the integral (24) is exactly the number of
zeros contained in the interior of C'. Note this is not a
stringent assumption as the occurrence of multiple zeros
is highly improbable (in a somewhat different context, it
is known that multiplicity may exist for specific material
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properties set for which simple zeros are merging3?). We
now introduce the associated polynomial II for the inte-
rior of C', that is a polynomial having the same zeros as

f, ie.

m(3) = [[(B—8e) =D Cup™ (26)
k=1 n=0

Of course the zeros are not known yet, but the polyno-
mial coefficients C, can be efficiently computed from the

following recursive algorithm?!®17
1, if n= SO
So—n
C, = 1 <
) 5 XSG ifn=S—1,....0.
— S, “
Jj=1

(27)
Here S, (n = 0,1,2,..., Ng), denote the values of the
integral (25). Once II is known, finding its zeros sim-
ply requires computing the eigenvalues of the companion
matrix®! which is a very fast procedure for moderate size
matrices. In fact, the most time consuming operation
is the numerical evaluation of Bessel functions with com-
plex arguments at some quadrature points when comput-
ing integrals (25). Since these are integrals of an analytic
periodic function over a complete period, the trapezoidal
rule is the optimal quadrature rule. Let C be defined
from a regular function v(s) over the interval s € [0, 27],
then the ¢-point trapezoidal rule approximation to S,, is
given by

YR AW
Sy & 7 iz:; <7 E) (i/q), (28)

where we put f(s) = f(7(s)). Though the s-derivative
of f may be obtained formally via symbolic software, it
is far more efficient to evaluate the derivative using high
order central finite difference scheme, that is

j—i(i/q)zi 3 ajf(iﬂ'), (29)

The procedure is extremely fast since the discrete values
of f on the regular grid are already calculated. Here we
used either the 5" or 9*"-order scheme. The correspond-
ing coefficients are displayed in Table I. The choice of

TABLE I. Finite difference scheme coefficients.

ao ai az as a4
5 order 0 2/3 -1/12 - -
9™ order 0 4/5 -1/5 4/105 -1/280

the curve C must depend upon the region of the com-
plex plane where eigenvalues are searched. Since eigen-
values are expected to be symmetric with respect to the
origin (at least in absence of mean flow), choosing the
circular path v = ae'® appears to be a good compromise.

To avoid possible round-off errors, it is then preferable
to factorize the term a” and exclude it for the trape-
zoidal summation of Eq. (25). Now, as most of the ze-
ros corresponding to very evanescent fields in the axial
direction are located near the imaginary axis, elliptical
contour integration may also be used. In this case we
take v = acos s + ibsin s with b > a.

If f has many zeros in the search area, then the map
from the S),’s to the polynomial coefficients computed
from (27) is likely to be ill-conditioned. Moreover, the
location of the zeros of the associated polynomial are
also very semsitive to its coefficients. The reasons for
this are discussed in Ref. 29 but the nature of the prob-
lem can be identified from (26). It suffices to observe

that Cn, /Co = Hfjﬁl Bx can be extremely large as some
of the fj’s are located far from the origin. The con-
sequences on the roots location may be significant. In
addition our numerical tests have shown that the lowest
attenuation modes are the most affected by this problem,
leading to a discernable frequency shift on the Trans-
mission Loss. One way to overcome this is to use high
precision arithmetic®? which is not convenient and time-
consuming. A simple trick to avoid this is to reduce the
search area so that the number of zeros is kept to a rea-
sonable value3. The solution employed here is to split
the integration path into concentric circular (or elliptical)
rings. In order to illustrate the procedure, we take the
silencer A, which dimensions are given in Table III, filled
with a XFM foam (see Table IV). We consider computing
roots located in the interior of a circle of radius a = 180.
In the first approach, we take one circular ring. We find
that the search region contains 20 roots. By increasing
the number of quadrature points ¢, the numerical value
of a specific root chosen to be associated with one of the
lowest propagation mode and for which error was maxi-
mum, is given in Table II. This shows poor convergence
due to round-off errors. In this example, increasing the
number of points does not yield a better solution. In the
second approach, we take two circular rings. The search
region is then divided into two subregions each contain-
ing 10 roots. The improvement is clearly shown as 2500
quadrature points on each ring provides up to 12 digits of
accuracy. Here the number of points is chosen so that the
numerical cost remains comparable for both approaches.

In practice, we found that very good accuracy was ob-
tained if (i) there is no more than 10,15 roots within
each search area in order to avoid conditioning problems
and possible round-off errors, (ii) a sufficient number of
quadrature points on each ring must be taken. In the
work presented in this paper, the root finding algorithm
is entirely automated. For a given frequency, the first
step is to identify the largest search area (or the radius
of the largest circle) in the complex plane containing ap-
proximately 2K modes (K is the number of modes in
each direction of propagation and is prescribed by the
user). This is done heuristically, by first considering that
the chamber is empty, that is we consider classical acous-
tic modes in a rigid cylinder of radius r5. In this case the
relation between the number of roots and the radius is
an easy task since zeros of Bessel functions are already

Mode matching method for poroelastic silencers 5



TABLE II. Numerical computation of a specific root at 1730 Hz. With one circular ring (left) and two circular rings (right).

Bold character indicates the correct digits.

Two rings
q B
250 17.1619265538 4+ 15.2060360731 1
500 17.6293456921 + 15.0650726700 i
2500 17.6294474640 + 15.0651513163 i
10000 17.6294474640 + 15.0651513164 i

One ring
q B
500 18.1310333520 + 17.2414041458 i
1000 17.6094544451 + 14.9503659291 i
5000 17.6308169754 + 15.0352734983 i
20000 17.6362164376 + 15.0289704442 i
TABLE III. Silencer dimensions®* in meter.
Silencer L ry T
A 0.315 0.037 0.0762
B 0.330 0.037 0.1016

known. In the presence of a poroelastic material, there
are other types of modes (see discussion in section III.C)
and it was observed that the number of modes in each
search area is approximately 4 times larger. Given this,
the largest radius can be found. Now, since roots are
distributed rather regularly in the complex plane, the
largest search area is then divided using regularly spaced
concentric circles with the condition that each search area
contains, say 10 up to 15 roots. Finally, the number of
quadrature points on each circular path points is found
on the ground that between 500 and 1000 points for a
circle of radius @ = 100 should provide a sufficient accu-
racy (see Table IT). For a given radius, the number of
points is chosen accordingly as to grow linearly with the
radius.

C. Eigenmodes

Without flow, the roots distribution in the complex
plane is remarkable as shown in Figure 2. Concentric
rings used in our calculation have also been displayed
for the sake of illustration. Two families of roots can be
identified.

The first set comprises roots located near and along
the imaginary axis. These are essentially associated
with fluid modes which are also present when consid-
ering equivalent fluid models®’. Here, the fluid embed-
ded in the foam pore is strongly coupled with the one
in the airway whereas the solid frame displacement is
nearly zero. This is illustrated in Figures 3-4 where the
pressure and displacement modes profiles are plotted for
three roots identifiable with the corresponding marker in
the complex plane of Figure 2 (note that in all exam-
ples described in this section, results are obtained with
silencer A with a XFM foam). The eigenmode profiles
are computed once the root has been found by simply in-
verting the one-rank deficient system (22) and applying
the Helmholtz decomposition (9) and (16).

In the second set of modes, the skeleton motion is

strongly coupled with the airway and their presence in
the modal series is essential in order to respect the
clamped boundary conditions on the hard wall of the
silencer, this fact is illustrated in section IV.C. The fact
that the associated wave numbers do not lie on the real
or imaginary axis is due to the shear modulus and not to
the dissipative properties of the material (see for instance
Ref. 35 in the case of the elastic cylinder). In the low
frequency limit, Biot’s coefficients tend to be real quan-
tities and the non-dissipative case is recovered. In this
regime, eigenvalues occur in pairs with the same nega-
tive conjugate wave number and are associated with the
same eigenmode. Thus their sum yields standing wave
vanishing when z — 4o0. It is worth noting that stand-
ing waves do not carry energy, so the decrease in am-
plitude do not correspond to an energy dissipation. In
our case, because of the dissipation, the zeros are not
negative conjugate as illustrated on Figure 5 especially
when the frequency increases (i.e. when the dissipation
increases). As well, the eigenmodes are not identical :
the solid phase displacement remains almost unchanged
but the fluid phase pressure is different as illustrated in
Figure 3 and 4. One may also observe in Figure 5 that,
for both family of modes, some zeros may cross the imagi-
nary axis as the frequency increases. This behavior which
is attributed to the dissipation has already been observed
by Nilsson° for bulk reacting liner.

The evolution of the roots location with respect to the
Mach number is conveniently displayed in Figure 6. We
can see that eigenvalues of the second family are not af-
fected by the presence of the mean flow whereas roots
of the first family (the fluid modes) are very sensitive.
Now, the presence of another mode of a different nature
can also be identified. This mode, only present with gas
flow has deep connection with the stability of the vortex
sheet (of infinitely small thickness) that exits in the vicin-
ity of the deformable boundary I'. A quick inspection of
the radial profiles shows that displacement and pressure
fields tend to be confined to within a small neighborhood
of the boundary and decrease exponentially away from
it. In the context of a locally reacting liner, this mode is
sometimes called ‘surface wave mode’%37. This surface
mode has been kept in the matching procedure (see next
section) but its presence was found to have no noticeable
effect in our applications.

Mode matching method for poroelastic silencers 6



TABLE IV. Materials properties used in numerical tests?93%. With the resistivity o, the tortuosity aint, the viscous and thermal
characteristic lengths A and A’, the poisson coefficient v and the effective skeleton density p1. The effective skeleton density
p1 = (1 — @)ps, where ps is the density of the material of the frame.

Foam 1) o (kNm™%s) Qlinf A (pm) A" (pm) p1 (kgm™?) N (kPa) v
FM4 0.99 65 1.98 37 121 16 18(1 - 0.1i) 0.3
XFM 0.98 13.5 1.7 80 160 30 200(1 - 0.051) 0.35
RGW2 0.99 9 1 192 384 16.3 200(1 - 0.1i) 0
. 1
600 .
: . 0.9
400 . 0.8
s 0.7
200 - 2t
. ) . 0.6
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£ 0 o 0.5
0.4 ‘
200 F |
0.3 |
~400 F 0.2 :
0.1
600 | ) : \
S0 600 400 -200 (;3 200 400 600 800 TR Y Y VR Y R YN
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FIG. 2. Roots in the complex 8 -plane at 400 Hz for XFM
foam with silencer A.

\/ Y2

i i i i i i i j
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
r

FIG. 3. Modulus of modal pressure profile related to markers
shown in Fig. 2 at 400 Hz for silencer A filled with XFM foam:
——o,—— 0, —o. For r < rq, acoustic pressure p and for
r1 < r < re pore pressure p,. The amplitude max. is scaled
to one.

IV. MODE MATCHING
A. Matching conditions
The classical set of matching conditions for bulk ma-

terial3439 i extended to poroelastic material. For a brief
nomenclature, we note w = (w,, w;), u = (up,u;) and

FIG. 4. Modulus of modal displacement profile related to
markers shown in Fig. 2 at 400 Hz for silencer A filled with
XFM foam: —— o, — 0O, — — o. For r < ri, acoustic
axial displacement w, and for r; < r < r2 solid phase axial
displacement u.. The amplitude max. is scaled to one.

150
100

50

Jm g
(=}

-100 |

i
-150 -100 -50 0 50 100 150

FIG. 5. Trajectory of the roots in the complex 5 -plane with
respect to the frequency ranging from 100 (o) to 2500 Hz (x)
for XFM foam without flow.

U = (U,, U,), the vectorial displacements in the cylindri-
cal basis. In the airway (r < r;) we have the continuity
of pressure as well as the normal acoustic displacement
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FIG. 6. Trajectory of the roots in the complex § -plane at
400Hz with respect to the Mach number ranging from 0 (o)
to 0.8 (x) for XFM foam with silencer A.

over the inlet plane I';:

p'=p", (30a)

w, = wl!, (30D)
where the superscript (i=1,11) indicates the associated re-
gion in which the physical quantity of interest is defined.
On the lateral hard wall (r; < r < r3), the kinematic
condition yields

ul =t = UL =0, (31)

and similar conditions hold on the exit plane I's. The
condition (31) expresses the fact that the foam is clamped
on the lateral side of the silencer chamber. If continu-
ity conditions (30) are standard in the no-flow case, the
transmission problem becomes far less trivial when an
uniform flow is present. In this latter case, the pressure
and displacement fields exhibit some singular behavior
at the plane of discontinuity which must then be taken
into account in the matching procedure. The difficulty
is partially solved and discussed in a recent paper from
Gabard & Astley®? in the case of a locally reacting liner
with impedance discontinuity. In the present scenario
involving a transition with a poroelastic material, it is
expected that the physical mechanisms that are taking
place are a hard problem deserving a proper analysis.
Therefore we will leave this point for further studies.

B. Numerical implementation

In regions ¢=1, 11, 111, each quantity is expanded via
its truncated modal decomposition. For instance, the
acoustic pressure in the airway is expressed as (the time
dependence is omitted for clarity)

K
Z ( gt 2Ot () ALY 4 eiﬁ,i’*zq);,’; (T)A;;*) . (32)

k=1

In the above summation, the origin of the duct axis coor-
dinate is arbitrary and in this work, we chose to fix it at
the inlet plane I'y. In the dissipative silencer (i=I1), none
of the eigenvalues lies on the real axis and we took the
convention that superscript + stands for the sign of the
imaginary part of the axial wave number. If Jmg > 0
the mode is said to be right running otherwise the mode
is said to be left running. In the inlet and outlet pipes
some modes are propagative, right (+) and left (-) run-
ning modes are then defined in the usual way as follows

—koM /R = (1= 3)(a)?

B = e SNCE)

where i= 1 or 11T and transverse wavenumbers o, are ob-
tained from the rigid wall condition: Ji(afyr1) = 0. Co-
efficients A};* are the modal amplitudes, ®*%(r) are the
corresponding radial eigenfunctions and subscript p indi-
cates the physical quantity (here the pressure) it is asso-
ciated with. A similar decomposition holds for the dis-
placements w,., w,, U, u,, U, and U,. For the sake of sim-
plicity, the number of modes K of the truncated modal
series is taken identical in each region, but this might be
changed if necessary!'3. More importantly, the correspon-
dence k <+ 8" is given by ordering the imaginary part
of the eigenvalues is ascending order so that lowest atten-
uation modes are always included in the series. This is
also done for the leftrunning modes. In regions 1 and I1I,
the same ordering holds once purely propagative modes
have been taken into account. Now, to clarify the analy-
sis further, we introduce the line vector ®/* containing
the radial eigenfunctions
e C

p, 17"

%) (34)

and similarly for the other variables. With this definition,
we have at the inlet plane

1= PUTAILT L PUAL (35)
and
p=®, A + B AN. (36)

Here A*= is the column vector containing the modal am-
plitudes. At the exit plane (z = L), the same formula
holds with the addition of the phase factors.

Matching conditions in the airway are imposed in a
weighted sense, i.e. we proceed by choosing a weight-
ing function and then integrating over the cross-sectional
area of the inlet (or outlet) pipe:

T1 _ T1 _
/ P, rdr = / pt, rdr,
0 0

1 T1
/ wh Uy, rdr = / wy Wy, rdr.
0 0

Clamped conditions on the hard wall of the silencer must
be imposed with more care. Indeed, through early nu-
merical experiments, it was found that imposing (31)
separately for each quantity is likely to produce ill-
conditioned systems. It is therefore preferable to relax

(37a)

(37b)
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the constraints by summing the three conditions giving
the weighted form

T2
/ (uf Uy, +ul W, + U Wy, ) rdr =0. (38)
T1

Here, weighting functions ¥, W,,_, ¥, , ¥, and ¥y, are
chosen among the radial eigenmodes associated with each
physical variable. We will discuss the most appropriate
choice further on.

Now, after modal substitution we obtain a classical
scattering system with unknowns A"~ A% and A"+
whereas the known incident field given by the value of
A" and A"~ are placed on the right-hand side. The
inversion of such a system is unfortunately subject to
round-off errors due to the presence of strongly evanes-
cent waves. Because of these limitations, we consider an
alternative procedure that was proposed by Cummings*'.
The idea is to treat each matching condition separately
by considering all incoming waves as known quantities.
The system is then solved for the outgoing waves. This
yields, using the same formalism as in Refs. 40, 41, the
following coupled scattering system

Al- AL+
Xl <AII,+) = Yl <A11,> ’
AL+ AlL—
X2 Ex <AH’) =Y Ey <A11,+> .

Here, Ex and Ey are diagonal matrices containing the
phase factors at the exit plane z = L,

. . I, 4 . AIIL, 4 P § g . oIl —
Ex = diag (e"ﬁl e R N

(39a)

(39b)

).
(a0
)

. . III, — . SIII, — PSS L all 4
Ey = diag (e‘ﬁl Lo P L gl BT

(41)
The scattering matrices have the following form
P P+ _pPrt+ PpPuU-
}(1 — | W Wt , Yl _ _WL+ WIL- ,
0 7VAVH’+ 0 WH’*
(42)
PIII,+ _PII,— _PIII,— PII,+
){2 — | WL+ _Wi— YQ _ _WHL- WL+
0o W) 0o Wne)
(43)

where block matrices P** Wi* and W'™* are com-
puted from the overlap integrals

. 1
P E = / (B & *rdr, fori=r11ml, (44)
0

Wit = / (w,.)f @0 rdr, fori=r1mm,  (45)
0

and
R T2 T2
WE :/ (\I:M)Tcpg;irdw/ (@,.) @ % rdr
™1 v T1
+ / (T, ®L*rdr. (46)
T1

Here ¥,, ¥, , ¥, . ¥, and ¥, are the line vectors
containing the corresponding weighting functions and
symbol T means that we take the transpose conjugate of
these vectors. As pointed out by Gabard & Astley??, the
choice of these functions can have a significant impact on
the performance of the method. In order to enhance the
conditioning of the scattering matrices X; (i = 1,2) it is
preferable to use appropriate weighting functions in order
to maximize their diagonal terms. Thus the eigenfunc-
tion of the each diagonal block of X; (i = 1,2) are chosen
as weighting functions. For example rigid wall modes are
used for the matrices P"*, i.e. we take ¥, = ®.~ and
W, = ®""* (these are in fact the same in this study since
the inlet and outlet pipes are identical) respectively in
matrices X; and X5. Modes in the expansion chamber
are used for the matrices W** with ¥, = ®"* and
W, = @~ respectively for matrices X; and Xj. The
same procedure is followed for the other matrices.

Finally equations corresponding to the continuity of
displacements are all multiplied by the factor (wpoco)?
in order to be of comparable magnitude with the ones
corresponding with the pressure. Overlap integrals along
the radial coordinate are performed using classical Gaus-
sian quadratures though analytical form could possibly
be found as in Ref. 13. In practice, between 20 and 50
points were found sufficient in our applications shown in
the next section.

The system is then solved iteratively. At the first it-
eration, A~ is fixed at zero and the system (39a) is in-
verted. This produces an initial value for the rightgoing
waves A™* which is then used at the exit plane system
(39b) and so on. The pseudo-inverse of the scattering
matrix is performed using the pinv command in Matlab.
Note that the factorization of the diagonal matrix Ex
is one of the main advantages of this iterative process.
Indeed its condition number is very large and can exceed
10° due to the combination of rightgoing and leftgoing
‘evanescent’ waves. By inverting Ex analytically, effects
of possible round-off errors are therefore minimized.

wz)

C. Results and validation

In order to investigate the robustness of the proposed
methodology, we present here some results with MMM
in comparison with FE calculations carried out by the
authors and presented in Refs. 10, 23. The silencers con-
figurations from Table IIT have the same dimensions as in
Ref. 34 and poroelastic material properties can be found
in Table IV. In the airway, the density and the celerity
of sound are pg = 1.213 kgm =2 and ¢y = 342.35 m/s. As
the frequency range of interest is considered below the
first cut-on mode of the rigid pipes, only the plane wave
propagates in these regions and the Transmission Loss
for the silencer is simply given by (we take |Al"T| =1)

TL = —20log;o|AM+]. (47)

In Figure 7, the convergence of the MMM is presented
for the silencer A by taking successively 5, 7, 13 and 15
modes in each propagation direction. The XFM poly-
mer foam has been chosen to illustrate the effects of the
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strong coupling between fluid and solid phases that ex-
ists in the poroelastic material?®>. We can see that 15
modes yields good agreements with FE results. The sig-
nificant number of required modes, especially near the
elastic resonances identifiable at the peaks, is attributed
to the clamped conditions on the exit planes I'y and T's.
In particular, modes of the second family associated with
the solid phase are unavoidable in the matching proce-
dure whereas the highly attenuated modes of the first
family (fluid modes) may be ignored. In the low fre-
quency range (below 500 Hz) and in the no flow case, it
was found that only the lowest attenuation fluid mode
could be kept in the modal series without deteriorating
the results. In Table V is shown a convergence analysis
(in K) for the TL (dB) for three frequencies 500, 900
and 1000 Hz. The frequency 900 Hz with the XFM foam
corresponds to a resonance peak and the convergence is
slower in this case. At 500 Hz, and more generally below
the first resonances, the TL converges rapidly to one or
two decimal places and this is in line with the TL pre-
dictions of Kirby! using Analytical Mode Matching.

It is worth noting that if Eq. (38) is added to Eq. (37b),
as it is generally done when dealing with bulk reacting
materials®®, the convergence is not as good and 15 modes
in the series was found to produce up to 3 dB error be-
tween 700 and 1300 Hz. This is particularly relevant for
foams presenting strong solid phase resonances. How-
ever, for soft foams like FM4 (Table IV), accurate results
can still be obtained with this ‘condensed’ formulation.

Calculations on silencer B which presents a strong area
ratio (re/r1)? & 7.5 also compare very favorably with FE
results as illustrated in Figure 8. Here again, resonance
effects due to the skeleton elasticity are clearly visible
below 1000 Hz.

The presence of the mean flow slightly affects the qual-
ity of the results especially with the RGW2 wool (see
Figure 9) though the error does not exceed 1 dB. In par-
ticular, discernable discrepancies are visible in the low
frequency regime (say below 1000 Hz) and these differ-
ences can not be explained on the ground that the FE
model is underdiscretized with respect a typical wave-
length. The physical reason for the nature of the solution
to this difficult problem is not clear and the authors are
reluctant to speculate in this paper as to its cause. We
shall just mention, in passing, two remarks: (i) no par-
ticular care has been taken for the edge conditions at the
inlet and outlet planes, (ii) hydrodynamic modes which
can be generated and discretized in the FE model are
deliberately discarded in the present modal approach.

Figure 10 shows the TL predictions for different Mach
number: M = —0.3,—0.1,0,0.1 and 0.3. The mean flow
modifies the apparent acoustic wave length in the airway
and changes the number of oscillations in the absorbing
material. The flow is found, in general, to reduce the
attenuation for the downstream propagation and to in-
crease it for the upstream propagation. However near
the resonance peaks the behavior may be different due
to some spatial coincidence. Note that comparisons with
FE results were found to be in good agreement in all
cases (for the sake of illustration, a comparison is shown
in Figure 11 for M = 0.2).

60

50

40

TL (dB)
g
;

20

. . .
0 500 1000 1500 2000 2500
J (Hz)

FIG. 7. TL for silencer A without flow and XFM foam,
— 78,000 dofs 3D FE calculation®, MMM with 5,7
and 13 modes, - MMM with 15 modes.

The behavior of the RGW2 wool, which corresponds
to a more common material in dissipative silencers for
HVAC applications, is depicted in Figures 9 and 12. We
also present a comparison with FE calculations®? using
the limp model?; that is, an equivalent fluid model which
considers infinitely soft frame and takes into account only
skeleton inertial effects. For rigid frame materials, this
model gives similar results as the rigid frame model*2.
These results indicate that properly modeling the skele-
ton can lead to significant improvements of few dBs on
the Transmission Loss even for wool-like materials. The
result is not too surprising as it was already reported that
an edge constrained-fibrous sample placed in a standing
wave tube can exhibit shearing resonances®. Thus, a pre-
cise description of the mounting conditions can have se-
rious consequences on the effectiveness of the acoustic
treatment.

Before we finish this section, we shall comment on the
computational efficiency of the MMM. All previous re-
sults were obtained using four integration circles each
containing 500 to 1000 quadrature points. In Matlab im-
plementation, it takes approximately 5 seconds to find
the roots for a given frequency. When 15 modes are in-
cluded in the modal series, about 20 seconds are needed
for the overall matching procedure on a pentium IV per-
sonal computer. Note that the CPU time can be largely
reduced (say by a factor of 5 to 10) with compiled lan-
guages such as Fortran or C and this renders the present
method an efficient one. The authors are aware that the
root finding algorithm presented here was favored be-
cause it does not suffer from missing roots. The method
is certainly slower (in terms of number of function evalua-
tions) than other techniques such as the popular Newton
Raphson method and we think that the computational
time could be further reduced by judiciously exploiting
the benefit of the two methods.
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FIG. 8. TL for silencer B without flow and XFM foam,
— 100,000 dofs 3D FE calculation'?, - MMM with 16 modes.
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FIG. 9. TL for silencer A with a M = 0.2 flow and RGW2
wool, — 78,000 dofs 3D FE calculation'®, - MMM with 16
modes, —— 14,000 dofs Limp model FE calculation?®23.
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FIG. 10. TL for silencer A with a filled with the XFM foam,
— no flow case, — — upstream propagation, —— downstream
propagation with and [M| = 0.3.

TABLE V. Convergence of TL predictions (in dB) with re-
spect to the number of modes K.

K 500 Hz 900 Hz 1000 Hz
1 14.5333 17.8914 23.2962
2 13.9663 16.6979 15.5509
5 15.5231 30.2493 26.2362
7 15.7968 27.0677 25.0583
10 15.8620 25.9387 24.6308
13 15.9510 26.2165 24.8859
17 15.9862 25.5172 24.3866
22 15.9857 25.1448 24.2645

0 1 1 1 1
0 500 1000 1500 2000 2500
(Hz)

FIG. 11. TL for silencer A with a M = 0.2 flow and XFM
foam, — 78,000 dofs 3D FE calculation'®, - MMM with 15
modes.

V. CONCLUSIONS AND PROSPECTS

In this paper, we have presented a new Mode Matching
Method (MMM) for acoustic propagation through circu-
lar dissipative silencers partially filled with a poroelastic
material. The model, based on the Helmholtz decom-
position of the Biot’s equations, takes into account the
solid phase elasticity of the sound absorbing material as
well as the mounting conditions of the foam. In the no-
flow case, comparisons with a full FE model show good
agreements even at the resonance peaks corresponding
to elastic resonances of the foam which is assumed to
be clamped on the hard wall of the silencer. It is also
shown that wool materials which are usually described
via fluid equivalent models can, when the elastic phase
is included, exhibit some resonance effects clearly visible
on the Transmission Loss curves.

When an uniform mean flow is present in the airway,
the problem remains separable and the modal analysis
still holds. However, a mode of a different nature is also
present. This mode has connection with the stability of
the flow in the vicinity of the permeable surface sepa-
rating the gas flow and the foam. It was found, how-
ever, that the inclusion of this mode in the modal series
has no noticeable effects regarding the numerical exam-

Mode matching method for poroelastic silencers 11



. . . .
0 500 1000 1500 2000 2500
[ (Hz)

FIG. 12. TL for silencer A with a M = 0 flow and RGW2
wool, — 78,000 dofs 3D FE calculation'®, - MMM with 16
modes, — — 14,000 dofs Limp model FE calculation?23.

ples shown in this work. Comparisons with FE results
showed small but discernible discrepancies. In all cases,
it is believed that this is is not a major issue for engineer-
ing applications, as the error on the TL does not exceed
1 dB. In practice, the present method is shown to be
very efficient as the time for computing the TL over a
large frequency range takes a few minutes on a personal
computer. Thus, this new MMM remains very compet-
itive compared with classical mode matching techniques
in which the sound absorbing material is assumed to be
bulk reacting.

Now, there is still room for some improvement of the
method. As computational time is essentially spent in
computing Bessel functions with complex arguments, the
use of asymptotic expansion could possibly be utilized for
sufficiently large arguments. Another route of particular
interest to us is to investigate bi-orthogonality relations*?
that exist for poroelastic media in order to extend it to
our configurations. It is hoped that this could then yield
a better understanding of the matching procedure at the
interface leading to better conditioned scattering matri-
ces. Work is on-going to include the effect a perforate
plate at the air-porous interface so that more realistic si-
lencers could be studied. In principle, following previous
studies®?34, this is not a major task once the transmis-
sion properties of the plate are known.
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APPENDIX A: MATRIX M COEFFICIENTS
The V vector is given by

V = (Ay, By, As, Bs, Ay, By, Ao)" | (A1)

and the matrix M coefficients are

2Ny J
My = —HyJo(apr) + M

T1
2 Nay Y,
M1 = —HoYo(az 1) + M
1
Mo 2iNB (a3 Jo(agry)r — Ji(asr))
1,3 "
M., = 21NB (Yi(agri) + ag Yo(ag ri)r1)
1,4 -
2Naq J
M175 — —H1J0(041 Tl) + M
1
2Ny Y,
Mg = —H1 Yy(a1 1) + = rl(al o
1
M177 = pocg Q2 J()(Oéo 7’1)
Mg = —Ji(aare)as
Moo = —=Yi(aa re)an

My 3 =i Ji(agr2)
M4 =i Y1 (a3 72)

Mo s = —Ji(a1 )
Mo = —Yi(aq r2)an
M7 =0

Mz 1 = —2iNS Ji(aa )
M3 o = —2iNBY1 (o r1)as
Mss = NJy(asr) (—8% + a3)
Mg = NYi(azri) (=% +a3)
Mss = —2iNS Ji(on 7’1)

Mz = —2iNBY1(on r1)o

M37=0
Mo — k3Jo(aar1) (Rug + Q)
41 =
o)
Mo — k3Yo(agri) (Ruz + Q)
42 = "
My =0
Mg =0
M, - — k2J0(CY1 7‘1) (R,u1 +Q)
45 =
o)
M k2Y0(a1 7‘1) (R/Ll + Q)
46 = p
M7 = —pocg Q% Jo(ag )

Ms,1 =i Jo(az 72)

Ms 2 =i Yo (az72)
Ms 3 = —ag Jo(asrs)
M54 = —ag Yo(az )
Ms 5 =18 Jo(ou r2)
Ms6 = i8 Yo(a1 72)
Ms 7 =0
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Mg 1 = —po Ji(aa m2) o (A37)
Mg o = —pi2 Yi(aa ra)as (A38)
Me 3 = i3 B Ji(asr2) (A39)
M4 = ius BY1(agrs) (A40)
= —p1 Ji(on r2)an (A41)
Mg = —p1 Y1 (a1 m2)on (A42)
0 (A43)

=
2
I

Mz = —Ji(aeri)as (pu2 — ¢+ 1) (Ad4)
M72 = —Yi(azri)az (pp2 — ¢ +1) (A45)
Mz =iB Ji(azr) (ppus — ¢ +1) (A46)
M74=18Y1(az 1) (pus — ¢ +1) (A47)
Mz = —Ji(arr)ar (ppr —¢+1) (A48)
Mze = —Yi(arr)ar (pp1 — o +1) (A49)
Mz.7 = Ji(ao 1) (A50)

with

H;=((R+Q)pu+Q+ Ak} +2Na3. (A51)
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