Subdifferential characterization of approximate convexity: the lower semicontinuous case

Abstract : It is known that a locally Lipschitz function f is approximately convex if, and only if, its Clarke subdifferential ∂C f is a submonotone operator. The main object of this work is to extend the above characterization to the class of lower semicontinuous functions. To this end, we establish a new approximate mean value inequality involving three points. We also show that an analogue of the Rockafellar maximal monotonicity theorem holds for this class of functions and we discuss the case of arbitrary subdifferentials
Type de document :
Article dans une revue
Mathematical Programming B, Springer, 2009, 116 (1-2), pp.115-127
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00694605
Contributeur : Marc Lassonde <>
Soumis le : vendredi 4 mai 2012 - 22:56:30
Dernière modification le : lundi 21 mars 2016 - 11:33:22

Identifiants

  • HAL Id : hal-00694605, version 1

Collections

Citation

Aris Daniilidis, Florence Jules, Marc Lassonde. Subdifferential characterization of approximate convexity: the lower semicontinuous case. Mathematical Programming B, Springer, 2009, 116 (1-2), pp.115-127. 〈hal-00694605〉

Partager

Métriques

Consultations de la notice

91