
HAL Id: hal-00694561
https://hal.science/hal-00694561

Submitted on 5 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic framework for n-protocol compatibility
checking

Francisco Durán, Meriem Ouederni, Gwen Salaün

To cite this version:
Francisco Durán, Meriem Ouederni, Gwen Salaün. A generic framework for n-protocol compatibility
checking. Science of Computer Programming, 2012, 77 (7-8), pp.870-886. �hal-00694561�

https://hal.science/hal-00694561
https://hal.archives-ouvertes.fr

A Generic Framework for

N -Protocol Compatibility Checking

Francisco Durána, Meriem Ouedernia, and Gwen Salaünb

aDepartment of Computer Science, University of Málaga, Spain
bGrenoble INP–INRIA–LIG, France

Abstract

Service-Oriented Computing promotes the development of new systems from
existing services which are usually accessed through their public interfaces. In
this context, interfaces must be compatible in order to avoid interoperability
issues. In this article, we propose a new framework for checking the compat-
ibility of n service interfaces. Our framework is generic, in the sense that it
implements several compatibility notions useful for different application ar-
eas, and extensible since new further notions can easily be incorporated. We
consider a service interface model which takes behavioural descriptions with
value-passing and non-observable actions into account. Our compatibility
checking framework has been fully implemented into a prototype tool which
relies on the rewriting logic-based system Maude.

Key words: SOC, Transition Systems, Non-observable Actions,
Compatibility, Maude.

1. Introduction

Service-Oriented Computing (SOC) aims at developing new software sys-
tems by reusing existing services. Services are software applications which are
developed independently, loosely coupled, and accessed through their pub-
lic interfaces. Thus, it is essential to ensure that service interfaces fit with
each other in the system being developed. To this end, compatibility check-
ing is of utmost importance to guarantee that interfaces are safely reused,

Email addresses: duran@lcc.uma.es (Francisco Durán), meriem@lcc.uma.es
(Meriem Ouederni), Gwen.Salaun@inria.fr (and Gwen Salaün)

Preprint submitted to Sci. of Computer Programming June 5, 2011

so that they can successfully interoperate. However, verifying compatibility
is difficult, especially when the model of service interfaces takes interaction
protocols (messages and their application order) into account, which allows
one to avoid erroneous behaviours or deadlock situations when executing a
set of services together [40].

There exists much work on the compatibility of services described using
different interface models (see, for instance, [47, 6, 7, 15] for automata, [9, 16]
for π-calculus, [24, 30] for Petri nets, and [3, 10] for state machines). Nev-
ertheless, these proposals usually do not consider value-passing, i.e., pa-
rameters coming with the messages exchanged between services, and non-
observable or internal (τ) actions. Furthermore, most of the existing ap-
proaches on service compatibility rely on one particular compatibility notion
defined with respect to a specific application domain (see, for instance, [30]
for service composition, [3, 10, 24] for service substitution, or [16] for service
choreography), and the compatibility is often checked for two services (very
few contributions on n-services compatibility exist, see Section 5). Lastly,
only a few existing proposals are equipped with appropriate tools for au-
tomating the service compatibility check.

To fill these gaps, we consider a generic approach for checking the compat-
ibility of n (n ≥ 2) service interfaces (signature and interaction protocols).
The interaction protocols are described by means of Symbolic Transition
Systems (STSs), and take value-passing as well as internal behaviours into
account. We formalise several compatibility notions for n services, consider-
ing different strategies for handling value-passing. We propose a framework
where these notions of compatibility can be automatically checked in a uni-
fied way. It is also possible to return a counter-example in order to detect
the incompatibility source. This framework is supported by a Maude-based
implementation and can be extended with new compatibility notions and
new strategies to handle value-passing.

Although studying the compatibility of n interacting protocols is much
harder when n > 2, it is easy to find situations in which checking the compat-
ibility of n protocols is required, e.g., in the composition of several services.
In what follows, we introduce an example to illustrate that the compatibility
of n services cannot always be computed using techniques existing for two
protocols [17, 6]. Let us consider a system with three services, S1, S2 and S3,
which interoperate through the exchange of messages a, b and c. Figure 1(a)
shows the service behaviours described using transition systems (presented
in Section 2). We assume a synchronous binary communication model and a

2

S1
ba c

S2

ca

S3

b

(a) Service behaviours.

P2

b

c b

cb

a

a

(b) Composition of S2 and S3.

Figure 1: N -service compatibility.

compatibility notion which requires that two services are compatible if they
can always synchronise on each observable action (we refer to this notion as
bidirectional complementarity or BC for short). A naive solution to check
the compatibility of S1, S2 and S3 using two service-based techniques is as
follows. We could first compose n− 1 services (here, n = 3) and then check
the compatibility of the composite service with the remaining one. For in-
stance, the composition of S2 and S3 returns the transition system P2 which
consists of interleaved traces shown in Figure 1(b).1 Here, P2 can start by
performing either a or b, whereas S1 always performs a and then b. As a
consequence, the protocols P2 and S1 are not BC compatible because they
cannot synchronise on b at their initial states, i.e., message b does not have
any match. On the other hand, if we consider the three services all at once,
their compatibility can be checked as follows: initially, S1 and S2 can syn-
chronise on message a, S3 waits until it can perform b with S1, and lastly,
the system terminates successfully once S1 and S2 synchronise on message c.
Thus, the three services are compatible. This simple example illustrates the
need to extend the existing compatibility notions and their checking from
two to n ≥ 2 services.

In this article, we illustrate our approach for checking n-service compati-
bility with some well-known compatibility notions, namely bidirectional com-
plementarity [6] (BC), unspecified receptions [7, 47] (UR), deadlock-freeness [6]
(DF), one path [16] (OP), and unidirectional complementarity (UC). Consid-
ering different compatibility notions makes our framework useful in different

1 In this example, services are composed using a CCS-like semantics [35].

3

contexts, e.g., in the case of the client/server model one would prefer the UC
notion (further arguments are given throughout Section 3.3). Our proposal
can also be used for several service issues, such as composition, adaptation,
substitution, or discovery. For instance, in the context of service adapta-
tion [32], a counter-example might be helpful to automate the specification
of an intermediate service, i.e., adaptor, which enables continuing the com-
munication in spite of existing incompatibilities.

A prototype tool implementing our framework has been developed in the
rewriting logic system Maude [11, 12]. Other alternatives were studied, such
as using process algebraic tools (e.g., CADP [22] or MCRL2 [23]), but we
found the Maude system more convenient than these tools for the develop-
ment of our generic framework encoding the different compatibility defini-
tions. We present in Section 6 a short comparison between our approach and
these alternative solutions.

The remainder of this article is structured as follows: Section 2 formalises
our model of services. Section 3 introduces some preliminaries and the com-
patibility notions we use in this article. In Section 4, we present how service
compatibility is checked using Maude. Section 5 presents a comparison with
related works. Finally, Section 6 draws some conclusions.

2. Behavioural Service Model

This section presents the model of service interfaces we use for the com-
patibility checking, and relates it to existing models and platform languages.
We assume that service interfaces are equipped both with a signature, i.e.,
a set of profiles of required and provided operations together with their ar-
gument types, and an interaction protocol specifying the service behaviour.
In our approach, protocols are represented by Symbolic Transition Systems
(STSs). In an STS, communication between services is represented using
events relative to the emission and reception of messages corresponding to
operation calls. An event comes with a list of parameters (possibly empty)
whose types respect the operation signature. A label describes either the (in-
ternal) τ action or an event using the tuple (m, d, pl) where m is the message
name, d stands for the communication direction (either an emission ! or a
reception ?), and pl is either a list of data terms if the label corresponds to
an emission, or a list of variables if the label is a reception.

Definition 1 (STS). A Symbolic Transition System, or STS, is a tuple
(A, S, I, F, T) where: A is an alphabet which corresponds to the set of la-

4

bels associated to transitions, S is a set of states, I ∈ S is the initial state,
F ⊆ S is a nonempty set of final states, and T ⊆ S\F × A × S is the
transition relation.

There are several symbolic transition systems in the literature, e.g., [18,
27, 41, 25]. These models were proposed as solution to the state explosion
problem, and extend Labelled Transition Systems with data types, value-
passing events and guarded transitions. Our STS model is a variant of the
STG (Symbolic Transition Graph) model presented in [25], where guards in
branching transitions are abstracted into transitions labelled with τ actions.
Keeping an explicit representation of guards in the STS definition would
allow us to have an abstraction closer to the service implementation, as pre-
sented in [41, 18]. However, when checking compatibility at design-time, our
goal is to ensure the correct service interaction at run-time. Since we do
not know at design-time the values exchanged between services, guards can-
not be evaluated. Therefore, having guards in service models does not help
when verifying compatibility, and considering all possible evolutions (replac-
ing guards with τ transitions) ensures (if services are compatible) a correct
interaction whatever values are exchanged.

The STS model is simple yet offers a good abstraction level for describing
and analysing service behaviours. Moreover, STSs can be easily derived
from abstract descriptions implemented in existing platform languages (e.g.,
Abstract BPEL orWF). For instance, such abstractions for Web services were
used in [20, 43, 19, 8] for verification, composition or adaptation purposes.
We give a short discussion on this in Section 2.2.

For the sake of clarity, in the rest of the article, we will describe service
interfaces only with their corresponding STSs. The signature will be left
implicit, yet it can be inferred from the typing of arguments (made explicit
here) in STS labels.

2.1. STS Operational Semantics

The operational semantics of one STS = (A, S, I, F, T) (denoted by −→b)
is defined with three rules given in Figure 2 for, respectively, internal ac-
tion (TAU), emission (EM), and reception (REC). In the semantic rules, for
readability reasons, we consider either one output value or one input variable
instead of using lists. This can be easily generalised to lists. The pair 〈s, E〉

5

consists of an active state2 s ∈ S and a data environment E. A data environ-
ment is a set of pairs 〈x, v〉 where x is a variable and v is a value. The type
of x is returned using the function type . The environment can be updated
using the operator “⊘” which assigns a new value to an existing variable, or
adds a new variable and its value to the environment:

E ⊘ 〈x′, v′〉 ,











E ′ ∪ {〈x, v′〉} if ∃〈x, v〉 ∈ E such that x = x′ with

E ′ = E \ {〈x, v〉}
E ∪ {〈x′, v′〉} otherwise

The data evaluation operator “ev” is defined as follows:

ev(E, x) , E(x)

ev(E, f(v1, . . . , vn)) , f(ev(E, v1), . . . , ev(E, vn))

where the expression E(x) returns the value of x in the environment.
Notice that, using the STS model, a choice can be represented using ei-

ther a state and at least two outgoing transitions labelled with observable
actions (external choice) or branches of τ actions (internal choice). The oper-
ational semantics of n STSs STSi∈{1 ...n} = (Ai , Si , Ii ,Fi ,Ti) (denoted by −→c)
is formalised using the synchronous communication3 rule COM and the inde-
pendent evolution rule INEτ given in Figure 3, where {as1, . . . , asn} denotes
the set of active states. In the COM rule,4 value-passing and variable sub-
stitutions rely on a late binding semantics [36].

2.2. Internal Behaviours

Internal behaviours correspond to abstractions of pieces of code, e.g.,
conditions involving variables and functions, that a service can perform in-
dependently from its partners. Service analysis can be worked out without
taking into account these behaviours since they are non-observable from its
partners’ point of view. However, considering the non-observable behaviours

2We assume that the state identifiers are disjoint.
3Although checking protocol compatibility is undecidable with asynchronous commu-

nication [7], Fu et al. proved in [21] that a large class of interfaces can be analysed
under an asynchronous communication model using existing techniques and tools for the
synchronous communication model.

4In the operational semantics of n STSs we keep the resulting action observable (as it
is the case in process algebras such as CSP and LOTOS).

6

(s
τ−→ s′) ∈ T

〈s, E〉 τ−→b 〈s′, E〉
(TAU)

(s
a!e−−−→ s′) ∈ T v = ev(E, e)

〈s, E〉 a!v−−−→b 〈s′, E〉
(EM)

(s
a?x−−−→ s′) ∈ T

〈s, E〉 a?x−−−→b 〈s′, E〉
(REC)

Figure 2: Operational semantics of an STS.

i, j ∈ {1, . . . , n} i 6= j

〈si, Ei〉 a!v−−−→b 〈s′i, Ei〉 〈sj , Ej〉 a?x−−−→b 〈s′j , Ej〉
type(x) = type(v) E′

j = Ej ⊘ 〈x, v〉
{as1, . . . , 〈si, Ei〉, . . . , 〈sj , Ej〉, . . . , asn} a!v−−−→c {as1, . . . , 〈s′i, Ei〉, . . . , 〈s′j , E′

j〉, . . . , asn}
(COM)

i ∈ {1, . . . , n} 〈si, Ei〉 τ−→b 〈s′i, Ei〉
{as1, . . . , 〈si, Ei〉, . . . , asn} τ−→c {as1, . . . , 〈s′i, Ei〉, . . . , asn}

(INEτ)

Figure 3: Operational semantics of n STSs.

while analysing services helps us to find out possible interoperability issues.
Indeed, although one service can behave as expected by its partner from an
external point of view, interoperability issues may occur because of unex-
pected internal behaviours that services can execute. For instance, Figure 4
shows two versions of one service protocol with (STS2’) and without (STS2)
its internal behaviour. As we can see, STS2 and STS1 can perfectly in-
teroperate under the synchronous semantics because each service can send
(respectively receive) the messages expected (respectively sent) by its part-
ner. However, if we consider STS2’, which is an abstraction closer to what
the service actually does, we see that this protocol can (choose to) execute
a τ action at state s1 and arrive at state s3 while STS1 is still in state u1.
At this point, STS2’ and STS1 cannot exchange messages, and the system
deadlocks. This issue would not have been detected with STS2.

Typically, higher-level languages, such as abstract BPEL or abstract Win-
dows workflow (WF), are used in the literature (see, e.g., [32, 14, 31]) to
provide abstract descriptions (Interface Description Languages) of service
behaviours. Here we focus on WF to illustrate how STSs, and in particular τ
transitions, can be extracted from workflow-based notations. WF describes

7

u2

u1

a ?
p1: t1

STS1

s2

s1

a !
p1: t1

b !
p2: t2

STS2

s2

s1

a !
p1: t1

b !
p2: t2

STS2'

s3

τ τ

s4

: initial state : final state

Figure 4: STS1 and STS2 interoperate successfully, but STS1 and STS2’ can deadlock.

service behaviours using a set of basic activities, e.g., IfElse, Listen and While,
for which it is useful to keep some τ transitions in their respective STS de-
scriptions.

The IfElse activity corresponds to an internal choice deciding which ac-
tivity has to be performed, e.g., sending different messages using the Web-

ServiceOutput activity, depending on the evaluation of its condition. The
corresponding STS contains as many transitions labelled with τ as there
are branches in the IfElse activity (including the else branch), see the first
example in Table 1.

Transitions labelled with τ can describe timeouts, as it is the case in
the Listen activity of WF. This activity waits for possible receptions (Event-
Driven). If no message is received, a timeout occurs (Delay) which stops the
Listen activity. In the STS model, the Listen activity is translated into a set of
branches labelled with the receptions used in this activity and a τ transition
corresponding to the timeout, see the second example in Table 1.

The While activity is used to repeat an activity as long as the loop con-
dition is satisfied. Hence, the corresponding STS encodes this activity using
a non-deterministic choice, specified using τ transitions, between the looping
behaviour and the behaviour that can be executed after the While activity
(when the condition becomes false), see the third example in Table 1.

Other abstract WF activities such as Terminate, Parallel and Code can
also generate τ transitions in the corresponding STS model.

3. N -Protocol Compatibility

In this section, we first introduce some preliminary definitions necessary
for the formalisation of protocol compatibility. Then, we present the concept

8

Abstract WF activity STS description

WebServiceInput(a?(p1:t1))
ifElse
 (((p1 < 10),
 WebServiceOutput(b!(p2:t2))),
 ((p1 ✁ 10),
 WebServiceOutput(c!(p3:t3)))
)
...

s2

s1

s4

a ?
p1: t1

τ

b !
p2: t2

c !
p3: t3

s3

s5 s6

τ

...
listen(
 EventDriven
 (WebServiceInput(b?(p2:t2)),...),
 EventDriven
 (WebServiceInput(c?(p3:t3)),...),
 EventDriven(Delay,...)
)

s2

s4

τ

b ?
p2: t2

c ?
p3: t3

s5

s3

WebServiceInput(b?(p2:t2))
While
 (
 (p2 < 10),
 InvokeWebService
 (b!(p3:t3), b?(p2:t2))
)
...

s2

b ?
p2: t2b ! p3: t3

s3

τ

τ

s4

s5b ? p2: t2

Table 1: Examples of Abstract WF activities and their corresponding STSs.

of state compatibility on which some of the compatibility notions we formalise
in this article rely.

3.1. Preliminaries

Given n services described using STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti),
we define a global state as a tuple of states (s1, . . . , sn) where si is the state
of STS i. In what follows, we describe a transition using a tuple (s, l, s′)
such that s and s′ denote the source and target states, respectively, and
l stands for its label. Lastly, for the sake of clarity, we assume in the
rest of this article that the functions we define have access to the STSs
STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti) even if they are not explicitly passed as in-
put parameters.

9

Label Compatibility. Label comparison is necessary to check whether ex-
changed messages (and their parameters) are compatible. However, data pa-
rameters coming with messages can be handled differently in order to check
their compatibility. Thus, our n-protocol compatibility check is parame-
terised by a parameter-handling strategy (PS). In particular, we illustrate
our approach by considering two of the possible ways of dealing with message
parameters. The usual meaning of parameter compatibility requires that the
parameter list expected to be received perfectly matches (same types in the
same order) the parameter list coming with the sent message. We refer to
this definition as parameter matching, pm for short (see Definition 2). Alter-
natively, if one service receives a message, then it can receive less parameters
than those being sent. This definition is referred to as unspecified parameters,
up for short (see Definition 3).

Definition 2 (Parameter Matching). Two parameter lists, pl1 = (p11, . . . , p1n)
and pl2 = (p21, . . . , p2m), are pm-compatible, param-comppm(pl1, pl2), if and
only if:

• n = m, and

• ∀k ∈ {1, . . . , n}, type(p1k) = type(p2k).

Definition 3 (Unspecified Parameters). A parameter list pl1 = (p11, . . . , p1n),
coming with an emission message, is up-compatible with a parameter list
pl2 = (p21, . . . , p2m), coming with a reception message, param-compup(pl1, pl2)
if and only if:

• n ≥ m, and

• ∀k ∈ {1, . . . , m}, type(p1k) = type(p2k).

Notice that the up parameter-handling strategy discards the last remain-
ing parameters in the emission message. More sophisticated strategies in
which, e.g., the parameters can be sent and received in different order, or in
which the types do not need to coincide (e.g., subtyping or automatic con-
version) may similarly be defined. Strategies in which, e.g., we compare the
semantics of parameter names and/or types using, for instance, the Wordnet
similarity package [39], are also possible.

We now define label compatibility, which depends on the parameter-
handling strategy PS , as follows:

10

Definition 4 (Label Compatibility). Given labels l1 and l2, lab-compPS (l1, l2)
if and only if:

• l1 = (m1, d1, pl1) and l2 = (m2, d2, pl2), m1 = m2, d1 = d2 and param-
compPS(pl1, pl2), or

• l1 = τ and l2 = τ ,

where ! = ?, ? = !.
Other notions of label compatibility could similarly be used. For instance,

message names can be compared using techniques such as structural com-
parison using the N-gram algorithm [28] or semantical comparison using the
Wordnet similarity package.

Reachable States. In order to verify the service compatibility, we need
to check every global state that can be reached during system execution.
Therefore, we define a function reachablePS((s1, . . . , sn)) which provides the
set of global states that n interoperating services can reach, in one or more
steps, from a current global state (s1, . . . , sn) through synchronisations or
independent evolutions. In our definition of reachability, sequences of τ -
actions are skipped. States reached with τ actions are in the set of reachable
states only if they are final or if there are observable actions that can be
executed from them. PS is the considered parameter-handling strategy, and
the STSs are implicitly accessed as indicated above.

Definition 5 (Reachable States). Given a parameter-handling strategy PS
and n STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti), the set of global states reachable
from a global state (s1, . . . , sn), reachablePS((s1, . . . , sn)), is the smallest set
such that ∀i ∈ {1 . . . n}, ∀(si, li, s′i) ∈ Ti:

• if li = τ , then

– reachablePS((s1, . . . , s
′
i, . . . , sn)) ⊆ reachablePS((s1, . . . , sn)), and

– if s′i ∈ Fi, or ∃(s′i, l′i, s′′i) ∈ Ti such that l′i 6= τ ,
(s1, . . . , s

′
i, . . . , sn) ∈ reachablePS((s1, . . . , sn)).

• else, ∀j ∈ {1 . . . n}, j 6= i, ∀(sj , lj, s′j) ∈ Tj with lab-compPS(li, lj),
{(s1, . . . , s′i, . . . , s′j, . . . , sn)}∪ reachablePS((s1, . . . , s

′
i, . . . , s

′
j, . . . , sn)) ⊆

reachablePS((s1, . . . , sn)).

11

STS1 STS3

q1

STS2 c !
p3: t3

q2

b !
p2: t2

u1

u2

s1

a !
p1: t1

c ?
p3: t3

c ?
p3: t3

b ?
p2: t2

a ?
p1: t1

s2

s6

s3

s4 s5

τ τ

Figure 5: STS s of three interacting services.

Note that the resulting set is obtained by the application of the INEτ

and COM rules given in Figure 3 as follows. Firstly, if there is an internal
transition (si, τ, s

′
i), the application of the INEτ rule implies the recursive

reachability computation in (s1, . . . , s
′
i, . . . , sn) due to this uncontrolled evo-

lution. Furthermore, the global state (s1, . . . , s
′
i, . . . , sn) must be added to

the set of reachable global states if s′i is a final state, i.e., the respective
service cannot evolve any more, or there exists at least one observable label
going out from s′i. Lastly, the application of the COM rule allows us to com-
pute the global states reachable through possible synchronisations, where the
labels are compared using the function lab-compPS .

Example 1. Let us consider the STSs given in Figure 5. STS1 can receive
message c after sending either request a or b depending on an internal choice.
STS2 can simply send message c. Lastly, STS3 can either wait for a reception
of message a or b. The set of global states which can be reached from
(s1, q1, u1) for STS1, STS2, and STS3 is the following:

reachablepm((s1, q1, u1))
= {(s2, q1, u1), (s4, q1, u2), (s3, q1, u1), (s5, q1, u2), (s6, q2, u2)}

Deadlock Freeness. In order to check that services can always interoperate
starting from a given global state, we define deadlock-freeness as follows:

Definition 6 (Deadlock Freeness). Given a parameter strategy PS and n

STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti), the set of their deadlock-free global
states, dfPS , is the least set such that (s1, . . . , sn) ∈ dfPS if and only if either
(s1, . . . , sn) ∈ (F1 × · · · × Fn) or ∀(s′1, . . . , s′n) ∈ reachablePS((s1, . . . , sn)),
(s′1, . . . , s

′
n) ∈ dfPS .

12

3.2. State Compatibility

Service interaction basically depends on synchronisations over observable
actions and then can be defined using a criterion set on them. The crite-
rion is used to check the state compatibility as follows. For a given global
state (s1, . . . , sn), this state is considered compatible if each message sent
(respectively, received) by one protocol i at state si ∈ Si will be eventually
received (respectively, sent) by another protocol j at state sj ∈ Sj where
i, j ∈ {1 . . . n} and i 6= j, such that all protocols evolve into a compati-
ble global state. If there is no such protocol j able to interact with proto-
col i’s action, protocols {1 . . . n} should be able to reach a global state in
which this action will be enabled. Since services can evolve independently
through some non-observable τ transitions, the behavioural compatibility
requires that each internal evolution must lead all services into compatible
states [9, 15]. Therefore, if there exist transitions (si, τ, s

′
i) ∈ Ti, the compat-

ibility must be checked at the target states.

Definition 7 (State d-Compatibility). Given a parameter strategy PS, a
label direction d, and n STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti), the set of
(PS , d)-compatible states, state-compPS ,d , is the largest set such that if a
global state (s1, . . . , sn) ∈ state-compPS ,d then ∀i, j ∈ {1 . . . n}, i 6= j,
∀(si, li, s′i) ∈ Ti:

• if li = (mi, d, pli), then

– ∃(sj , lj, s′j) ∈ Tj such that lab-compPS (li, lj) and
(s1, . . . , s

′
i, . . . , s

′
j, . . . , sn) ∈ state-compPS ,d or

– ∃(s′1, . . . , si, . . . , s′j , . . . , s′n) ∈ reachablePS((s1, . . . , sn)) such that
∃(s′j , l′j, s′′j) ∈ Tj where:

∗ lab-compPS (li, l
′
j),

∗ (s′1, . . . , si, . . . , s
′
j , . . . , s

′
n) ∈ state-compPS ,d , and

∗ (s′1, . . . , s
′
i, . . . , s

′′
j , . . . , s

′
n) ∈ state-compPS ,d ,

• else if li = τ, then (s1, . . . , s
′
i, . . . , sn) ∈ state-compPS ,d .

Example 2. Let us consider again the STSs given in Figure 5. Since STS1 can
internally transit to s2 or s3, (s1, q1, u1) ∈ state-comppm,? only if (s2, q1, u1)
and (s3, q1, u1) are in state-comppm,?. The check for the last two states
shows that the receptions b and a do not have any match at the global

13

states (s2, q1, u1) and (s3, q1, u1), respectively. Hence, these states are not
compatible, and as a consequence the initial state (s1, q1, u1) is also non
compatible.

3.3. Service Compatibility Notions

In this article, we focus on compatibility notions which do not require
human intervention to set the particular properties of the services involved.5

We illustrate our approach by considering some compatibility notions that
exist in the literature for analysing two protocols, namely BC, UR, DF, OP,
and UC. We extend these definitions to n protocols described using our STS
model. In addition, the compatibility notions formalised here can be checked
with respect to the different strategies for handling parameters (PS) that we
have presented above.

Bidirectional Complementarity (BC). The most intuitive notion of
compatibility is possibly that of BC. This notion requires that when one
service can send a message, there is another service which eventually re-
ceives that message, and when one service is waiting to receive a message,
then there is another service which must eventually send that message. Fur-
thermore, the protocols must be deadlock-free.

Definition 8 (Bidirectional Complementarity Compatibility). Given a pa-
rameter strategy PS, n STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti) are BC com-
patible if and only if:

• (I1, . . . , In) ∈ state-compPS,?,

• (I1, . . . , In) ∈ state-compPS,!, and

• (I1, . . . , In) ∈ dfPS .

Example 3. Figure 6 shows three STSs that are not compatible with respect
to BC, and neither the pm nor the up parameter strategies. The incompat-
ibility is detected at the global state (s2, q2, u1), reachable from the initial
one, since STS1, STS2 and STS3 are not able to reach any global state in
which message d at state s2 can match.

5Checking of some compatibility notions cannot be fully automated because they need
as input both the service interfaces and some properties that services must ensure. For

14

STS1

STS2

STS3

b !
p2: t2

a !
p1: t1 c ?

p3: t3

τ

d ? p3: t3s1

s2

s3 s4 s5

s6
b ?
p2: t2

u2

u1
a ?
p1: t1

c !
p3: t3

q2q1 q3

Figure 6: Bidirectional complementarity vs. unspecified receptions compatibility.

Unspecified Receptions (UR). The BC compatibility notion can be very
restrictive in some situations. Imagine for instance a service able to receive
all requests from a client, but which can also accept other receptions from
other clients. In these cases, the UR compatibility notion may be more
appropriate. The definition that we propose for this notion is inspired by
those proposed in [7, 47].

The UR notion requires that if one service can send a message at a reach-
able state, then there is another service which must eventually receive that
emission. Thus, n service protocols are compatible even if one service is able
to receive a message that cannot be sent by any of the other services, i.e.,
there might be additional receptions. By doing so, it is possible that one
protocol holds an emission that will not be received by its partners as long
as the state from which this emission goes out is unreachable when protocols
are interacting together. Furthermore, the protocols must be deadlock-free.

Definition 9 (Unspecified Receptions Compatibility). Given a parameter
strategy PS, n STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti) are UR compatible if
and only if:

• (I1, . . . , In) ∈ state-compPS,! and

• (I1, . . . , In) ∈ dfPS .

Example 4. Going back to the STSs given in Figure 6, we note that they
are UR compatible with respect to both pm and up. No incompatibility is

example, the notion of goal-oriented compatibility [48] aims at verifying some temporal
properties, provided by the user, over protocol specifications using model-checking tech-
niques.

15

detected since there is a unique unmatched message (d), at the reachable
global state (s2, q2, u1), but this is a reception.

Deadlock Freeness (DF). The DF compatibility notion relaxes the strong
requirements of the aforementioned notions. It considers that n service pro-
tocols are compatible if and only if, starting from their initial global state,
they can always evolve until reaching a final global state.

Definition 10 (Deadlock Freeness Compatibility). Given a parameter strat-
egy PS, n STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti) are DF compatible if and
only if the initial global state (I1, . . . , In) ∈ dfPS .

Example 5. The STSs in Figure 7 are not DF compatible since, for the global
state (s6, q2, u1) reachable from the initial one, (s6, q2, u1) 6∈ dfPS .

One path (OP). The weakest notion we present in this article is OP com-
patibility, introduced in [16] for the case of two services. N service protocols
are OP compatible if and only if starting from their initial states, they can at
least execute a sequence of interactions until reaching a final global state. No-
tice that this notion does not ensure deadlock-freeness of the whole system.
For instance, if the path leading to a final global state involves an internal
choice, it is not required that all branches in that choice lead to final global
states. However, the OP compatibility has some interest for systems without
uncontrolled internal choices. In this setting, the system execution can be
controlled (using, e.g., controller synthesis techniques [49, 42]) to enforce the
execution of a specific path.

Definition 11 (One Path Compatibility). Given a parameter-handling strat-
egy PS, n STSs STSi∈{1 ,...,n} = (Ai , Si , Ii ,Fi ,Ti) are OP compatible if and
only if there exists a global state (s1, . . . , sn) ∈ reachablePS((I1, . . . , In)) such
that (s1, . . . , sn) ∈ (F1 × · · · × Fn).

Example 6. Let us consider again the STSs in Figure 7. They are OP com-
patible because the final global state (s5, q3, u2) ∈ reachablepm((s1, q1, u1)).

Unidirectional Complementarity (UC). So far, we have presented a set
of symmetric notions for checking service compatibility. Now, we present
an asymmetric compatibility notion, namely UC. Two services are UC com-
patible if and only if there is one (complementer) service which is able to

16

STS1

STS2 STS3

b ! p2: t2
a !
p1: t1 c ? p3: t3

τ

d ! p4: t4
s1

s2

s3 s4 s5

s6

b ? p2: t2 u2

u1

a ?
p1: t1

c !
p3: t3

q2q1 q3

s7τ

Figure 7: Deadlock freeness vs. one path compatibility.

eventually receive (respectively, send) all messages that its (complemented)
partner expects to send (respectively, receive) at all global reachable states.
Intuitively, the complementer service may send and receive more messages
than the complemented service.

In order to extend the complementarity definition to n services, many
cases of the compatibility check are possible depending on the number of
services set as complementers and those set as complemented services. In
the most general case, the definition of the UC compatibility notion, for
n services, requires to check whether there are m services (complementers)
which complement n−m other services (complemented), where n > m > 0.
The UC notion is formally defined as follows:

Definition 12 (Unidirectional Complementarity Compatibility). Given a
parameter strategy PS, m STSs STSi∈{,1...,m} = (Ai, Si, Ii, Fi, Ti) comple-
ment n − m STSs STSj∈{m+1...n} = (Aj , Sj, Ij, Fj , Tj) if and only if there
exist T ′

1, . . . , T
′
m, with T ′

1 ⊆ T1, . . . , T
′
m ⊆ Tm, n > m > 0, such that

(A1, S1, I1, F1, T
′
1), . . . , (Am, Sm, Im, Fm, T

′
m), (Am+1, Sm+1, Im+1, Fm+1, Tm+1),

. . . , (An, Sn, In, Fn, Tn) are BC compatible.

Example 7. We illustrate the UC notion using protocols in Figure 8. Let
us consider STS1 and STS2 as the complemented protocols and STS3 as the
complementer one. The three protocols are UC compatible because each
action in the complemented protocols has a match in the complementer one.
Although there is an unmatched action c? in the state u1, the system remains
compatible since STS3 is the complementer protocol, and it can hold more
actions. Notice that situations like this one are very common in real-world
cases in which, e.g., the protocols represent a multi-client handling system
where STS1, STS2, and STS3 stand for Client1, Client2, and O-Store, and

17

STS3

q1

STS1

a !

q2

u1

u2
d !

a ?

d ?

q3

v1

STS2

b !

v2

d ?

v3

b ?

u3

c ?

τ

τ

τ

Figure 8: Unidirectional complementarity compatibility.

the messages a, b, c, and d stand for buyCD, buyEbook, buyBook, and reply,
respectively.

4. Maude Encoding and Tool Support

In this section, we present, successively, a short introduction to Maude,
highlighting those features of Maude relevant to our implementation, the
Maude encoding of our compatibility checking framework, and the prototype
tool that automates the compatibility verification.

4.1. Maude Overview

Maude [11, 12] is a high-level language and a high-performance system
that supports membership equational logic and rewriting logic specification
and programming of systems. Rewriting logic [33] is a logic of change that
can naturally deal with state and with highly nondeterministic concurrent
computations. Rewriting logic is parameterised by an equational logic, and
therefore, Maude integrates an equational style of functional programming
with rewriting logic computation. In the Maude implementation of rewrit-
ing logic, the equational logic is membership equational logic (MEL) [34, 5].
In this section, we provide an informal description of the Maude’s features
necessary for understanding this article, and in particular we focus on the
functional features of the language, which are the ones used in the imple-
mentation of our tool.6 The interested reader may refer to [12] for further
details.

6Although we represent STSs as objects of a class STS, we do not use the Maude facilities
for object-oriented programming. The implementation of the compatibility notions is given
by a functional specification, and we introduce our own notation for objects and object

18

Membership equational logic is a Horn logic whose atomic sentences are
equalities t = t′ and membership assertions of the form t : S, stating that
a term t has sort S. Such a logic extends order-sorted equational logic,
and supports sorts, subsort relations, subsort polymorphic overloading of
operators, and the definition of partial functions with equationally defined
domains.

In Maude, specifications may be generic, that is, they may be defined with
other specifications as parameters. This feature is key to achieve the gener-
icity and extensibility of our framework. The requirements that a datatype
must satisfy are described by theories. For example, sets can be constructed
on top of any data, which means that its parameter could be a theory requir-
ing only the existence of a sort. The following module SET defines sets over a
given sort of elements (provided by the theory TRIV) from the constant none
and singleton sets (by means of a subsort declaration) with an associative,
commutative, and idempotent union operator _,_.

fth TRIV i s

sort Elt .
endfm

fmod SET{X : : TRIV} i s

sort Set{X} .
subsort X@Elt < Set{X} .
op none : −> Set{X} [ctor] .
op _ , _ : Set{X} Set{X} −> Set{X} [ctor assoc comm id : none] .
var E : X@Elt .
eq E , E = E .

endfm

The parameter X :: TRIV denotes that X is the label of the formal parameter,
and that it must be instantiated with modules satisfying the requirements
expressed by the theory TRIV. The sorts and operations of the theory are used
in the body of the parameterised module, but sorts are qualified with the label
of the formal parameter; thus in this case the parameter Elt becomes X@Elt
in the SET module.

Parameterised modules are instantiated by means of views. A view shows
how a particular module satisfies a theory, by mapping sorts and operations
in the theory to sorts and operations in the target module, in such a way
that the induced axioms are provable in the target module. The following

configurations. The different operators implementing the notions of compatibility will take
a collection of STS objects as an argument to check their compatibility.

19

view State maps the theory TRIV to the module TRANSITION which, among
others, defines the sort State of STS states.

view State from TRIV to TRANSITION i s

sort Elt to State .
endv

Then, the module expression SET{State} denotes the instantiation of the
parameterised module SET with the above view State. Note that the name
of the sort Set{X} makes explicit the label of the parameter. In this way,
when the module is instantiated with a view, like for example State above,
the sort name is also instantiated becoming Set{State}.

If an MEL specification is confluent, terminating, and sort-decreasing,
then it can be executed. Computation in a functional module is then accom-
plished by using the equations as simplification rules from left to right until a
canonical form is reached. Some equations, like the one expressing the com-
mutativity of a binary operator, are not terminating, but nonetheless they are
supported by means of operator attributes, so that Maude performs simplifica-
tionmodulo the equational theories provided by such attributes, which can be
associativity, commutativity, and identity properties. The above properties
must therefore be understood in the more general context of simplification
modulo such equational theories. Rewriting modulo allows us to deal with
structures such as lists and sets very easily and efficiently, and implement
many of the operations of our framework at a very high level of abstraction.

4.2. The Maude Specification

In this section, we overview the Maude specification implementing our
approach. All the compatibility notions defined in the previous sections are
available in our prototype framework. The only current restriction is that
our implementation does not handle STSs with τ -cycles. We believe this is
not an important restriction in practice, since these loops of τ hardly make
sense in service descriptions because they do not correspond to any realistic
implementation. The τ transitions correspond to pieces of code that a service
can internally perform, e.g., an internal choice, a timeout, etc. We cannot
see any realistic case where a looping internal behaviour would make sense.

To improve the presentation we have omitted many details. We neverthe-
less give a significant account of the key pieces of the implementation, which
may allow the reader to gain a sufficient understanding of our approach. As
we explain below, one of the strengths of our proposal is the easiness with

20

Compatibility

Notion

STSs

Unspecified Receptions

Deadlock Freeness

Bidirectional Complementarity

uses

Parameters

Unidirectional Complementarity

NCN

uses
Matching

Unspecified

us
es

uses

us
es

us
es

uses

NPS

One Path

Reachability

Figure 9: The framework encoding.

which new compatibility notions (NCN) and new parameter-handling strate-
gies (NPS) can be added to the framework. Figure 9 summarises the module
structure, and how the compatibility check is parameterised by the different
compatibility notions and parameter-handling strategies.

STS Specification. Given sorts Oid of object identifiers, Cid of class iden-
tifiers, Attribute of attribute-value pairs, and Object of objects, and dec-
larations

op STS : −> [ctor] .
op i s : _ : State −> Attribute [ctor] .
op cs : _ : State −> Attribute [ctor] .
op fss : _ : Set{State} −> Attribute [ctor] .
op ts : _ : Set{Transition } −> Attribute [ctor] .

op <_ : _ | _> : Oid Cid Set{Attribute } −> Object [ctor] .

service-model STSs are represented as terms of sort Object —objects of a
class STS— of the form:

< O : STS | i s : St , cs : St ’ , fss : StS , ts : TS >

An STS object has an identifier O (of sort Oid), a type (the STS class),
and an attribute set which consists of its initial state (is), its current state
(cs), a set of final states (fss), and a transition set (ts), with values of
the appropriate types. Given sorts Attribute, State, and Transition, of
object attributes, STS states, and transitions between states, respectively,

21

sorts Set{Attribute}, Set{State}, and Set{Transition} provide sets of
attributes, states, and transitions, respectively, by appropriate instantiations
of the sort Set{X}, as explained above.

A transition is represented as a tuple of the form St1 - L -> St2 where
St1 and St2 are, respectively, the source and target states, and L is its label.
A label is either a τ (tau) or a tuple of the form M d (PRS), where M is
the message name, d stands for its direction, being either ? or !, and PRS

denotes the comma-separated parameter list. Each parameter in this list is
represented as a term of the form pid : pt, where pid is the name of the
parameter and pt its type.

Multisets of objects are represented as elements of the Configuration

sort, which is defined as follows.

subsort Object < Configuration .
op none : −> Configuration [ctor] .
op __ : Configuration Configuration −> Configuration

[ctor config assoc comm id : none] .

Reachable States. Global states are represented as sets of STS states,7 and
sets of global states as terms of sort Set{Set‘{State‘}}, which is defined as
the above sets, but, to avoid naming ambiguities, with mt as empty set and
U as associative and commutative union operator with mt as its identity
element. The reachablePS function (see Definition 5) is encoded as the Maude
reachable operation, which is defined as follows:

var PS : X$ParamStrat . var STSs : Configuration .
vars TS1 TS2 : Set{Transition } . vars St1 St1 ’ St1 ’ ’ St2 St2 ’ : State .
var GStS : Set{Set ‘{ State ‘}} . vars O1 O2 : Oid .
vars AtS1 AtS2 : Set{ Attribute } . var M : Message .
vars PRS1 PRS2 : List{Parameter } .

op reachable : X$ParamStrat Configuration −> Set{Set ‘{ State ‘}} .
op reachable :

X$ParamStrat Configuration Set {Set ‘{ State ‘}} −> Set{Set ‘{ State ‘}} .

eq reachable (PS , STSs) = reachable (PS , STSs , mt) .

ceq reachable (PS ,
< O1 : STS | ts : (St1 − tau −> St1 ’ , TS1) , cs : St1 , AtS1 > STSs ,
GStS)

= reachable (PS ,
< O1 : STS | ts : (St1 − tau −> St1 ’ , TS1) , cs : St1 , AtS1 > STSs ,
reachable (PS ,

< O1 : STS | ts : (St1 − tau −> St1 ’ , TS1) , cs : St1 ’ , AtS1 > STSs ,

7If STS states are not all syntactically different, the sets of states of the STSs can be
made disjoint by qualifying the state names with the name of the corresponding STS.

22

(getState (STSs) , St1 ’) U GStS))
i f not (getState (STSs) , St1 ’) in GStS .

ceq reachable (PS ,
(< O1 : STS | ts : (St1 − M ! (PRS1) −> St1 ’ , TS1) , cs : St1 , AtS1 >

< O2 : STS | ts : (St2 − M ? (PRS2) −> St2 ’ , TS2) , cs : St2 , AtS2 >

STSs) ,
GStS)

= reachable (PS ,
(< O1 : STS | ts : (St1 − M ! (PRS1) −> St1 ’ , TS1) , cs : St1 , AtS1 >

< O2 : STS | ts : (St2 − M ? (PRS2) −> St2 ’ , TS2) , cs : St2 , AtS2 >

STSs) ,
reachable (PS ,
(< O1 : STS | ts : (St1 − M ! (PRS1) −> St1 ’ , TS1) , cs : St1 ’ , AtS1 >

< O2 : STS | ts : (St2 − M ? (PRS2) −> St2 ’ , TS2) , cs : St2 ’ , AtS2 >

STSs) ,
(getState (STSs) , St1 ’ , St2 ’) U GStS))

i f not (getState (STSs) , St1 ’ , St2 ’) in GStS

/\ param−comp (PS , PRS1 , PRS2) .
eq reachable (PS , STSs , GStS) = GStS [owise] .

The getState operation returns the global state of a set of STSs (by col-
lecting the current state of each of the STSs in the set). The _in_ operation
checks whether a global state belongs to a set of global states, and is here
used to check whether a given state has already been visited or not. The
param-comp operation checks the compatibility of two parameter lists ac-
cording to a specified parameter-handling strategy. Note that the reachable
operation takes arguments of sorts X$ParamStrat and Configuration. They
represent, respectively, the parameter-handling strategy to be used and the
set of STSs to be considered. Notice how the current states of the STSs
(the cs attributes of the STS objects) are used to calculate the reachable
states from a specific global state. Notice also that the auxiliary opera-
tion reachable has an additional argument that represents the set of visited
states. New states reached, either with a τ transition or a synchronisation
step, are added to this set. If no further states are reachable the operation
terminates returning the set of reached states.8

State Compatibility. The state-compPS ,d function presented in Defini-
tion 7 is implemented by the state-comp operation, which has the following
signature:
op state−comp : X$ParamStrat Direction Configuration −> Bool .

It is implemented as a predicate that takes as input a global state and checks
whether it belongs to the set of compatible states (according to the specified

8In Maude, the equations with the owise attribute are attempted only if no other
equation can be used.

23

parameter-handling strategy and direction) or not.

Compatibility Notions. The compatibility notions presented in Section 3.3
are specified by respective Maude operations. Each of these operations eval-
uates the compatibility of n STSs starting from their initial global state with
respect to the parameter-handling strategy passed as parameter.

To illustrate the way in which they are specified, let us focus, e.g., on
the deadlock-freeness notion. This operation is in fact heavily used, since
it is invoked from the operations implementing other compatibility notions.
Given the above reachable operation, the df operator can be defined as
follows:

op df : X$ParamStrat Configuration −> Bool .
op df :

X$ParamStrat Configuration Set{Set ‘{ State ‘}} Set{Set ‘{ State ‘}} −> Bool .

var PS : X$ParamStrat . var STSs : Configuration .
var StS : Set{State} . vars StSS StSS ’ : Set{Set ‘{ State ‘}} .

eq df (PS , STSs) = df (PS , STSs , reachable (PS , STSs) , mt) .

eq df (PS , STSs , StS U StSS , StS U StSS ’)
= df (PS , STSs , StSS , StS U StSS ’) .

ceq df (PS , STSs , (StS U StSS) , StSS ’)
= false

i f not final (STSs , StS)
/\ reachable (PS , setState (STSs , StS)) = mt .

eq df (PS , STSs , (StS U StSS) , StSS ’)
= df (PS , STSs , reachable (PS , setState (STSs , StS)) U StSS , StS U StSS ’)
[owise] .

The second and third arguments of the auxiliary df operation represent,
respectively, the set of global states to be considered, and the global states
already checked. When a new state is considered, all the states reachable
from it are added to the set of states in the second argument in the recursive
call. The last argument allows us to avoid recomputing the checks. Thus,
if a global state has already been checked, it is discarded (first equation).
If a global state is a deadlock state, that is, it is not final and no state is
reachable from it, then the STSs being checked are not deadlock-free and
false is returned (second equation). In any other case (notice the owise

attribute of the third equation), the df operation is recursively invoked with
the global state added to the set of states already checked and the states
reachable from it added to the set of states to be considered.

The other compatibility notions follow similar procedures. For instance,
theUR notion (see Definition 9) is implemented by a function unspecified-receptions
that takes as argument a collection of STS objects and returns a Boolean

24

value indicating whether the given STSs are compatible or not according to
this notion.

op unspecified−receptions : Configuration −> Bool .
op unspecified−receptions :

Configuration Set {Set ‘{ State ‘}} Set {Set ‘{ State ‘}} −> Bool .

The unspecified-receptions operator relies on a homonymous recur-
sive operator which has as arguments the set of STSs, the set of global states
in the reachable state space not yet checked, and the set of global states
already processed so that calculations are not repeated. For each new global
state the function checks whether it is compatible (see the state-comp oper-
ator above). If it fails, the compatibility check terminates returning false;
if it succeeds, it calls itself with the set of states reachable from the checked
state added to the set of not-yet-treated reachable states and the considered
state moved to the set of already-checked states.

Unified Compatibility Checking. The COMPATIBILITY{NOTION} module
implements the compatibility definition. Its parameter NOTION refers to a
compatibility notion encoded in the COMPATIBILITY-NOTION{PS} module,
which is parameterised by a parameter-handling strategy PS.

The following protocol -comp function allows us to check, in a unified way,
the compatibility of n given protocols described using STSs, according to a
compatibility notion CN and a parameter-handling strategy PS :

protocol -comp : STSi∈{1,...,n} × CN × PS → Boolean

If the STSs are not compatible, a counterexample CE can then optionally
be computed. The framework offers two alternatives:

• Default mode. The counterexample consists of a sequence of global
states that leads the protocols from the initial global state (I1, . . . , In)
to an incompatible reachable global state.

• Verbose mode. In addition to the sequence of global states, the compat-
ibility check returns a set of execution traces. Each trace represents a
transition sequence in one STSi∈{1 ,...,n}, leading from the initial state Ii
to the state si in the global state (s1, . . . , sn) where the incompatibility
is detected.

Example 8. Let us consider the results presented in Example 3. The coun-
terexamples computed for the normal and verbose modes are as follows:

25

CEdefault = [(s1, q1, u1), (s2, q2, u1)], and
CEverbose

= [(s1, q1, u1), (s2, q2, u1)], {[(s1, a!p1:t1, s2)], [(q1, a?p1:t1, q2)], []}
These are two informative ways to understand how the incompatibility is
detected. For instance, CEdefault clearly shows that the incompatibility is
detected at state (s2, q2, u1), which is reached from (s1, q1, u1). CEverbose

additionally returns the set of transition sequences, namely, [(s1, a!p1:t1, s2)]
in STS1, [(q1, a?p1:t1, q2)] in STS2, and [] in STS3, leading the protocols to
(s2, q2, u1).

Extensibility. In our approach, the compatibility checking framework is
highly modular and extensible. New parameter-handling strategies (NPS) as
well as additional compatibility notions (NCN) can be easily integrated into
the framework (see Figure 9). For instance, for adding a new compatibility
notion, one just needs to specify the corresponding Maude module, providing
a function following our generic scheme, and add it to the list of available
notions. The infrastructure in the framework will automatically consider it
as one of the possibilities to be chosen.

Complexity. Given n STSs STSi∈{1...n} = (Ai, Si, Ii, Fi, Ti), S =
∏n

i=1 |Si|
represents an upper bound of the number of possible global states, and
T =

∑n

i=1 |Ti| of the number of transitions available from any particular
global state. S and T are greater than or equal to |reachablePS((I1, . . . , In))|.
The BC, UR and UC notions have a time complexity of O(S2 × T 2), since
in the worst case, for each reachable state we must check that each possible
transition has a match in that global state or in any global state reachable
from it (considering the rest of the protocols). The time complexity of the
DF and OP compatibility notions is O(S × T). Regarding DF compatibil-
ity, we need to check that in each global reachable state the n protocols can
either terminate or evolve together. In the case of OP compatibility, in the
worst case, we must check all the reachable global states in order to verify if
all services can at least reach one final state when interacting together.

4.3. Tool Support and Experimental Results

Our approach for checking n-service compatibility has been fully imple-
mented in a prototype tool [38]. We present in Figure 10 an overview of the
tool architecture. The Maude representations of the STSs to be considered
are automatically generated using our script STS2Maude, implemented in

26

Service
Interfaces

(3) Compatibility
Checking

Behavioural Models (STSs)

(1) Behavioural Model
Extraction

WSDL+
Abstract
BPEL

Annotated
Java

Interfaces

WSDL+
Windows
Workflow

(WF)

.

.

.

.

.

.

True|False
+

Counterexample

(2) STS2Maude

Maude
Specification

Maude

Compatibility
Notions

Parameter
Strategies

Figure 10: The compatibility checking process.

Python. Then, we execute in Maude the chosen compatibility check param-
eterised with a compatibility notion and parameter-handling strategy. Once
the protocol compatibility is verified, a Boolean value indicates whether the
n STSs are compatible according to the checked compatibility notion. If
the protocols are not compatible, a counterexample is returned, in a format
depending on the alternative chosen.

So far, our prototype tool has been validated on more than 180 examples,
which range from small examples, to experimental boundary cases, to real-
world ones. Table 2 summarises the experimental results obtained for some
examples of our database. “Interfaces” shows the number of service inter-
faces involved in the examples. “States” and “Transitions” give the number
of states and transitions, respectively, in each interface. We use “τ branch-
ings” and “Loops” to indicate whether the protocols have τ branchings or
loops (

√
), or not (×), and to give an idea about the complexity of protocol

structure. Last, “BC ”, “UR”, “DF”, and “OP” present the computation
time (in seconds) needed for checking the different compatibility notions,
followed by

√
if the interfaces are compatible or × if not. For illustration

purposes, Table 2 shows the results obtained for the symmetric compatibility
notions. Experiments have been carried out on a Mac OS machine running
on a 2.53 GHz Intel dual core processor with 4 GB of RAM.

As we observed during our experiments, in the case of incompatible in-
terfaces, the checking computation time depends on the depth of the global
state in which the incompatibility is detected. For instance, example Ex010

27

Ex010 Ex015 Ex040 Ex062 Ex097 Ex143 Ex170 Ex180

Interfaces 2 2 2 4 5 10 12 13

States 86/86 86/86 172/172 4/3/2
14/3/ 3/5/3/4/6/ 3/5/86/3/4/ 3/2/86/6/4/86/
4/3/3 3/7/9/4/5 86/6/3/7/9/4/6 8/10/4/2/5/5/4

Transitions 91/91 85/85 185/185 4/2/1
13/2/ 3/5/3/4/6/ 3/5/92/3/4/92/ 1/2/92/5/4/92/
4/2/2 3/7/9/4/5 6/3/7/9/4/5 6/10/3/1/4/4/3

τ branchings
√ × × × √ √ √ ×

Loops
√ × × × √ × √ ×

BC 14.252 | × 1.485 | √ 6.454 | √ 0.006 | × 0.074 | × 0.280 | × 0.797 | × 1483.087 | ×
UR 14.216 | × 1.261 | √ 5.633 | √ 0.006 | × 0.072 | × 0.274 | × 0.782 | × 1400.803 | √

DF 14.126 | × 1.043 | √ 4.790 | √ 0.005 | √ 0.070 | √ 0.269 | × 0.770 | × 829.358 | √

OP 0.308 | √ 0.094 | √ 0.354 | √ 0.001 | √ 0.020 | × 0.026 | √ 0.189 | × 6.787 | √

Table 2: Some experimental results.

is tiny compared to example Ex170. However, the number of global states
reached before the incompatibility detection in Ex010 is higher than the one
obtained for Ex170. As a consequence, this results in an important time
difference.

In the case of compatible examples, the whole state space has to be tra-
versed. We comment on compatibility checking time for compatible examples
in the rest of this section. Running our prototype tool on small examples
(protocols with less than one hundred states and transitions) requires a neg-
ligible time for checking all compatibility notions. For instance, less than
0.1 seconds was required for checking DF compatibility notion on examples
Ex062 and Ex097. However, there is a remarkable difference in the amount of
time required for bigger examples (e.g., Ex040), especially those with a com-
plex structure —protocols with hundreds of states and transitions, and many
τ branchings and loops. For these examples, it can take up to several seconds
to compute every compatibility result. Experiments have also shown that the
time taken to analyse compatible services significantly increases with respect
to the size and number of interfaces. For instance, example Ex180, which is
composed of thirteen interfaces with hundreds of states and transitions, has
been checked UR compatible in 1400.803 seconds. Note that our goal in this
prototype was not to optimise its implementation but rather to validate and
experiment with the notions formalised in Section 3, paying more attention
to its genericity and extensibility than to efficiency.

The framework we propose allows us to separately check the BC, UR, DF,
and UC notions. However, the computation of BC, UR, and UC depends
on DF. Hence, the service incompatibility for CN ∈ {BC,UR,UC} can be
directly detected if the services are not DF compatible.

28

5. Related Work

There are many works dealing with the compatibility issues in the area of
Service-Oriented Computing, Component-Based Software Engineering and
Software architectures. However, most of the existing approaches study the
compatibility for two services or components. In [47], a compatibility notion,
very close to our unspecified receptions notion, is formally defined for two
software components described using an automata-based formalism. More
recently, [3, 10] have used a Finite State Machine (FSM) model to formalise
a compatibility notion for Web services which aims at checking whether one
service can substitute another. In [3], the authors adopt an asymmetric rela-
tion, namely simulation, for determining whether a new version of a service
behaviour simulates a previous one. In [10] a restrictive notion of behavioural
compatibility is provided saying that each trace in one Web service must also
be preserved in its partner. In [29, 30, 24], the authors rely on bisimulation al-
gorithms to define the compatibility of two Web services which are described
using Petri nets. As regards process algebra, [9] and [16] have proposed a
compatibility notion based on the π-calculus to ensure the successful compo-
sition of two software architectures and Web services, respectively. Bordeaux
et al. [6] survey several compatibility notions for two services. However, the
Labelled Transition System model presented in [6] does not consider value
passing and internal behaviours, and they do not provide any tool support.
In [4], the authors address the composability of components. They assume
that two software components are composable if their respective services are
pairwise compatible, where service compatibility is understood as deadlock-
freeness.

The authors in [7] investigated one compatibility notion similar to that
given in [47], but that can be checked for several components. Another
recent work [44] defined the compatibility for two services, and then for
multiple services. In [44], the compatibility analysis relies on the definition
of roles (client, server) between services interacting together. Furthermore,
the compatibility notion is close to our deadlock-freeness notion. However,
both [7] and [44] do not consider non-observable actions and value passing.
In the SOA area, [1] uses value-passing process algebra in order to verify
the deadlock-freeness for a set of architectural elements. The work in [13]
studies service composability based on the analysis of the execution paths
of n service architectures. The composability concept, introduced in [13],
consists in checking two properties referred to as crash failure and no-crash

29

failure. The first property is close to our deadlock-freeness compatibility
notion, while the second one is similar to our one path notion.

To sum up, most of the works presented so far focus on two services, and
do not consider value passing and internal behaviours in their description
models. Moreover, they usually propose a unique compatibility notion useful
for a specific application domain. Existing approaches often tackle the com-
patibility problem from a theoretical point of view, and very little attention
was paid to support these contributions with automated tools [3, 10]. Our
aim was to overcome the aforementioned verification limits and equip these
theoretically-based approaches with some automated tool support.

6. Concluding Remarks

In this paper, we have proposed a framework for checking the compatibil-
ity of n (≥ 2) interacting service protocols taking value-passing and internal
behaviours into account. Our framework goes beyond the existing approaches
because it is generic, implements several compatibility notions useful for dif-
ferent application areas, and can easily be extended with other notions. Our
proposal is fully automated inside a Maude-based prototype tool where large
systems (e.g., services with hundreds of transitions and states) can be checked
in a short time. In our proposal services are explored and checked at the same
time, so that we stop as soon as an incompatibility is detected.

In this final section, we focus on the alternative solution mentioned in the
introduction which consists in reusing existing process algebraic notations
and tools. We sketch out a few ideas explaining how it would be possible
to check some compatibility notions presented in this article (BC, UR, and
DF) with process algebraic tools and underlying techniques, namely model-
checking and equivalence-checking. For the sake of comprehension, we will
give high-level explanations here, but tools such as CADP [22] or MCRL2 [23]
can be used for automating these checks in practice.

• Bidirectional complementarity (BC). The idea here is to use equivalence
checking techniques. Therefore, we would have to partition the set of
the n involved services into two sets, m and n−m (with m < n). Next,
we would have to compose and synchronise the services in both sets, 9

9By composition we mean the synchronisation of services on shared labels. Sup-

30

hide in the two resulting STSs these synchronisations, and finally com-
pare one STS with the “reversal” of the other (by “reversal” we mean
the STS where emissions are replaced by receptions, and receptions
by emissions) with respect to an equivalence relation (probably using
the observational or branching equivalence notion, but we still need to
thoroughly study how to use equivalence checking techniques in the
case of communicating systems, and in particular how τ transitions are
supposed to be matched). Although this solution works for n = 2, this
is not the case for n > 2 because additional unexpected interleavings
can be obtained from the two subsystems. Another solution would be
to build the composition of the n services, and check that the result
contains all labels, meaning that all labels can be synchronised.

• Unspecified receptions (UR). We could first compose and synchronise
all services (as described in footnote 9). In a second step, we would have
to analyse the resulting STS (R) to check that all reachable emissions in
each service STS appear in R. This check is quite complicated because
an emission in a service STS does not need to be in R according to
UR if this emission is never reached in the global system. Such a check
could be achieved using an ad-hoc algorithm traversing each STS and
R at the same time, but we do not see how process algebraic tools could
be used to compute this check.

• Deadlock freeness (DF). This check can be automated by composing
all the involved services, and calling the deadlock search available in
existing tools. Note that DF must also be checked for the two afore-
mentioned notions.

Now, we would like to make a short comparison between our current so-
lution and this alternative approach using process algebraic tools. First of
all, there are parts of the compatibility checks for which we do not see how
process algebraic tools would help (see the comments above on the verifi-
cation of the UR compatibility notion for example). Moreover, tools such
as CADP or MCRL2 rely on enumerative approaches (all values that can

pose we have four services A, B, C, D and a parallel composition operator S1||SSS2

meaning that S1 and S2 synchronise on labels belonging to the synchronisation set
SS. We compute the composition of the four services A, B, C, D as follows:
A||ΣA∩(ΣB∪ΣC∪ΣD)(B||ΣB∩(ΣC∪ΣD)(C||ΣC∩ΣD

D)).

31

be exchanged between services are generated in the resulting transition sys-
tem), but this is not what we want here since we need to keep a symbolic
treatment of parameters in order to check that their types match. On the
other hand, Maude’s expressiveness and facilities for formal reasoning and
searching have allowed us to implement the different notions and strategies
at a very high level of abstraction, thus leading to a flexible and extensible
general framework. Moreover, the implementation of our prototype tool is
almost-zero distance from the formal definitions, and has allowed us to auto-
matically experiment and test the different compatibility notions presented
here.

Although protocol traversal and reachability analysis are well-understood
techniques for compatibility checking, their automation can be very costly in
practice. Using Maude’s rewriting engine, service protocols can be incremen-
tally traversed and checked in a simple and intuitive process. This on-the-
fly-based checking is more efficient and useful than the exhaustive (global)
checking which, in contrast, requires the construction of all possible execu-
tion traces of STSs before checking their compatibility. In addition, in the
case of process algebraic tools, we may need to traverse the involved services
several times to build STSs resulting from a composition, hiding unnecessary
actions, renaming actions, checking temporal properties or equivalences, and
so on. Thus, the incremental checking implies less time and space complexity,
allowing us to detect incompatibility issues even for large systems.

Last but not least, our Maude implementation is modular and makes its
extension with other compatibility notions possible, whereas we have not
seen yet how to achieve such genericity with process algebraic tools since
the verification of each compatibility notion does not rely on a common
architecture as specified with Maude. To conclude, we think that Maude is a
better option than process algebraic tools in terms of feasibility (in particular
in the case of n services, n > 2), performance, and genericity.

As far as future work is concerned, we first plan to propose a high-level
language which allows users to define their own compatibility notions, and
some encoding techniques that would automatically generate the correspond-
ing Maude code needed to verify such notions. Another perspective comes
from the fact that the Boolean compatibility result does not show all the
compatibility issues that may occur between service protocols. Therefore,
we are currently working on some techniques to measure the compatibil-
ity degree of service protocols. Compatibility measuring goes further than

32

Boolean compatibility by detecting all existing mismatches, and computing
the compatibility degree of two (or more) protocols.

Acknowledgements. We thank Radu Mateescu, Ernesto Pimentel and
Miguel Palomino for their fruitful discussions and comments on this topic.
We would also like to thank the anonymous referees for their very insightful
comments and suggestions.

This work has been partially supported by the RESCUE (TIN2008-05932)
and MDD-MERTS (TIN2008-03107) projects funded by the Spanish Min-
istry of Innovation and Science (MICINN) and FEDER, and by the regional
government of Andalućıa through project P07-TIC-03184.

References

[1] A. Aldini and M. Bernardo. On the Usability of Process Algebra: An
Architectural View. Theoretical Computer Science 335(2-3):281–329,
2005.

[2] A. Arnold. Finite Transition Systems: Semantics of Communicating
Systems. Prentice Hall, 1994.

[3] A. Äıt-Bachir, M. Dumas, and M.C. Fauvet. BESERIAL: Behavioural
Service Interface Analyser. In M. Dumas, M. Reichert, M.-C. Shan, eds.,
Proc. of BPM’08 , vol. 5240 of LNCS, pp. 374–377. Springer, 2008.

[4] C. Attiogbé, P. André, and G. Ardourel. Checking Component Com-
posability. In W. Löwe and M. Südholt, eds., Proc. of SC’06 , vol. 4089
of LNCS, pp. 8–33. Springer, 2006.

[5] A. Bouhoula, J. P. Jouannaud, and J. Meseguer. Specification and
Proof in Membership Equational Logic. Theoretical Computer Science
236(1):35–132, 2000.

[6] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two
Web Services Compatible? In M.-C. Shan, U. Dayal, and M. Hsu, eds.,
Proc. of TES’04 , vol. 3324 of LNCS, pp. 15–28. Springer, 2004.

[7] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines.
Journal of the ACM 30(2):323–342, 1983.

33

[8] J. Cámara, J. A. Martin, G. Salaün, J. Cubo, M. Ouederni, C. Canal,
and E. Pimentel. ITACA: An Integrated Toolbox for the Automatic
Composition and Adaptation of Web Services. In Proc. of ICSE’09, pp.
627-630. IEEE, 2009.

[9] C. Canal, E. Pimentel, and J. M. Troya. Compatibility and Inher-
itance in Software Architectures. Science of Computer Programming
41(2):105–138, 2001.

[10] H. S. Chae, J.S. Lee, and J. H. Bae. An Approach to Checking Be-
havioral Compatibility between Web Services. International Journal of
Software Engineering and Knowledge Engineering 18(2):223–241, 2008.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: Specification and Programming in Rewriting
Logic. Theoretical Computer Science 285:187–243, 2002.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and C. Talcott. All About Maude - A High-Performance Logical Frame-
work: How to Specify, Program, and Verify Systems in Rewriting Logic.
vol. 4350 of LNCS. Springer, 2007.

[13] V. Cortellessa and P. Potena. Path-Based Error Propagation Analysis in
Composition of Software Services. In M. Lumpe and W. Vanderperren,
eds., Proc. of SC’07, vol. 4829 of LNCS, pp. 97–112. Springer, 2007.

[14] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A Model-
Based Approach to the Verification and Adaptation of WF/.NET Com-
ponents. In M. Lumpe and E. Madelaine, eds., Proc. of FACS’07,
ENTCS 215:39–55. Elsevier 2008.

[15] L. de Alfaro and T. Henzinger. Interface Automata. In A. Min Tjoa
and V. Gruhn, eds., Proc. of ESEC/FSE’01 , pp. 109–120. ACM Press,
2001.

[16] S. G. Deng, Z. Wu, M. Zhou, Y. Li, and J. Wu. Modeling Service
Compatibility with Pi-Calculus for Choreography. In D. W. Embley, A.
Olivé, and S. Ram, eds., Proc. of ER’06 , vol. 4215 of LNCS, pp. 26–39.
Springer, 2006.

34

[17] F. Durán, M. Ouederni, and G. Salaün. Checking Protocol Compat-
ibility using Maude. In G. Salaün and M. Sirjani, eds., Proc. of FO-
CLASA’09, vol. 255 of ENTCS, pp. 65–81. 2009.

[18] L. Frantzen, J. Tretmans, and T. Willemse. A Symbolic Framework
for Model-Based Testing. In K. Havelund, M. Núñez, G. Rosu, and
B. Wolff, eds., Proc. of FATES/RV’06, vol. 4262 of LNCS, pp. 40–54.
Springer, 2006.

[19] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for Model-
based Verification of Web Service Compositions and Choreography. In
Proc. of ICSE’06, pp. 771–774. ACM Press, 2006.

[20] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPELWeb Services.
In S.I.. Feldman, M. Uretsky, M. Najork, and C.E. Wills, eds., Proc. of
WWW’04, pp. 621–630. ACM Press, 2004.

[21] X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations among
Web Services. IEEE Transactions in Software Engineering 31(12):1042–
1055, 2005.

[22] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A
Toolbox for the Construction and Analysis of Distributed Processes. In
W. Damm and H. Hermanns, eds., Proc. of CAV’07 , vol. 4590 of LNCS,
pp. 158–163. Springer, 2007.

[23] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J.
van Weerdenburg. The Formal Specification Language mCRL2. In E.
Brinksma, D. Harel, A. Mader, P. Stevens, and R. Wieringa, eds., Meth-
ods for Modelling Software Systems (MMOSS), Dagstuhl Seminar Pro-
ceedings, 2007.

[24] N. Hameurlain. Flexible Behavioural Compatibility and Substitutability
for Component Protocols: A Formal Specification. In M. Hinchay and
T. Margarita, eds., Proc. of SEFM’07 , pp. 391–400. IEEE Computer
Society, 2007.

[25] M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer
Science 138(2):353–389, 1995.

35

[26] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions in
Software Engineering 23(5):279–295, 1997.

[27] A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-passing Pro-
cesses. Handbook of Process Algebra, Chapter 7, pp. 427–478. Elsevier,
2001.

[28] C. D. Manning and H. Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, 1999.

[29] A. Martens. On Compatibility of Web Services. Petri Net Newsletter
65:12–20, 2003.

[30] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compat-
ibility of BPEL Processes. In Proc. of AICT/ICIW’06 , pp. 147–156.
IEEE Computer Society, 2006.

[31] J. A. Mart́ın and E. Pimentel. Automatic Generation of Adaptation
Contracts. In Proc. of FBTC’08, ENTCS 229(2):115–131. Elsevier,
2009.

[32] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service Protocols
Using Process Algebra and On-the-Fly Reduction Techniques. In A.
Bouguettaya, I. Krueger, and T. Margaria, eds., Proc. of ICSOC’08 ,
vol. 5364 of LNCS, pp. 84–99. Springer, 2008.

[33] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Con-
currency. Theoretical Computer Science 96(1):73–155, 1992.

[34] J. Meseguer. Membership Algebra as a Logical Framework for Equa-
tional Specification. In F. Parisi-Presicce, ed. Recent Trends in Algebraic
Development Techniques, vol. 1376 of LNCS, pp. 18–61. Springer, 1998.

[35] R. Milner. A Calculus of Communicating Systems. Springer, 1980.

[36] R. Milner, J. Parrow, and D. Walker. Modal Logics for Mobile Processes,
Theoretical Computer Science 114(1):149–171, 1993.

[37] S. Nain and M. Y. Vardi. Branching vs. Linear Time: Semantical Per-
spective. In K. S. Namjoshi, T. Yoneda, T. Higashino, and Y. Okamura,
eds., Proc. of ATVA’07 , vol. 4762 of LNCS, pp. 19–34. Springer, 2007.

36

[38] M. Ouederni. Maude Compatibility Checker. Available at http://www.
lcc.uma.es/~meriem/tools.html.

[39] T. Pedersen, S. Patwardhan, and J. Michelizzi. WordNet::Similarity
- Measuring the Relatedness of Concepts. In Proc. of AAAI’04 , pp.
1024–1025. AAAI, 2004.

[40] F. Plasil and S. Visnovsky. Behavior Protocols for Software Components.
IEEE Transactions in Software Engineering 28(11):1056–1076, 2002.

[41] P. Poizat and J. C. Royer. A Formal Architectural Description Language
based on Symbolic Transition Systems and Temporal Logic. Journal of
UCS 12(12): 1741-1782, 2006.

[42] P. J. G. Ramadge and W. M. Wonham. The Control of Discrete Event
Systems. In Proc. of the IEEE , vol. 77, num. 1, pp. 81–98. IEEE, 1989.

[43] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on
Web Services using Process Algebra. Int. Journal of BPIM 1(2):116–128,
2006.

[44] Y. Shi, L. Zhang, F. Liu, L. Lin, and B. Shi. Compatibility Analysis
of Web Services. In A. Skowron, R. Agrawal, M. Luck, T. Yamaguchi,
P. Morizet-Mahoudeaux, J. Liu, N. Zhong, eds., Proc. of WI’05 , pp.
483-486. IEEE Computer Society, 2005.

[45] K. Scribner. Microsoft Windows Workflow Foundation Step by Step.
Microsoft Press , 2007.

[46] O. Sokolsky, S. Kannan, and I. Lee. Simulation-Based Graph Similarity.
In H. Hermanns and J. Palsberg, eds., Proc. of TACAS’06 , vol. 3920 of
LNCS, pp. 426–440. Springer, 2006.

[47] D. M. Yellin and R. E. Strom. Protocol Specifications and Components
Adaptors. ACM Transactions on Programming Languages and Systems
19(2):292–333, 1997.

[48] P. Y. H. Wong and J. Gibbons. Verifying Business Process Compati-
bility. In H. Zhu, ed., Proc. of QSIC’08 , pp. 126–131. IEEE Computer
Society, 2008.

37

[49] W. M. Wonham and P. J. Ramadge. On the Supremal Controllable
Sublanguage of a Given Language. SIAM Journal on Control and Op-
timization 25(3):pp. 637–659, 1987.

38

